Optimally Cutting a Surface into a Disk

Size: px
Start display at page:

Download "Optimally Cutting a Surface into a Disk"

Transcription

1 Opimlly Cuing Surfe ino Dik Jeff Erikon Sriel Hr-Peled Univeriy of Illinoi Urn-Chmpign hp:// {jeffe,riel} ABSTRACT We onider he prolem of uing e of edge on polyhedrl mnifold urfe, poily wih oundry, o oin ingle opologil dik, minimizing eiher he ol numer of u edge or heir ol lengh. We how h hi prolem i NP-hrd, even for mnifold wihou oundry nd for punured phere. We lo derie n lgorihm wih running ime n O(g+k), where n i he ominoril omplexiy, g i he genu, nd k i he numer of oundry omponen of he inpu urfe. Finlly, we derie greedy lgorihm h oupu O(log 2 g)-pproximion of he minimum u grph in O(g 2 n log n) ime. Cegorie nd Suje Deripor F.2.2 [Anlyi of Algorihm nd Prolem Complexiy]: Nonnumeril Algorihm nd Prolem Geomeril prolem nd ompuion; G.2.m [Diree Mhemi]: Miellneou Cominoril opology Generl Term Algorihm Keyword ompuionl opology, polyhedrl 2-mnifold, polygonl hem, u grph, NP-hrdne, pproximion 1. INTRODUCTION Severl ppliion of hree-dimenionl urfe require informion ou underlying opologil ruure in ddiion o geomery. In ome e, we wih o implify he See hp:// jeffe/pu/hem.hml for he mo reen verion of hi pper. Prilly uppored y Slon Fellowhip, NSF CAREER wrd CCR , nd NSF ITR grn DMR Permiion o mke digil or hrd opie of ll or pr of hi work for peronl or lroom ue i grned wihou fee provided h opie re no mde or diriued for profi or ommeril dvnge nd h opie er hi noie nd he full iion on he fir pge. To opy oherwie, o repulih, o po on erver or o rediriue o li, require prior peifi permiion nd/or fee. SoCG 02, June 5-7, 2002, Brelon, Spin. Copyrigh 2002 ACM /02/ urfe opology, o filie lgorihm h n e performed only if he urfe i opologil dik. Appliion when hi i imporn inlude urfe prmeerizion [14, 29] nd exure mpping [2, 28]. In he exure mpping prolem, one wih o find oninuou mpping from he exure, uully wo-dimenionl rengulr imge, o he urfe. Unforunely, if he urfe i no opologil dik, no uh mp exi. In uh e, he only feile oluion i o u he urfe o h i eome opologil dik. (Hker e l. [18] preen n lgorihm for direly exure mpping model wih he opology of phere, where he exure i lo emedded on phere.) Of oure, when uing he urfe, one would like o find he e poile u under vriou oniderion. For exmple, one migh wn o u he urfe o h he reuling urfe n e exured mpped wih minimum diorion [14, 29]. To our knowledge, ll urren pprohe for hi uing prolem eiher rely on heurii wih no quliy gurnee or require he uer o perform hi uing eforehnd [14, 28]. The prolem of ju uing urfe ino opologil dik i no rivil y ielf. Lzru e l. [25] preened nd implemened wo lgorihm for ompuing nonil polygonl hem of n orienle urfe of omplexiy n nd wih genu g, in ime O(gn), implifying n erlier lgorihm of Veger nd Yp [34]. Compuing uh hem require finding 2g yle, ll ping hrough ommon epoin in M, uh h uing long hoe yle rek M ino opologil dik. Sine hee yle mu hre ommon poin, i i ey o find exmple where he overll ize of hoe yle i Ω(gn). Furhermore, hoe yle hre everl edge nd re viully unifying. For mo ppliion, ompuing nonil hem i overkill. I i uully uffiien o find olleion of edge whoe removl rnform he urfe ino opologil dik. We ll uh e of edge u grph; ee Figure 1 for n exmple. Cu grph hve everl dvnge. Fir, hey re omp. Trivilly, ny u grph onin mo n edge of he urfe meh, muh le hn ny nonil hem in he wor e, lhough we expe i o e muh mller in prie. Seond, i i quie ey o onru u grph for n rirry polyhedrl urfe in O(n) ime, uing redh-fir erh of he dul grph [9], or imply king mximl e of edge whoe omplemen i onneed [25]. Finlly, he u grph h n exremely imple ruure: ree wih O(g) ddiionl edge. A uh, i hould e eier o mnipule lgorihmilly hn oher repreenion. For exmple, Dey nd Shipper [9] derie f lgorihm

2 e e e d d d Figure 1. A u grph for wo-holed oru nd i indued (nonnonil) polygonl hem. o deermine wheher urve i onrile, or wo urve re homoopi, uing n rirry u grph ined of nonil hem. In hi pper, we inveige he queion of how find he e uh uing of urfe, reriing ourelve o u long he edge of he given meh. Speifilly, we wn o find he mlle ue of edge of polyhedrl mnifold urfe M, poily wih oundry, uh h uing long hoe edge rnform M ino opologil dik. We lo onider he weighed verion of hi prolem, where eh edge h n rirry non-negive weigh nd we wn o minimize he ol weigh of he u grph. The mo nurl weigh of n edge i i Euliden lengh, u we ould lo ign weigh o ke prolem-peifi oniderion ino oun. For exmple, if we wn o ompue exure mpping for peifi viewpoin, we ould mke viile edge more expenive, o h he minimum u grph would minimize he numer of viile edge ued in he u. Our lgorihm do no require he edge weigh o ify he ringle inequliy. We how h he minimum u grph of ny polyhedrl mnifold M wih genu g nd k oundry omponen n e ompued in n O(g+k) ime. We lo how h he prolem i NP-hrd in generl, even if g or k i fixed. Finlly, we preen imple nd effiien greedy pproximion lgorihm for hi prolem. Our lgorihm oupu u grph whoe weigh i for O(log 2 g) lrger hn opiml, in O(g 2 n log n) ime. 1 If g = 0, he pproximion for i exly 2. We pln o implemen hi lgorihm nd preen experimenl reul in he ner fuure. 1 To implify noion, we define log x = mx{1, log 2 x }. d e 2. BACKGROUND Before preening our new reul, we review everl ueful noion from opology nd derie reled reul in more deil. We refer he inereed reder o Hher [21], Munkre [27], or Sillwell [30] for furher opologil kground nd more forml definiion. For reled ompuionl reul, ee he reen urvey y Dey, Edelrunner, nd Guh [7] nd Veger [33]. A 2-mnifold wih oundry i e M uh h every poin x M lie in neighorhood homeomorphi o eiher he plne IR 2 or loed hlfplne. The poin wih only hlfplne neighorhood oniue he oundry of M; he oundry oni of zero or more dijoin irle. Thi pper will onider only omp mnifold, where every infinie equene of poin h onvergen uequene. The genu of 2-mnifold M i he mximum numer of dijoin non-epring yle 1, 2,..., g in M; h i, i j = for ll i nd j, nd M \ ( 1 g ) i onneed. For exmple, phere nd di hve genu 0, oru nd Möiu rip hve genu 1, nd Klein ole h genu 2. A mnifold i orienle if i h wo diin ide, nd non-orienle if i h only one ide. Alhough mny geomeri ppliion ue only orienle 2-mnifold (primrily eue non-orienle mnifold wihou oundry nno e emedded in IR 3 wihou elf-inereion) our reul will pply o non-orienle mnifold well. Every (omp, onneed) 2-mnifold wih oundry i hrerized y i orieniliy, i genu g, nd he numer k of oundry omponen [15]. A polyhedrl 2-mnifold i onrued y gluing loed imple polygon edge-o-edge ino ell omplex: he inereion of ny wo polygon i eiher empy, verex of oh, or n edge of oh. We refer o he omponen polygon h fe. (Sine he fe re loed, every polyhedrl mnifold i omp.) For ny polyhedrl mnifold M, he numer of verie nd fe, minu he numer of edge, i he Euler hrerii χ of M. Euler formul [13] implie h χ i n invrin of he underlying mnifold, independen of ny priulr polyhedrl repreenion; χ = 2 2g k if he mnifold i orienle, nd χ = 2 g k if he mnifold i non-orienle. Euler formul implie h if M h v verie, hen M h mo 3v 6 + 6g edge nd mo 2v 4 + 4g k fe, wih equliy for orienle mnifold where every fe nd oundry irle i ringle. We le n 6v g k denoe he ol numer of fe, edge, nd verie in M. The 1-keleon M 1 of polyhedrl mnifold M i he grph oniing of i verie nd edge. We define u grph G of M ugrph of M 1 uh h M \ G i homeomorphi o dik. 2 The dik M \ G i known polygonl hem of M. Eh edge of G pper wie on he oundry of polygonl hem M\G, nd we n oin M y gluing ogeher hee orreponding oundry edge. Finding u grph of M wih minimum ol lengh i lerly equivlen o o finding polygonl hem of M wih minimum perimeer. Any 2-mnifold h o-lled nonil polygonl hem, whoe ominoril ruure depend only on he genu g, 2 Cu grph re generlizion of he u lou of mnifold M, whih i eenilly he geodei medil xi of ingle poin.

3 he numer of oundry omponen k, nd wheher he mnifold i orienle. The nonil hem of n orienle mnifold i (4g + 3k)-gon wih ueive edge leled x 1, y 1, x 1, ȳ 1,..., x g, y g, x g, ȳ g, z 1, e 1, z 1,..., z k, e k, z k ; for non-orienle mnifold, he nonil hem i (2g + 3k)-gon wih edge lel x 1, x 1,..., x g, x g, z 1, e 1, z 1,..., z k, e k, z k. Every pir of orreponding edge x nd x i oriened in oppoie direion. Gluing ogeher orreponding pir in he indied direion reover he originl mnifold, wih he unmhed edge e i forming he oundry irle. For mnifold M wihou oundry, redued polygonl hem i one where ll he verie re glued ino ingle poin in M; nonil hem of mnifold wihou oundry re redued. We emphize h he polygonl hem onrued y our lgorihm re neiher neerily nonil nor neerily redued. Dey nd Shipper [9] derie n lgorihm o onru redued, u no neerily nonil, polygonl hem for ny ringuled orienle mnifold wihou oundry in O(n) ime. Eenilly, heir lgorihm onru n rirry u grph G y deph-fir erh, nd nd hen hrink pnning ree of G o ingle poin. (See lo Dey nd Guh [8].) Veger nd Yp [34] developed n lgorihm o onru nonil hem in opiml O(gn) ime nd pe. Two impler lgorihm wih he me running ime were ler developed y Lzru e l. [25]. The edge of he polygonl hem produed y ll hee lgorihm re (poily overlpping) ph in he 1-keleon of he inpu mnifold. We will modify one of he lgorihm of Lzru e l. o onru nd eenil yle nd nerly-miniml u grph. 3. COMPUTING MINIMUM CUT GRAPHS IS NP-HARD In hi eion, we prove h finding minimum u grph of ringuled mnifold i NP-hrd. We onider wo exreme e: oundry u no genu, nd genu u no oundry. Boh reduion re from he reiliner Seiner ree prolem: Given e P of n poin from m m qure grid in he plne, find he hore onneed e of horizonl nd veril line egmen h onin every poin in P. Thi prolem i NP-hrd, even if m i ounded y polynomil in n [17]. Our reduion ue he Hnn grid of he poin, whih i oined y drwing horizonl nd veril line hrough eh poin, lipped o he ounding ox of he poin. A le one reiliner Seiner ree of he poin i ue of he Hnn grid [20]. Theorem 3.1. Compuing he lengh of he minimum (weighed or unweighed) u grph of ringuled punured phere i NP-hrd. Proof: Le P e e of n poin in he plne, wih ineger oordine eween 1 nd m. We onru punured phere in O(n 2 ) ime follow. Aume h P lie on he xy-plne in IR 3. We modify he Hnn grid of P y repling eh erminl wih qure of widh 1/2n, roed 45 degree o h i verie lie on he neighoring edge. () () Figure 2. () A e of ineger poin. () The modified Hnn grid. () A u-wy view of he reuling punured phere. Thee qure will form he punure. We hen h in under eh fe f of he modified Hnn grid, y joining he oundry of f o lighly led opy of f on he plne z = n 2. We lo h in of deph n 2 +1 o he oundry of he enire modified Hnn grid. The ide fe of eh in re rpezoid. The in re pered o h djen in inere only on he modified Hnn grid. Tringuling hi urfe rirrily, we oin polyhedrl phere M wih n punure nd overll omplexiy O(n 2 ). See Figure 2. Le G e minimum weighed u grph of M. We eily oerve h G onin only long edge from he modified Hnn grid nd onin le one verex of every punure. Thu, he edge of G re in one-o-one orrepondene wih he edge of reiliner Seiner ree of P. For he unweighed e, we modify he originl m m ineger grid ined of he Hnn grid. To ree punured phere, we reple eh erminl poin wih mll dimond ove. We hen fill in eh modified grid ell wih ringulion, hoen o h he hore ph eween ny wo poin on he oundry of ny ell y on he oundry of h ell; hi require onn numer of ringle per ell. The reuling mnifold M h omplexiy O(m 2 ). By induion, he hore ph eween ny wo poin on he modified grid lie enirely on he grid. Thu, ny miniml unweighed u grph of M onin only edge from he modified grid. I follow h if he minimum unweighed u grph of M h r edge, he lengh of ny reiliner Seiner ree of P i exly r. We n eily generlize he previou proof o mnifold wih higher genu, wih or wihou oundry, oriened or no, y hing mll ringuled ori or ro-p o ny ue of punure. ()

4 Theorem 3.2. Compuing he lengh of he minimum (weighed or unweighed) u grph of ringuled mnifold wih oundry, wih ny fixed genu or wih ny fixed numer of oundry omponen, i NP-hrd. 4. COMPUTING MINIMUM CUT GRAPHS ANYWAY In hi eion, we derie n lgorihm o ompue he minimum u grph of polyhedrl mnifold in n O(g+k) ime. For mnifold wih onn Euler hrerii, our lgorihm run in polynomil ime. Our lgorihm i ed on he following hrerizion of he minimum u grph he union of hore ph. A rnh poin of u grph i ny verex wih degree greer hn 2. A imple ph in u grph from one rnh poin or oundry poin o noher, wih no rnh poin in i inerior, i lled u ph. Lemm 4.1. Le M e polyhedrl 2-mnifold, poily wih oundry, nd le G e minimum u grph of M. Any u ph in G n e deompoed ino wo equl-lengh hore ph in M 1. Proof: Le G e n rirry u grph of M, nd onider u ph eween wo (no neerily diin) rnh poin nd of G. Le e he midpoin of hi ph, nd le nd denoe he uph of from o nd from o, repeively. Noe h my lie in he inerior of n edge of M 1. Finlly, uppoe i no he hore ph from o in M 1. To prove he lemm, i uffie o how h G i no he hore u grph of M. Le e he rue hore ph from o. Clerly, i no onined in G. Wlking long from o, le e he fir verex whoe following edge i no in G, nd le e he fir verex in G whoe preeding edge i no in G. (Noe h nd my e joined y ingle edge in M\G.) Finlly, le σ e he hore ph from o, nd le τ e he hore ph from o. Thu, τ i he fir mximl uph of whoe inerior lie in M \ G. See Figure 3. The uph τ u M \ G ino wo mller dik. We lim h ome uph τ of eiher or pper on he oundry of oh dik nd i longer hn τ. Our lim implie h uing M \ G long τ nd regluing he piee long τ give u new polygonl hem wih mller perimeer, nd hu new u grph horer hn G. See Figure 3 for n exmple. We prove our lim y exhuive e nlyi. Fir onider he e where he mnifold M i orienle. We n udivide he enire oundry of he dik M \ G ino ix ph leled oneuively,,,, ᾱ,. Here, ᾱ nd re he orreponding opie of nd in he polygonl hem. Beue M i orienle, nd ᾱ hve oppoie orienion, do nd. Eiher or oh of nd ould e empy. See he lower lef pr of Figure 3. The uph τ n ener he inerior of he dik M \ D from four of hee ix ph (,, ᾱ, nd ) nd leve he inerior of he dik hrough ny of he ix ph. Suppoe τ ener he inerior of M \ G from ; he oher hree e re ymmeri. Figure 4 how he ix eenilly differen wy for τ o leve he inerior of M \ D. In Figure 3. If he dhed ph from o i horer hn he equllengh ph nd in he u grph, hen he u grph n e horened y uing nd regluing. eh e, we eily verify h fer uing long τ, ome uph τ of eiher or i on he oundry of oh dik. Speifilly, if τ leve hrough or ᾱ, hen τ o e he uph of from o. If τ leve hrough or, hen τ i he uph of from o. If τ leve hrough, hen τ =. Finlly, if τ leve hrough, hen τ i he ue of from o. If M i non-orienle, he ph ould pper eiher wih he me orienion or wih oppoie orienion on he oundry of he dik M\G. If he orienion re oppoie, he previou e nlyi pplie immediely. Oherwie, he oundry n e udivided ino ix ph leled oneuively,,,,,. Wihou lo of generliy, τ ener he inerior of M \ G from nd leve hrough ny of hee ix ph. The ix e re illured in Figure 5. Agin, we eily verify h in eh e, ome uph τ of eiher or i on he oundry of oh dik. We omi furher deil. For ny u grph G of mnifold M, we define he orreponding redued u grph Ĝ h follow. We fir ugmen he u grph y dding ll he oundry edge of M. Nex, we remove every verex of degree one nd i only edge, mking he grph 2-edge-onneed. Finlly, we reple eh

5 Figure 4. Six e for he proof of Lemm 4.1 for orienle mnifold; ll oher e re refleion of hee. In eh e, ome uph of or pper on he oundry of oh u-dik. Figure 5. Six ddiionl e for he proof of Lemm 4.1 for non-orienle mnifold; ll oher e re refleion or roion of hee. In eh e, ome uph of or pper on he oundry of oh u-dik.

6 mximl ph hrough degree-2 verie wih ingle edge, o h eh verex in he redued u grph Ĝ h degree le 3. Every verex of Ĝ i eiher rnh poin or oundry poin of G, nd every edge of Ĝ orrepond o eiher u ph or oundry ph in G. However, in generl, no ll rnh poin nd u ph re repreened in Ĝ. Lemm 4.2. Any redued u grph Ĝ of mnifold M h mo 4g + 2k 2 verie nd 6g + 3k 3 edge. Proof: Le v nd e denoe he numer of verie nd edge in Ĝ, repeively. If ny verex in Ĝ h degree d 4, we n reple i wih d 3 rivlen verie nd d 3 new edge of lengh zero. Thu, in he wor e, every verex in Ĝ h degree exly 3, whih implie h 3v = 2e. Sine Ĝ i emedded in M wih ingle fe, Euler formul implie h v e + 1 = χ = 2 2g k if M i orienle, nd v e + 1 = χ = 2 g k if M i non-orienle. I follow h v 4g + 2k 2 nd e 6g + 3k 3, limed. Our minimum u grph lgorihm exploi Lemm 4.1 y ompoing poenil minimum u grph ou of O(g + k) hore ph. Unforunely, ingle pir of node in M ould e joined y 2 Ω(n) hore ph, in 2 Ω(g+k) differen ioopy le, in he wor e. To void hi ominoril exploion, we n dd rndom infinieiml weigh ε w(e) o eh edge e. The Iolion Lemm of Mulmuley, Vzirni, nd Vzirni [26] implie h if he weigh w(e) re hoen independenly nd uniformly from he ineger e {1, 2,..., n 2 }, ll hore ph re unique wih proiliy le 1 1/n; ee lo [6, 23]. 3 We re now finlly redy o derie our minimum u grph lgorihm. Theorem 4.3. The minimum u grph of polyhedrl 2- mnifold M wih genu g nd k oundry omponen n e ompued in ime n O(g+k). Proof: We egin y ompuing he hore ph eween every pir of verie in M in O(n 2 log n) y running Dijkr ingle-oure hore ph lgorihm for eh verex [10, 22], reking ie uing rndom infinieiml weigh deried ove. One hee hore ph nd midpoin hve een ompued, our lgorihm enumere y rue fore every poile u grph h ifie Lemm 4.1 nd 4.2, nd reurn he mlle uh grph. Eh u grph i peified y e V of up o 4g + 2k 2 verie of M, e E of up o 6g + 3k 3 edge of M, rivlen muligrph Ĝ wih verie V, nd ignmen of edge in E o edge in Ĝ. Eh edge (v, w) of Ĝ i igned unique edge e E o define he orreponding u ph in M. Thi u ph i he onenion of he hore ph from v o e, e ielf, nd he hore ph from e o w. If he midpoin of hi u ph i no in he inerior of e, 3 Alernely, if we hooe w(e) uniformly from he rel inervl [0, 1], hore ph re unique wih proiliy 1. Thi my ound unreonle, u rell h no polynomil-ime lgorihm i known o ompre um of qure roo of ineger in ny model of ompuion h doe no inlude qure roo primiive operion[5]. Thu, o ompue Euliden hore ph in geomeri grph wih ineger verex oordine, we mu eiher ume ex rel rihmei or (grudgingly) ep ome pproximion error [16]. we delre he u ph invlid, ine i viole Lemm 4.1. (Beue hore ph eween verie re unique, he midpoin of ny u ph in he miniml u grph mu lie in he inerior of n edge.) If ll he u ph re vlid, we hen hek h every pir of u ph i dijoin, exep poily heir endpoin, nd h removing ll he u ph from M leve opologil dik. Our rue-fore lgorihm onider verex e V, n 4g+2k 2 differen n (4g+2k 2) 6g+3k 2 differen edge e E, 2 6g+3k 2 differen grph Ĝ, nd (6g + 3k 2)! differen edge ignmen. Thu, n O(g+k) poenil u grph re onidered logeher. The vlidiy of eh poenil u grph n e heked in O(n) ime. 5. APPROXIMATE MINIMUM CUT GRAPHS In hi eion, we derie imple polynomil-ime greedy lgorihm o onru n pproxime minimum u grph for ny polyhedrl mnifold M. To hndle mnifold wih oundry, i will e onvenien o onider he following implified form. Given mnifold M wih genu g nd k oundry omponen, he orreponding punured mnifold (M, P ) oni of mnifold M wih he me genu M u wihou oundry, nd e P of k poin in M, lled punure. To onru M, we onr every oundry omponen of M o ingle poin, whih eome one of he punure in P. 4 If ny verex of M h muliple edge o he me oundry omponen, M onin only he edge wih mlle weigh, reking ie uing he Iolion Lemm ove. If M h no oundry, hen M = M nd P =. Thi reduion i moived y he following rivil oervion. Lemm 5.1. The minimum u grph of M h he me lengh he minimum u grph of M h inlude every punure in P. A imple yle in M i eenil if i doe no ound dik or n nnulu. In erm of punured mnifold, yle in M i eenil if i doe no ound dik onining le hn wo punure in P. Our pproximion lgorihm work follow. We repeedly u long hor eenil yle unil our urfe eome olleion of punured phere, onne he punure on eh omponen y uing long minimum pnning ree, nd finlly (if neery) reglue ome previouly u edge o oin ingle dik. The reuling u grph i ompoed of ue of he edge of he hor eenil yle nd ll he edge of he minimum pnning fore. Before we derie our lgorihm in more deil, we fir derie how o exeue eh of he uing operion nd how he lengh of eh ype of u ompre o he minimum u grph lengh. 5.1 Shore Eenil Cyle We now derie n lgorihm o ompue he hore eenil yle in he 1-keleon M 1 of polyhedrl 2- mnifold M. Alhough our mo effiien pproximion 4 We ould imule hi onrion y rifiilly igning every oundry edge of M weigh of zero, lhough hi would require few imple hnge in our lgorihm.

7 lgorihm for u grph doe no ue require he hore eenil yle, we elieve hi lgorihm i of independen inere. Our lgorihm ue ominion of Dijkr ingle-oure hore ph lgorihm [10] nd modifiion of he nonil polygonl hem lgorihm of Lzru e l. [25]. The lgorihm of Lzru e l. uild onneed ue S of ringuled mnifold, ring wih ingle ringle nd dding new ringle one ime on he oundry. If new ringle inere he oundry of S in more hn one omponen, he lgorihm hek whih of he following hree e hold: (1) M \ S i onneed; (2) neiher omponen of M\S i dik; or (3) one omponen of M\S i dik. In he fir wo e, S onin n eenil yle. In e (1), he hek run in O(n) ime; in he oher wo e, he running ime of he hek i proporionl o he ize of he mller omponen of M \ S. In e (3), he lgorihm dd he dik omponen o S nd oninue erhing he oher omponen of M \ S. If we run hi lgorihm unil eiher e (1) or e (2) hold, he ol running ime i O(n). See Lzru e l. [25] for furher deil. Lemm 5.2. Le u e verex of polyhedrl 2-mnifold M. The hore eenil yle in M 1 h onin u n e ompued in O(n log n) ime. Proof: We find he hore eenil yle hrough u y imuling irulr wve expnding from u. Whenever he wve ouhe ielf, eiher we hve he hore eenil yle hrough u, or one omponen of he wve ound dik in M nd we n oninue expnding he oher omponen. We modify he lgorihm of Lzru e l. in hree wy. Fir, S i no longer e of ringle u more generl onneed ue of verie, edge, nd fe of M. Iniilly, S onin only he oure verex u. Seond, we ue Dijkr lgorihm o deermine he order for edge o e dded. We dd fe o S only when ll i verie hve een dded o S, eiher direly or pr of noher fe. We run he Lzru opology hek when S i no longer imply onneed, h i, when we dd new edge vw wih oh endpoin on he oundry of S. (In he unweighed e, our lgorihm ehve imilrly o he wve rverl lgorihm of Axen nd Edelrunner [1].) Our hird hnge i h if M\S i dionneed, we oninue only if one omponen of M\S i dik or n nnulu. In h e, we dd he dik or nnulu omponen of M \ S o S, dird he verie of h omponen from he Dijkr prioriy queue, nd oninue erhing in he oher omponen. Oherwie, we hve found he hore eenil yle hrough u, oniing of he hore ph from u o v, he edge vw, nd he hore ph from w o u. Alogeher, Dijkr lgorihm require O(n log n) ime. By our erlier diuion, he ol ime pen modifying he wve e S i only O(n). Thu, he ol running ime of our lgorihm i O(n log n). Running hi lgorihm one for every verex of M give u he following: Corollry 5.3. Le M e n polyhedrl 2-mnifold. The hore eenil yle in M 1 n e ompued in O(n 2 log n) ime. The following lemm rele he lengh of he hore eenil yle o he lengh of he minimum u grph. Lemm 5.4. Le G e ny u grph of 2-mnifold M wih genu g nd no oundry. The hore yle in G onin O((log g)/g) of he ol lengh of G. Proof: Fir onider he redued u grph Ĝ, onrued y repeedly onring ny edge wih verex of degree le hn hree, in Seion 4. Every verex in Ĝ h degree le 3. Wihou lo of generliy, ume h every verex in Ĝ h degree exly 3, pliing eh high-degree verex ino ree of degree-3 verie if neery, in he proof of Lemm 4.2. A righforwrd ouning rgumen implie h ny rivlen grph whoe girh (minimum yle lengh) i mu hve le /2 2 verie if i odd, nd le 2 2 /2 2 verie if i even [4]. By Lemm 4.2, Ĝ h mo 4g 2 verie, o Ĝ mu hve yle ˆ wih mo 2(lg g + 1) = O(log g) edge. Sring wih Ĝ0 = Ĝ, we induively define equene of redued grph Ĝ1, Ĝ2,... follow. For eh i > 0, le ˆ i denoe he hore yle in Ĝi 1. We oin Ĝi y reduing he grph Ĝi 1 \ ˆ i, or equivlenly, removing he verie of ˆ i nd ll heir edge, nd hen onring ˆ i nery lengh-2 ph o ingle edge. Our erlier rgumen implie h eh yle ˆ i h mo 2(lg g + 1) edge. Thu, for eh i, we hve E(Ĝ i ) = E(Ĝ i 1 ) 6(lg g + 1). Sine he originl redued u grph Ĝ onin le g edge, i follow h we n repe hi proe le g/6(lg g + 1) ime. Le i denoe he yle in he originl u grph G orreponding o Ĝi. By our onruion, i nd j re dijoin for ll i j, o we hve e of le g/6(lg g +1) dijoin yle in G. A le one of hee yle h lengh mo 6(lg g + 1)/g = O((log g)/g) ime he ol lengh of G. Corollry 5.5. For ny 2-mnifold M wih genu g nd no oundry, he lengh of he hore eenil yle i mo O((log g)/g) ime he lengh of he minimum u grph. 5.2 Nerly-Shore Eenil Cyle A we will rgue horly, ompuing hor eenil yle i he olenek in our pproxime u grph lgorihm. Forunely, ex minimum eenil yle re no neery. We n peed up our u grph lgorihm, wihou ignifinly inreing he pproximion for, y erhing for n eenil yle mo wie long he hore. Our pproximion lgorihm work follow. Fir, we ompue e of hore ph (in f, u grph) h inere every eenil yle in he mnifold M. Then we onr eh hore ph π in hi e o poin, nd find he hore eenil yle hrough h poin, deried y Lemm 5.2. Lemm 5.6. Le π e hore ph eween wo verie in polyhedrl 2-mnifold M, nd le e he hore eenil yle in M 1 h inere π. In O(n log n) ime, one n ompue n eenil yle in M uh h 2.

8 Proof: Le M e he mnifold oined y onring he hore ph π o ingle verex v. Beue π h no yle, M h he me opologil ype M. Le e he hore eenil yle in M h pe hrough v. Clerly,. We onru yle in M y onening wo ph nd, where onin he edge of nd i he uph of π eween he endpoin of. The equene of edge onrion h rnform M o M lo rnform o. Hene, i n eenil yle of M. Beue i uph of hore ph, i ully he hore ph eween he endpoin of, o =. I follow h = Thi lemm ugge nurl lgorihm for finding hor eenil yle: Compue e of hore ph h inere every eenil yle, nd hen run he lgorihm from Lemm 5.6 for eh ph in hi e. Lemm 5.7. In O(gn log n) ime, one n ompue e Π of O(g) hore ph on M 1 uh h every eenil yle in M 1 inere le one ph in Π. Proof: We ue noher vrin of he lgorihm of Lzru e l. [25], repling he imple redh-fir erh wih Dijkr hore ph lgorihm. The u grph G ompued y our lgorihm oni of hore-ph ree T from he ring verex v, plu n ddiionl e E of O(g) edge. Le Π e he e of O(g) hore ph from v o he endpoin of E, nd le G = Π E. We eily oerve h G i lo u grph; h i, M \ G i opologil dik. Thu, every eenil yle in M inere G. Sine every verex of G i lo verex of Π, every eenil yle inere le one ph in Π. Corollry 5.8. Le M e polyhedrl 2-mnifold wih genu g nd no oundry, nd le e i hore eenil yle. In O(gn log n) ime, one n ompue n eenil yle of M uh h Punure-Spnning Tree A eond omponen of our u grph lgorihm i ompuing he minimum punure-pnning ree of punured mnifold (M, P ): he minimum pnning ree of he punure P in he hore-ph meri of M 1. Lemm 5.9. The minimum punure-pnning ree of ny punured polyhedrl 2-mnifold (M, P ) n e ompued in O(n log n) ime. Proof: We imule Prim minimum pnning ree lgorihm y dding hore punure-o-punure ph one ime in inreing order of lengh [31]. To ompue he hore ph, we imulneouly propge wvefron from ll k punure uing Dijkr lgorihm. Whenever wo wvefron (i.e., wo growing hore-ph ree) ollide, we dd new edge o he evolving minimum pnning ree nd merge hoe wo wvefron. To implemen hi lgorihm effiienly, we minin he wvefron in union-find d ruure. The reuling running ime i O(n log n). Lemm The lengh of he minimum punure-pnning ree of ny punured mnifold (M, P ) i mo wie he lengh of ny u grph of (M, P ). Proof: The minimum Seiner ree of P i he ugrph of M 1 of minimum ol weigh h inlude every poin in P. Sine ny u grph of (M, P ) mu ouh every punure, no u grph i horer hn hi minimum Seiner ree. On he oher hnd, he minimum pnning ree of P h mo wie he lengh of he minimum Seiner ree [24, 31]. 5.4 Greedy Algorihm Anlyi We now hve ll he omponen of our greedy u grph lgorihm. A ny ge of he lgorihm, we hve (poily dionneed) punured mnifold (M, P ). Our lgorihm repeedly u long hor eenil yle of M, uing he lgorihm of Corollry 5.8. Thi u ree one or wo new oundry irle, whih we ollpe o new punure. When he mnifold i redued o olleion of punured phere, we u long he minimum punure-pnning ree of eh omponen uing he lgorihm in Lemm 5.9. Finlly, we reglue ome u edge o oin ingle opologil dik. Eh eenil yle u i eiher epring u, whih rek omponen of M ino wo mller omponen, eh wih non-rivil opology, or reduing u, whih deree he genu of ome omponen of M y 1. The lgorihm perform mo g 1 epring u nd exly g reduing u. Thu, he overll running ime of our lgorihm i (2g 1) O(gn log n) + O(n log n) = O(g 2 n log n). I remin only o nlyze how well our greedy u grph pproxime he rue minimum u grph G. For ny grph X, le X denoe i ol lengh. We pli he lgorihm ino phe numered from g down o 1. In he ih phe, we u long he hore eenil yle in every omponen of he mnifold whoe genu i exly i. Some phe my inlude no u. Le (M i, P i ) denoe he punured mnifold he eginning of he ih phe, nd le G i denoe he union of he minimum u grph of i omponen. Sine ollping edge nno inree he minimum u grph lengh, we hve G i G g = G for ll i. Le M ij denoe he jh omponen of M i wih genu i; le G ij denoe i minimum u grph; le ij denoe he hor eenil yle found y Corollry 5.8. (We eily oerve h ny u grph of M ij mu inere hi yle.) Lemm 5.4 nd Corollry 5.8 imply h ij O((log i)/i) G ij for ll i nd j. Thu, we n ound he ol lengh of ll u in phe i follow. j ij j O((log i)/i) G ij O((log i)/i) G i Summing over ll g phe, we onlude h he ol lengh of ll yle u i mo g i=1 O((log i)/i) G i = O(log 2 g) G. Similrly, Lemm 5.10 implie h he minimum punurepnning fore h lengh mo 2 G. Finlly, regluing previouly u edge o oin ingle dik only redue he lengh of he finl u grph. Thu, he finl u grph ompued y our lgorihm h lengh mo O(log 2 g) G.

9 Theorem Given polyhedrl 2-mnifold M wih genu g nd k oundry omponen, n O(log 2 g)-pproximion of i minimum u grph n e onrued in O(g 2 n log n) ime. 6. OPEN PROBLEMS We hve developed new lgorihm o ompue ex nd pproxime miniml u grph for mnifold urfe wih rirry genu nd rirry oundry omplexiy. Our pproximion lgorihm i priulrly imple. We pln o implemen hi lgorihm nd preen experimenl reul in fuure verion of hi he pper. Our reul ugge everl open prolem, he mo oviou of whih i o improve he running ime nd pproximion for of our lgorihm. I he minimum u grph prolem fixed-prmeer rle [11]? Th i, n we ompue ex minimum u grph in ime f(g, k) n O(1) for ome funion f? The imilriy o he Seiner prolem offer ome hope here, ine he minimum Seiner ree of k node in n n-node grph n e ompued in O(3 k n+2 k n 2 +n 3 ) ime [12, 19]. How well n we pproxime he minimum u grph in nerly-liner ime? More generlly, i here imple, pril, O(1)-pproximion lgorihm, like he MST pproximion of Seiner ree? Unforunely, he generl Seiner ree prolem i MAXSNPhrd [3], o n effiien (1 + ε)-pproximion lgorihm for rirry ε > 0 eem unlikely. The pproximion lgorihm of Theorem 5.11 i omewh indire. I ompue hor u grph y repeedly ompuing reonle u grph nd hen exring hor eenil yle h iner wih hi u grph. I i nurl o onjeure h one n ompue uh hor u grph direly, reuling in fer lgorihm. In priulr, we onjeure h n pproximely minimum u grph n e ompued in O(gn log n) ime. Finlly, n our ide e pplied o oher ueful fmilie of urve on mnifold, uh homology generor (fmilie of 2g yle h inere in g pir) nd pn deompoiion (mximl e of pirwie dijoin eenil yle [32])? Aknowledgmen. We would like o hnk Herer Edelrunner for n enlighening iniil onverion. We re lo greful o Nog Alon, John Hr, Benjmin Sudkov, nd Kim Whileey for helpful diuion. Referene [1] U. Axen nd H. Edelrunner. Audiory More nlyi of ringuled mnifold. Mhemil Viulizion, , Springer-Verlg. [2] C. Benni, J.-M. Vézien, G. Igléi, nd A. Gglowiz. Pieewie urfe flening for non-diored exure mpping. Compuer Grphi 25: , Pro. SIGGRAPH 91. [3] M. Bern nd P. Plmn. The Seiner prolem wih edge lengh 1 nd 2. Inform. Pro. Le. 32(4): , [4] N. Bigg. Conruion for ui grph wih lrge girh. Ele. J. Comin. 5:A1, [5] J. Blömer. Compuing um of rdil in polynomil ime. Pro. 32nd Annu. IEEE Sympo. Found. Compu. Si., , [6] S. Chri, P. Rohgi, nd A. Srinivn. Rndomneopiml unique elemen iolion wih ppliion o perfe mhing nd reled prolem. SIAM J. Compu. 24(5): , [7] T. Dey, H. Edelrunner, nd S. Guh. Compuionl opology. Advne in Diree nd Compuionl Geomery, , Conemporry Mhemi 223, Amerin Mhemil Soiey. [8] T. K. Dey nd S. Guh. Trnforming urve on urfe. J. Compu. Sy. Si. 58: , [9] T. K. Dey nd H. Shipper. A new ehnique o ompue polygonl hem for 2-mnifold wih ppliion o null-homoopy deeion. Diree Compu. Geom. 14:93 110, [10] E. W. Dijkr. A noe on wo prolem in onnexion wih grph. Numerihe Mhemik 1: , [11] R. G. Downey nd M. R. Fellow. Prmeerized Complexiy. Monogrph in Compuer Siene. Springer- Verlg, [12] S. Dreyfu nd R. Wgner. The Seiner prolem in grph. Nework 1: , [13] D. Eppein. Seveneen proof of Euler formul: V E + F = 2. The Geomery Junkyrd, My hp: // eppein/junkyrd/euler/. [14] M. S. Floer. Prmerizion nd mooh pproximion of urfe ringulion. Compu. Aided Geom. Deign 14(4): , [15] G. K. Frni nd J. R. Week. Conwy ZIP proof. Amer. Mh. Monhly 106: , hp://new. mh.uiu.edu/zipproof/. [16] M. R. Grey, R. L. Grhm, nd D. S. Johnon. The omplexiy of ompuing Seiner miniml ree. SIAM J. Appl. Mh. 32: , [17] M. R. Grey nd D. S. Johnon. The reiliner Seiner ree prolem i NP-omplee. SIAM J. Appl. Mh. 32: , [18] S. Hker, S. Angenen, A. Tnnenum, R. Kikini, G. Spiro, nd M. Hlle. Conforml urfe prmeerizion for exure mpping. IEEE Trn. Viuliz. Compu. Grph. 6(2): , [19] M. Hlle nd T. Wrehm. A ompendium of prmeerized ompplexiy reul. SIGACT New 25(3): , hp://we..mun./ hrold/ W hier/ompendium.hml. [20] M. Hnn. On Seiner prolem wih reiliner dine. SIAM J. Appl. Mh. 14: , [21] A. Hher. Algeri Topology. Cmridge Univeriy Pre, hp:// hher/. [22] D. B. Johnon. Effiien lgorihm for hore ph in pre nework. J. Ao. Compu. Mh. 24(1):1 13, [23] A. Klivn nd D. A. Spielmn. Rndomne effiien ideniy eing of mulivrie polynomil. Pro. 33rd Annu. ACM Sympo. Theory Compu., , [24] L. Kou, G. Mrkowky, nd L. Bermn. A f lgorihm for Seiner ree. A Inform. 15: , [25] F. Lzru, M. Pohiol, G. Veger, nd A. Verrou. Compuing nonil polygonl hem of n orienle ringuled urfe. Pro. 17h Annu. ACM Sympo. Compu. Geom., 80 89, 2001.

10 [26] K. Mulmuley, U. V. Vzirni, nd V. V. Vzirni. Mhing i ey mrix inverion. Cominori 7: , [27] J. R. Munkre. Topology, 2nd ediion. Prenie-Hll, [28] D. Piponi nd G. Borhukov. Semle exure mpping of udiviion urfe y model peling nd exure lending. Pro. SIGGRAPH 2000, , [29] A. Sheffer nd E. de Surler. Surfe prmeerizion for mehing y ringulion flening. Pro. 9h Inernionl Mehing Roundle, , hp:// r/sh742.hml. [30] J. Sillwell. Clil Topology nd Cominoril Group Theory, 2nd ediion. Grdue Tex in Mhemi 72. Springer-Verlg, [31] H. Tkhhi nd A. Muym. An pproxime oluion for he nework Seiner ree prolem. Mh. Jponi 24: , [32] W. Thuron. Three-Dimenionl Geomery nd Topology, Volume 1. Prineon Univeriy Pre, New Jerey, [33] G. Veger. Compuionl opology. Hndook of Diree nd Compuionl Geomery, hper 28, , CRC Pre LLC. [34] G. Veger nd C. K. Yp. Compuionl omplexiy of ominoril urfe. Pro. 6h Annu. ACM Sympo. Compu. Geom., , 1990.

Optimally Cutting a Surface into a Disk

Optimally Cutting a Surface into a Disk Opimlly Cuing Surfe ino Dik Jeff Erikon Sriel Hr-Peled Univeriy of Illinoi Urn-Chmpign {jeffe,riel}@.uiu.edu hp://www..uiu.edu/ {jeffe,riel} Sumied o Diree & Compuionl Geomery: July 2, 2002 Ar We onider

More information

1 The Network Flow Problem

1 The Network Flow Problem 5-5/65: Deign & Anlyi of Algorihm Ooer 5, 05 Leure #0: Nework Flow I l hnged: Ooer 5, 05 In hee nex wo leure we re going o lk ou n imporn lgorihmi prolem lled he Nework Flow Prolem. Nework flow i imporn

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

Graduate Algorithms CS F-18 Flow Networks

Graduate Algorithms CS F-18 Flow Networks Grue Algorihm CS673-2016F-18 Flow Nework Dvi Glle Deprmen of Compuer Siene Univeriy of Sn Frnio 18-0: Flow Nework Diree Grph G Eh ege weigh i piy Amoun of wer/eon h n flow hrough pipe, for inne Single

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017 Uer ID (NOT he 9 igi numer): gurell4 CS351 Deign & Anlyi of Algorihm Fll 17 Seion A Te 3 Soluion Inruor: Rihr Peng In l, Weney, Nov 15, 17 Do no open hi quiz ookle unil you re iree o o o. Re ll he inruion

More information

Maximum Flow. Flow Graph

Maximum Flow. Flow Graph Mximum Flow Chper 26 Flow Grph A ommon enrio i o ue grph o repreen flow nework nd ue i o nwer queion ou meril flow Flow i he re h meril move hrough he nework Eh direed edge i ondui for he meril wih ome

More information

ALG 5.3 Flow Algorithms:

ALG 5.3 Flow Algorithms: ALG 5. low Algorihm: () Mx-flow, min-u Theorem () Augmening Ph () 0 - flow (d) Verex Conneiviy (e) Plnr low Min Reding Seleion: CLR, Chper 7 Algorihm Profeor John Reif Auxillry Reding Seleion: Hndou: "Nework

More information

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples CS 7 Algorihm Fll 24 Dvid Wgner /3 Noe The min-u problem Le G = (V,E) be direed grph, wih oure verex V nd ink verex V. Aume h edge re lbelled wih o, whih n be modelled o funion : E N h oie non-negive inegrl

More information

Bisimulation, Games & Hennessy Milner logic p.1/32

Bisimulation, Games & Hennessy Milner logic p.1/32 Clil lnguge heory Biimulion, Gme & Henney Milner logi Leure 1 of Modelli Memii dei Proei Conorreni Pweł Sooińki Univeriy of Souhmon, UK I onerned rimrily wih lnguge, eg finie uom regulr lnguge; uhdown

More information

Lecture 2: Network Flow. c 14

Lecture 2: Network Flow. c 14 Comp 260: Avne Algorihms Tufs Universiy, Spring 2016 Prof. Lenore Cowen Srie: Alexner LeNil Leure 2: Nework Flow 1 Flow Neworks s 16 12 13 10 4 20 14 4 Imgine some nework of pipes whih rry wer, represene

More information

Robust Network Coding for Bidirected Networks

Robust Network Coding for Bidirected Networks Rou Nework Coding for Bidireed Nework A. Sprinon, S. Y. El Rouyhe, nd C. N. Georghide Ar We onider he prolem of nding liner nework ode h gurnee n innneou reovery from edge filure in ommuniion nework. Wih

More information

Designing A Fanlike Structure

Designing A Fanlike Structure Designing A Fnlike Sruure To proeed wih his lesson, lik on he Nex buon here or he op of ny pge. When you re done wih his lesson, lik on he Conens buon here or he op of ny pge o reurn o he lis of lessons.

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Arc Operads and Arc Algebras

Arc Operads and Arc Algebras ISSN 364-0380 (on line) 465-3060 (prined) 5 Geomery & Topology Volume 7 (003) 5 568 Pulihed: 8 Augu 003 G G G G T T T G T T T G T G T GG TT G G G G GG T T T TT Ar Operd nd Ar Alger Rlph M Kufmnn Muriel

More information

5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1

5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1 Nework flow -. Nework flow Nework flow Mximum flow prolem Ford-Fulkeron lgorihm Min-co flow Nework flow Nework N i e of direced grph G = (V ; E) ource 2 V which h only ougoing edge ink (or deinion) 2 V

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER

ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER Mh. Appl. 1 (2012, 91 116 ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER JIŘÍ ŠREMR Abr. The im of hi pper i o diu he bolue oninuiy of erin ompoie funion nd differeniion of Lebegue

More information

GeoTrig Notes Conventions and Notation: First Things First - Pythogoras and His Triangle. Conventions and Notation: GeoTrig Notes 04-14

GeoTrig Notes Conventions and Notation: First Things First - Pythogoras and His Triangle. Conventions and Notation: GeoTrig Notes 04-14 Convenions nd Noion: GeoTrig Noes 04-14 Hello ll, his revision inludes some numeri exmples s well s more rigonomery heory. This se of noes is inended o ompny oher uorils in his series: Inroduion o EDA,

More information

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445 CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t) /0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2 ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER Seion Eerise -: Coninuiy of he uiliy funion Le λ ( ) be he monooni uiliy funion defined in he proof of eisene of uiliy funion If his funion is oninuous y hen

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

Max-flow and min-cut

Max-flow and min-cut Mx-flow nd min-cu Mx-Flow nd Min-Cu Two imporn lgorihmic prolem, which yield euiful duliy Myrid of non-rivil pplicion, i ply n imporn role in he opimizion of mny prolem: Nework conneciviy, irline chedule

More information

A LOG IS AN EXPONENT.

A LOG IS AN EXPONENT. Ojeives: n nlze nd inerpre he ehvior of rihmi funions, inluding end ehvior nd smpoes. n solve rihmi equions nlill nd grphill. n grph rihmi funions. n deermine he domin nd rnge of rihmi funions. n deermine

More information

Max-flow and min-cut

Max-flow and min-cut Mx-flow nd min-cu Mx-Flow nd Min-Cu Two imporn lgorihmic prolem, which yield euiful duliy Myrid of non-rivil pplicion, i ply n imporn role in he opimizion of mny prolem: Nework conneciviy, irline chedule

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1 COMP28: Decision, Compuion nd Lnguge Noe These noes re inended minly s supplemen o he lecures nd exooks; hey will e useful for reminders ou noion nd erminology. Some sic noion nd erminology An lphe is

More information

two values, false and true used in mathematical logic, and to two voltage levels, LOW and HIGH used in switching circuits.

two values, false and true used in mathematical logic, and to two voltage levels, LOW and HIGH used in switching circuits. Digil Logi/Design. L. 3 Mrh 2, 26 3 Logi Ges nd Boolen Alger 3. CMOS Tehnology Digil devises re predominnly mnufured in he Complemenry-Mel-Oide-Semionduor (CMOS) ehnology. Two ypes of swihes, s disussed

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it CSC 36S Noe Univeriy of Torono, Spring, 2003 Flow Algorihm The nework we will conider are direced graph, where each edge ha aociaed wih i a nonnegaive capaciy. The inuiion i ha if edge (u; v) ha capaciy

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

VIA2 VIA1 MET2 VIA1. VIA2 w3 VIA2 MET1 MET3 MET3 MET2

VIA2 VIA1 MET2 VIA1. VIA2 w3 VIA2 MET1 MET3 MET3 MET2 VIA DESIGN RULE CONSIDERATION IN MULTI-LAYER MAZE ROUTING ALGORITHMS Jon Cong, Jie Fng nd Kei-Yong Khoo Comuer Siene Dermen, UCLA Lo Angele, CA 90095 el. 310-2065449, fx. 310-825-2273 fong, jfng, khoog@.ul.edu

More information

International ejournals

International ejournals Avilble online ww.inernionlejournl.om Inernionl ejournl Inernionl Journl of Mhemil Siene, Tehnology nd Humniie 7 (0 8-8 The Mellin Type Inegrl Trnform (MTIT in he rnge (, Rmhndr M. Pie Deprmen of Mhemi,

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples. Improper Inegrls To his poin we hve only considered inegrls f(x) wih he is of inegrion nd b finie nd he inegrnd f(x) bounded (nd in fc coninuous excep possibly for finiely mny jump disconinuiies) An inegrl

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

defines eigenvectors and associated eigenvalues whenever there are nonzero solutions ( 0

defines eigenvectors and associated eigenvalues whenever there are nonzero solutions ( 0 Chper 7. Inroduion In his hper we ll explore eigeneors nd eigenlues from geomeri perspeies, lern how o use MATLAB o lgerilly idenify hem, nd ulimely see how hese noions re fmously pplied o he digonlizion

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

18 Extensions of Maximum Flow

18 Extensions of Maximum Flow Who are you?" aid Lunkwill, riing angrily from hi ea. Wha do you wan?" I am Majikhie!" announced he older one. And I demand ha I am Vroomfondel!" houed he younger one. Majikhie urned on Vroomfondel. I

More information

t s (half of the total time in the air) d?

t s (half of the total time in the air) d? .. In Cl or Homework Eercie. An Olmpic long jumper i cpble of jumping 8.0 m. Auming hi horizonl peed i 9.0 m/ he lee he ground, how long w he in he ir nd how high did he go? horizonl? 8.0m 9.0 m / 8.0

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network.

Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network. Sovie Rail Nework, Max Flow, Min u OS Kevin Wayne Fall Reference: On he hiory of he ranporaion and maximum flow problem. lexander Schrijver in Mah Programming, :,. Minimum u Problem u Flow nework.! Digraph

More information

Chapter 2: Evaluative Feedback

Chapter 2: Evaluative Feedback Chper 2: Evluive Feedbck Evluing cions vs. insrucing by giving correc cions Pure evluive feedbck depends olly on he cion ken. Pure insrucive feedbck depends no ll on he cion ken. Supervised lerning is

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Problem Set 9 Due December, 7

Problem Set 9 Due December, 7 EE226: Random Proesses in Sysems Leurer: Jean C. Walrand Problem Se 9 Due Deember, 7 Fall 6 GSI: Assane Gueye his problem se essenially reviews Convergene and Renewal proesses. No all exerises are o be

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

Solving Evacuation Problems Efficiently. Earliest Arrival Flows with Multiple Sources

Solving Evacuation Problems Efficiently. Earliest Arrival Flows with Multiple Sources Solving Evcuion Prolem Efficienly Erlie Arrivl Flow wih Muliple Source Ndine Bumnn Univeriä Dormund, FB Mhemik 441 Dormund, Germny ndine.umnn@mh.uni-dormund.de Mrin Skuell Univeriä Dormund, FB Mhemik 441

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises 0/0/206 Ma/CS 6a Cla 4: Flow Exercie Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d e Sink 0/0/206 Flow

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Reminder: Flow Networks

Reminder: Flow Networks 0/0/204 Ma/CS 6a Cla 4: Variou (Flow) Execie Reminder: Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d

More information

MATH4455 Module 10 Evens, Odds and Ends

MATH4455 Module 10 Evens, Odds and Ends MATH4455 Module 10 Even, Odd nd End Min Mth Conept: Prity, Ple Vlue Nottion, Enumertion, Story Prolem Auxiliry Ide: Tournment, Undireted grph I. The Mind-Reding Clultor Prolem. How doe the mind-reding

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

SECTION C-C PARALLEL/DEPRESSED CORNER PEDESTRIAN CURB RAMP DETAILS X"

SECTION C-C PARALLEL/DEPRESSED CORNER PEDESTRIAN CURB RAMP DETAILS X N 0 MODIIED N 0 UED WHEN RIGH-O-WY I ONRINED WLK NON-WLKLE OR WLKLE URE RIGH ORM MY E UED % MX. PLOED/REVIED://0 K O UR LOW LINE RON O GUER PERPENDIULR WLK NON-WLKLE OR WLKLE URE % MX. %-0% DIGONL HLL

More information

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors Trnformion Ordered e of number:,,,4 Emple:,,z coordine of p in pce. Vecor If, n i i, K, n, i uni ecor Vecor ddiion +w, +, +, + V+w w Sclr roduc,, Inner do roduc α w. w +,.,. The inner produc i SCLR!. w,.,

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

Released Assessment Questions, 2017 QUESTIONS

Released Assessment Questions, 2017 QUESTIONS Relese Assessmen Quesions, 17 QUESTIONS Gre 9 Assessmen of Mhemis Aemi Re he insruions elow. Along wih his ookle, mke sure ou hve he Answer Bookle n he Formul Shee. You m use n spe in his ook for rough

More information

Dynamic Response of an Active Filter Using a Generalized Nonactive Power Theory

Dynamic Response of an Active Filter Using a Generalized Nonactive Power Theory Dynmi Repone of n Aive Filer Uing Generlized Nonive Power heory Yn Xu Leon M. olber John N. Chion Fng Z. Peng yxu3@uk.edu olber@uk.edu hion@uk.edu fzpeng@mu.edu he Univeriy of enneee Mihign Se Univeriy

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

Figure 1. The left-handed and right-handed trefoils

Figure 1. The left-handed and right-handed trefoils The Knot Group A knot is n emedding of the irle into R 3 (or S 3 ), k : S 1 R 3. We shll ssume our knots re tme, mening the emedding n e extended to solid torus, K : S 1 D 2 R 3. The imge is lled tuulr

More information

Today s topics. CSE 421 Algorithms. Problem Reduction Examples. Problem Reduction. Undirected Network Flow. Bipartite Matching. Problem Reductions

Today s topics. CSE 421 Algorithms. Problem Reduction Examples. Problem Reduction. Undirected Network Flow. Bipartite Matching. Problem Reductions Today opic CSE Algorihm Richard Anderon Lecure Nework Flow Applicaion Prolem Reducion Undireced Flow o Flow Biparie Maching Dijoin Pah Prolem Circulaion Loweround conrain on flow Survey deign Prolem Reducion

More information

Global alignment in linear space

Global alignment in linear space Globl linmen in liner spe 1 2 Globl linmen in liner spe Gol: Find n opiml linmen of A[1..n] nd B[1..m] in liner spe, i.e. O(n) Exisin lorihm: Globl linmen wih bkrkin O(nm) ime nd spe, bu he opiml os n

More information

The Forming Theory and Computer Simulation of the Rotary Cutting Tools with Helical Teeth and Complex Surfaces

The Forming Theory and Computer Simulation of the Rotary Cutting Tools with Helical Teeth and Complex Surfaces Compuer nd Informion Siene The Forming Theory nd Compuer Simulion of he Rory Cuing Tools wih Helil Teeh nd Comple Surfes Hurn Liu Deprmen of Mehnil Engineering Zhejing Universiy of Siene nd Tehnology Hngzhou

More information

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m PHYS : Soluions o Chper 3 Home Work. SSM REASONING The displcemen is ecor drwn from he iniil posiion o he finl posiion. The mgniude of he displcemen is he shores disnce beween he posiions. Noe h i is onl

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

3D Transformations. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 1/26/07 1

3D Transformations. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 1/26/07 1 D Trnsformions Compuer Grphics COMP 770 (6) Spring 007 Insrucor: Brndon Lloyd /6/07 Geomery Geomeric eniies, such s poins in spce, exis wihou numers. Coordines re nming scheme. The sme poin cn e descried

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

CSCI565 - Compiler Design

CSCI565 - Compiler Design CSCI565 - Compiler Deign Spring 6 Due Dte: Fe. 5, 6 t : PM in Cl Prolem [ point]: Regulr Expreion nd Finite Automt Develop regulr expreion (RE) tht detet the longet tring over the lphet {-} with the following

More information

Network Flow. Data Structures and Algorithms Andrei Bulatov

Network Flow. Data Structures and Algorithms Andrei Bulatov Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow

More information

ECE Microwave Engineering

ECE Microwave Engineering EE 537-635 Microwve Engineering Adped from noes y Prof. Jeffery T. Willims Fll 8 Prof. Dvid R. Jcson Dep. of EE Noes Wveguiding Srucures Pr 7: Trnsverse Equivlen Newor (N) Wveguide Trnsmission Line Model

More information

Matching. Slides designed by Kevin Wayne.

Matching. Slides designed by Kevin Wayne. Maching Maching. Inpu: undireced graph G = (V, E). M E i a maching if each node appear in a mo edge in M. Max maching: find a max cardinaliy maching. Slide deigned by Kevin Wayne. Biparie Maching Biparie

More information

MAXIMUM FLOW. introduction Ford-Fulkerson algorithm maxflow-mincut theorem

MAXIMUM FLOW. introduction Ford-Fulkerson algorithm maxflow-mincut theorem MAXIMUM FLOW inroducion Ford-Fulkeron algorihm maxflow-mincu heorem Mincu problem Inpu. An edge-weighed digraph, ource verex, and arge verex. each edge ha a poiive capaciy capaciy 9 10 4 15 15 10 5 8 10

More information

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN)

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN) EE 537-635 Microwve Engineering Fll 7 Prof. Dvid R. Jcson Dep. of EE Noes Wveguides Pr 7: Trnsverse Equivlen Newor (N) Wveguide Trnsmission Line Model Our gol is o come up wih rnsmission line model for

More information

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx Tutoril 2 Euler Lgrnge In one entene: d Fy = F d Importnt ft: ) The olution of EL eqution i lled eterml. 2) Minmum / Mimum of the "Mot Simple prolem" i lo n eterml. 3) It i eier to olve EL nd hek if we

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information

Interval Oscillation of Nonlinear Differential Equation with Damped Term

Interval Oscillation of Nonlinear Differential Equation with Damped Term Communiion in Informion Siene nd Mngemen Engineering Mr, Vo I, PP 7-4 Inerv Oiion of Noniner Differeni Equion wih Dmped Term Yun-Hui Zeng Deprmen of Mhemi nd Compuion Siene, Hengyng Norm Univeriy,Hunn,

More information

AN IMPROVED CREEP AND SHRINKAGE BASED MODEL FOR DEFLECTIONS OF COMPOSITE MEMBERS REINFORCED WITH CARBON FIBER REINFORCED BARS

AN IMPROVED CREEP AND SHRINKAGE BASED MODEL FOR DEFLECTIONS OF COMPOSITE MEMBERS REINFORCED WITH CARBON FIBER REINFORCED BARS N MPROVED CREEP ND SHRNKGE BSED MODEL FOR DEFLECTONS OF COMPOSTE MEMBERS RENFORCED WTH CRBON FBER RENFORCED BRS M.. Fruqi, S. Bhdr D. Sun, nd J. Si Deprmen o Civil nd rhieurl Engineering, Tex & M Univeriy,

More information

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1. Answers o Een Numbered Problems Chper. () 7 m s, 6 m s (b) 8 5 yr 4.. m ih 6. () 5. m s (b).5 m s (c).5 m s (d) 3.33 m s (e) 8. ().3 min (b) 64 mi..3 h. ().3 s (b) 3 m 4..8 mi wes of he flgpole 6. (b)

More information

1 jordan.mcd Eigenvalue-eigenvector approach to solving first order ODEs. -- Jordan normal (canonical) form. Instructor: Nam Sun Wang

1 jordan.mcd Eigenvalue-eigenvector approach to solving first order ODEs. -- Jordan normal (canonical) form. Instructor: Nam Sun Wang jordnmcd Eigenvlue-eigenvecor pproch o solving firs order ODEs -- ordn norml (cnonicl) form Insrucor: Nm Sun Wng Consider he following se of coupled firs order ODEs d d x x 5 x x d d x d d x x x 5 x x

More information