Optimally Cutting a Surface into a Disk

Size: px
Start display at page:

Download "Optimally Cutting a Surface into a Disk"

Transcription

1 Opimlly Cuing Surfe ino Dik Jeff Erikon Sriel Hr-Peled Univeriy of Illinoi Urn-Chmpign hp:// {jeffe,riel} Sumied o Diree & Compuionl Geomery: July 2, 2002 Ar We onider he prolem of uing e of edge on polyhedrl mnifold urfe, poily wih oundry, o oin ingle opologil dik, minimizing eiher he ol numer of u edge or heir ol lengh. We how h hi prolem i NP-hrd, even for mnifold wihou oundry nd for punured phere. We lo derie n lgorihm wih running ime n O(g+k), where n i he ominoril omplexiy, g i he genu, nd k i he numer of oundry omponen of he inpu urfe. Finlly, we derie greedy lgorihm h oupu O(log 2 g)-pproximion of he minimum u grph in O(g 2 n log n) ime. A preliminry verion of hi pper w preened he 18h Annul ACM Sympoium on Compuionl Geomery [EHP02]. See hp:// pu/hem.hml for he mo reen verion of hi pper. Prilly uppored y Slon Fellowhip, NSF CAREER wrd CCR , nd NSF ITR grn DMR Prilly uppored y NSF CAREER wrd CCR

2 Opimlly Cuing Surfe ino Dik 1 1 Inroduion Severl ppliion of hree-dimenionl urfe require informion ou he underlying opologil ruure in ddiion o he geomery. In ome e, we wih o implify he urfe opology, o filie lgorihm h n e performed only if he urfe i opologil dik. Appliion when hi i imporn inlude urfe prmeerizion [Flo97, SdS00] nd exure mpping [BVIG91, PB00]. In he exure mpping prolem, we wih o find oninuou nd inverile mpping from he exure, uully wo-dimenionl rengulr imge, o he urfe. Unforunely, if he urfe i no opologil dik, no uh mp exi. In uh e, he only feile oluion i o u he urfe o h i eome opologil dik. (Hker e l. [HAT + 00] preen n lgorihm for direly exure mpping model wih he opology of phere, where he exure i lo emedded on phere.) Of oure, when uing he urfe, one would like o find he e poile u under vriou oniderion. For exmple, one migh wn o u he urfe o h he reuling urfe n e exured mpped wih minimum diorion [Flo97, GGH02, SdS00]. To our knowledge, ll previou pprohe for hi uing prolem eiher rely on heurii wih no quliy gurnee [GGH02, She02, SF02] or require he uer o perform hi uing eforehnd [Flo97, PB00]. Lzru e l. [LPVV01] preened nd implemened wo lgorihm for ompuing nonil polygonl hem of n orienle urfe of omplexiy n nd wih genu g, in ime O(gn), implifying n erlier lgorihm of Veger nd Yp [VY90]. Compuing uh hem require finding 2g yle, ll ping hrough ommon epoin in M, uh h uing long hoe yle rek M ino opologil dik. Sine hee yle mu hre ommon poin, i i ey o find exmple where he overll ize of hoe yle i Ω(gn). Furhermore, hoe yle hre everl edge nd re viully unifying. For mo ppliion, ompuing nonil hem i overkill. I i uully uffiien o find olleion of edge whoe removl rnform he urfe ino opologil dik. We ll uh e of edge u grph; ee Figure 1 for n exmple. Cu grph hve everl dvnge. Fir, hey re omp. Trivilly, ny u grph onin mo n edge of he urfe meh, muh le hn ny nonil hem in he wor e, lhough we expe i o e muh mller in prie. Seond, i i quie ey o onru u grph for n rirry polyhedrl urfe in O(n) ime, uing redh-fir erh of he dul grph [DS95], or imply king mximl e of edge whoe omplemen i onneed [LPVV01]. Finlly, he u grph h n exremely imple ruure: ree wih O(g) ddiionl edge. A uh, i hould e eier o mnipule lgorihmilly hn oher repreenion. For exmple, Dey nd Shipper [DS95] derie f lgorihm o deermine wheher urve i onrile, or wo urve re homoopi, uing n rirry u grph ined of nonil hem. In hi pper, we inveige he queion of how find he e uh uing of urfe, reriing ourelve o u long he edge of he given meh. Speifilly, we wn o find he mlle ue of edge of polyhedrl mnifold urfe M, poily wih oundry, uh h uing long hoe edge rnform M ino opologil dik. We lo onider he weighed verion of hi prolem, where eh edge h n rirry non-negive weigh nd we wn o minimize he ol weigh of he u grph. The mo nurl weigh of

3 2 Jeff Erikon nd Sriel Hr-Peled d e d e e e d d Figure 1. A u grph for wo-holed oru nd i indued (non-nonil) polygonl hem. n edge i i Euliden lengh, u we ould lo ign weigh o ke prolem-peifi oniderion ino oun. For exmple, if we wn o ompue exure mpping for peifi viewpoin, we ould mke viile edge more expenive, o h he minimum u grph would minimize he numer of viile edge ued in he u. Our lgorihm do no require he edge weigh o ify he ringle inequliy. We how h he minimum u grph of ny polyhedrl mnifold M wih genu g nd k oundry omponen n e ompued in n O(g+k) ime. We lo how h he prolem i NP-hrd in generl, even if g or k i fixed. Finlly, we preen imple nd effiien greedy pproximion lgorihm for hi prolem. Our lgorihm oupu u grph whoe weigh i for O(log 2 g) lrger hn opiml, in O(g 2 n log n) ime. 1 If g = 0, he pproximion for i exly 2. A ool in our pproximion lgorihm, we lo derie effiien lgorihm o ompue hore nd nerly-hore nonrivil yle in mnifold; we elieve hee lgorihm re of independen inere. 2 Bkground Before preening our new reul, we review everl ueful noion from opology nd derie reled reul in more deil. We refer he inereed reder o Hher [H01], Munkre [Mun00], or Sillwell [Si93] for furher opologil kground nd more forml definiion. For reled ompuionl reul, ee he reen urvey y Dey, Edelrunner, nd Guh [DEG99] nd Veger [Veg97]. 2.1 Topology A 2-mnifold wih oundry i e M uh h every poin x M lie in neighorhood homeomorphi o eiher he plne IR 2 or loed hlfplne. The poin wih only hlfplne neighorhood oniue he oundry of M; he oundry oni of zero or more dijoin 1 To implify noion, we define log x = mx{1, log 2 x }.

4 Opimlly Cuing Surfe ino Dik 3 irle. Thi pper will onider only omp mnifold, where every infinie equene of poin h onvergen uequene. The genu of 2-mnifold M i he mximum numer of dijoin non-epring yle γ 1, γ 2,..., γ g in M; h i, γ i γ j = for ll i nd j, nd M \ (γ 1 γ g ) i onneed. For exmple, phere nd di hve genu 0, oru nd Möiu rip hve genu 1, nd Klein ole h genu 2. A mnifold i orienle if i h wo diin ide, nd non-orienle if i h only one ide. Alhough mny geomeri ppliion ue only orienle 2-mnifold (primrily eue non-orienle mnifold wihou oundry nno e emedded in IR 3 wihou elfinereion) our reul will pply o non-orienle mnifold well. Every (omp, onneed) 2-mnifold wih oundry i hrerized y i orieniliy, i genu g, nd he numer k of oundry omponen [FW99]. A polyhedrl 2-mnifold i onrued y gluing loed imple polygon edge-o-edge ino ell omplex: he inereion of ny wo polygon i eiher empy, verex of oh, or n edge of oh. We refer o he omponen polygon h fe. (Sine he fe re loed, every polyhedrl mnifold i omp.) For ny polyhedrl mnifold M, he numer of verie nd fe, minu he numer of edge, i he Euler hrerii χ of M. Euler formul [Epp01] implie h χ i n invrin of he underlying mnifold, independen of ny priulr polyhedrl repreenion; χ = 2 2g k if he mnifold i orienle, nd χ = 2 g k if he mnifold i non-orienle. Euler formul implie h if M h v verie, hen M h mo 3v 6 + 6g edge nd mo 2v 4 + 4g k fe, wih equliy for orienle mnifold where every fe nd oundry irle i ringle. We le n 6v g k denoe he ol numer of fe, edge, nd verie in M. The 1-keleon M 1 of polyhedrl mnifold M i he grph oniing of i verie nd edge. We define u grph G of M ugrph of M 1 uh h M\G i homeomorphi o dik. 2 The dik M \ G i known polygonl hem of M. Eh edge of G pper wie on he oundry of polygonl hem M \ G, nd we n oin M y gluing ogeher hee orreponding oundry edge. Finding u grph of M wih minimum ol lengh i lerly equivlen o o finding polygonl hem of M wih minimum perimeer. Any 2-mnifold h o-lled nonil polygonl hem, whoe ominoril ruure depend only on he genu g, he numer of oundry omponen k, nd wheher he mnifold i orienle. 3 The nonil hem of n orienle mnifold i (4g + 3k)-gon wih ueive edge leled x 1, y 1, x 1, ȳ 1,..., x g, y g, x g, ȳ g, z 1, e 1, z 1,..., z k, e k, z k ; for non-orienle mnifold, he nonil hem i (2g + 3k)-gon wih edge lel x 1, x 1,..., x g, x g, z 1, e 1, z 1,..., z k, e k, z k. 2 Cu grph re generlizion of he u lou of mnifold M, whih i eenilly he geodei medil xi of ingle poin. 3 Aully, here re everl differen wy o define nonil hem; he one deried here i merely he mo ommon. For exmple, he nonil hem for n oriened urfe wihou oundry ould lo e leled x 1, x 2,..., x 2g, x 1, x 2,..., x 2g.

5 4 Jeff Erikon nd Sriel Hr-Peled Every pir of orreponding edge x nd x i oriened in oppoie direion. Gluing ogeher orreponding pir in he indied direion reover he originl mnifold, wih he unmhed edge e i forming he oundry irle. For mnifold M wihou oundry, redued polygonl hem i one where ll he verie re glued ino ingle poin in M; nonil hem of mnifold wihou oundry re redued. We emphize h he polygonl hem onrued y our lgorihm re neiher neerily nonil nor neerily redued. 2.2 Previou nd Reled Reul Dey nd Shipper [DS95] derie n lgorihm o onru redued, u no neerily nonil, polygonl hem for ny ringuled orienle mnifold wihou oundry in O(n) ime. Eenilly, heir lgorihm onru n rirry u grph G y deph-fir erh, nd nd hen hrink pnning ree of G o ingle poin. (See lo Dey nd Guh [DG99].) Veger nd Yp [VY90] developed n lgorihm o onru nonil hem in opiml O(gn) ime nd pe. Two impler lgorihm wih he me running ime were ler developed y Lzru e l. [LPVV01]. The edge of he polygonl hem produed y ll hee lgorihm re (poily overlpping) ph in he 1-keleon of he inpu mnifold. We will modify one of he lgorihm of Lzru e l. o onru hor nonrivil yle nd u grph. Very reenly, Colin de Verdiére nd Lzru onider he prolem of opimizing nonil polygonl hem [CL02]. Given nonil polygonl hem for ringuled oriened mnifold M, heir lgorihm onru he hore nonil hem in he me homoopy l. Surpriingly (in ligh of our Theorem 3.1) heir lgorihm run in polynomil ime under ome mild umpion ou he inpu. A yprodu, hey lo oin polynomil-ime lgorihm o onru he minimum-lengh imple loop homoopi o given ph. Surfe prmeerizion i n exremely ive re of reerh, hnk o numerou ppliion uh exure mpping, remehing, ompreion, nd morphing. For mple of reen reul, ee [AMD02, EDD + 95, Flo97, SF02, GGH02, LSS + 98, LPRM02, She02, SCOGL02, SdS00, ZKK01] nd referene herein. In mo of hee work, urfe of high genu re prmeerized y uing hem ino everl (poily overlpping) phe, eh homeomorphi o dik, eh wih epre prmeerizion. A reen exepion i he work of Gu e l. [GGH02], whih ompue n iniil u grph in O(n log n) ime y running hore ph lgorihm on he dul of he mnifold meh, ring from n rirry eed ringle. Eenilly he me lgorihm w independenly propoed y Seiner nd Fiher [SF02]. One urfe h een u ino dik (or everl dik), furher (opologilly rivil) u re uully neery o redue diorion [GGH02, She02, SCOGL02]. Mny of hee lgorihm inlude heurii o minimize he lengh of he u in ddiion o he diorion of he prmeerizion [GGH02, LPRM02, She02], u none wih heoreil gurnee. All of our lgorihm re ulimely ed on Dijkr ingle-oure hore ph lgorihm [Dij59, Tr83]. Mny previou reul hve ued Dijkr lgorihm or one of

6 Opimlly Cuing Surfe ino Dik 5 i oninuou generlizion [KAB95, MMP87, Ti95] o diover inereing opologil ruure in 2-mnifold, uh u grph [GGH02, SF02], mll hndle ( opologil noie ) [GW01], exure le [LPRM02], onour ree [AE98, LV99], nd Ree grph [HSKK01, SF02]. 3 Compuing Minimum Cu Grph i NP-Hrd In hi eion, we prove h finding minimum u grph of ringuled mnifold i NP-hrd. We onider wo verion of he prolem. In he weighed e, he mnifold i umed o e polyhedrl urfe in IR 3 nd we wn o ompue he u grph whoe ol Euliden lengh i mll poile. In he unweighed e, we re ompue he u grph wih he minimum numer of edge; he geomery of he mnifold i ignored enirely. Boh reduion re from he reiliner Seiner ree prolem: Given e P of n poin from m m qure grid in he plne, find he hore onneed e of horizonl nd veril line egmen h onin every poin in P. Thi prolem i NP-hrd, even if m i ounded y polynomil in n [GJ77]. Our reduion ue he Hnn grid of he poin, whih i oined y drwing horizonl nd veril line hrough eh poin, lipped o he ounding ox of he poin. A le one reiliner Seiner ree of he poin i ue of he Hnn grid [Hn66]. Theorem 3.1. Compuing he lengh of he minimum (weighed or unweighed) u grph of ringuled punured phere i NP-hrd. Proof: Fir onider he weighed e, where he weigh igned o eh edge of he mnifold i i Euliden lengh. Le P e e of n poin in he plne, wih ineger oordine eween 1 nd m. We onru punured phere in O(n 2 ) ime follow. Aume h P lie on he xy-plne in IR 3. We modify he Hnn grid of P y repling eh erminl wih qure of widh 1/2n, roed 45 degree o h i verie lie on he neighoring edge. Thee qure will form he punure. We hen h in under eh fe f of he modified Hnn grid, y joining he oundry of f o lighly led opy of f on he plne z = n 2. We lo h in of deph n o he oundry of he enire modified Hnn grid. The ide fe of eh in re rpezoid. The in re pered o h djen in inere only on he modified Hnn grid. Tringuling hi urfe rirrily, we oin polyhedrl phere M wih n punure nd overll omplexiy O(n 2 ). See Figure 2. Le G e minimum weighed u grph of M. We eily oerve h G onin only long edge from he modified Hnn grid nd onin le one verex of every punure. Thu, he edge of G re in one-o-one orrepondene wih he edge of reiliner Seiner ree of P. For he unweighed e, we modify he originl m m ineger grid ined of he Hnn grid. To ree punured phere, we reple eh erminl poin wih mll dimond ove. We hen fill in eh modified grid ell wih ringulion, hoen o h he hore ph eween ny wo poin on he oundry of ny ell y on he oundry of h ell; hi require onn numer of ringle per ell. The reuling mnifold M h

7 6 Jeff Erikon nd Sriel Hr-Peled () () () Figure 2. () A e of ineger poin. () The modified Hnn grid. () A u-wy view of he reuling punured phere. omplexiy O(m 2 ). By induion, he hore ph eween ny wo poin on he modified grid lie enirely on he grid. Thu, ny miniml unweighed u grph of M onin only edge from he modified grid. I follow h if he minimum unweighed u grph of M h r edge, he lengh of ny reiliner Seiner ree of P i exly r. We n eily generlize he previou proof o mnifold wih higher genu, wih or wihou oundry, oriened or no, y hing mll ringuled ori or ro-p o ny ue of punure. Theorem 3.2. Compuing he lengh of he minimum (weighed or unweighed) u grph of ringuled mnifold wih oundry, wih ny fixed genu or wih ny fixed numer of oundry omponen, i NP-hrd. 4 Compuing Minimum Cu Grph Anywy We now derie n lgorihm o ompue he minimum u grph of polyhedrl mnifold in n O(g+k) ime. For mnifold wih onn Euler hrerii, our lgorihm run in polynomil ime. Our lgorihm i ed on he following hrerizion of he minimum u grph he union of hore ph. A rnh poin of u grph i ny verex wih degree greer hn 2. A imple ph in u grph from one rnh poin or oundry poin o noher, wih no rnh poin in i inerior, i lled u ph. Lemm 4.1. Le M e polyhedrl 2-mnifold, poily wih oundry, nd le G e minimum u grph of M. Any u ph in G n e deompoed ino wo equl-lengh hore ph in M 1.

8 Opimlly Cuing Surfe ino Dik 7 Proof: Le G e n rirry u grph of M, nd onider u ph eween wo (no neerily diin) rnh poin nd of G. Le e he midpoin of hi ph, nd le nd denoe he uph from o nd from o, repeively. Noe h my lie in he inerior of n edge of M 1. Finlly, uppoe i no he hore ph from o in M 1. To prove he lemm, i uffie o how h G i no he hore u grph of M. Le e he rue hore ph from o. Clerly, i no onined in G. Wlking long from o, le e he fir verex whoe following edge i no in G, nd le e he fir verex in G whoe preeding edge i no in G. (Noe h nd my e joined y ingle edge in M\G.) Finlly, le σ e he rue hore ph from o. Equivlenly, σ i he fir mximl uph of whoe inerior lie in M \ G. See Figure 3. σ σ' Figure 3. If he dhed ph from o i horer hn, hen he u grph n e horened y uing long σ nd regluing long σ. The uph σ u M \ G ino wo mller dik. We lim h ome uph σ of eiher or pper on he oundry of oh dik nd i longer hn σ. Our lim implie h uing M\G long σ nd regluing he piee long σ give u new polygonl hem wih mller perimeer, nd hu new u grph horer hn G. See Figure 3 for n exmple. We prove our lim y exhuive e nlyi. Fir onider he e where he mnifold M i orienle. We n udivide he enire oundry of he dik M \ G ino ix ph leled oneuively,, γ,, ᾱ, δ. Here, ᾱ nd re he orreponding opie of nd in he polygonl hem. Beue M i orienle, nd ᾱ hve oppoie orienion, do nd. Eiher or oh of γ nd δ ould e empy. See he lower lef pr of Figure 3.

9 8 Jeff Erikon nd Sriel Hr-Peled δ γ δ γ δ γ () () () δ γ δ γ δ γ (d) (e) (f) Figure 4. Six e for he proof of Lemm 4.1 for orienle mnifold; ll oher e re refleion of hee. In eh e, ome uph of or pper on he oundry of oh u-dik. The uph σ n ener he inerior of he dik M \ G from four of hee ix ph (,, ᾱ, nd ) nd leve he inerior of he dik hrough ny of he ix ph. Suppoe σ ener he inerior of M \ G from ; he oher hree e re ymmeri. Figure 4 how he ix eenilly differen wy for σ o leve he inerior of M \ G. In eh e, we eily verify h fer uing long σ, ome uph σ of eiher or i on he oundry of oh dik. Speifilly: (i) If σ leve hrough or ᾱ (ee Figure 4() nd 4(), repeively), hen σ i he uph of from o. Sine oh σ nd σ hve he me endpoin nd σ i hore ph, σ mu e longer hn σ. (ii) If σ leve hrough or (ee Figure 4(f) nd 4(d), repeively), hen σ i he uph of from o. Indeed, ρ = [, ] σ i he hore ph from o, nd uh σ ρ < [, ] = σ. (Here denoe ph onenion, nd [x, y] denoe he uph of from x o y.) (iii) If σ leve hrough γ (ee Figure 4(e)), hen σ =. Clerly, σ < = = σ. (iv) Finlly, if σ leve hrough δ (ee Figure 4()), hen σ i he uph of from o. Clerly, σ < [, ] σ.

10 Opimlly Cuing Surfe ino Dik 9 δ γ δ γ δ γ δ γ δ γ δ γ Figure 5. Six ddiionl e for he proof of Lemm 4.1 for non-orienle mnifold; ll oher e re refleion or roion of hee. In eh e, ome uph of or pper on he oundry of oh u-dik. If M i non-orienle, he ph ould pper eiher wih he me orienion or wih oppoie orienion on he oundry of he dik M \ G. If he orienion re oppoie, he previou e nlyi pplie immediely. Oherwie, he oundry n e udivided ino ix ph leled oneuively,, γ,,, δ. Wihou lo of generliy, σ ener he inerior of M \ G from nd leve hrough ny of hee ix ph. The ix e re illured in Figure 5. Agin, we eily verify h in eh e, ome uph σ of eiher or i on he oundry of oh dik. We omi furher deil. For ny u grph G of mnifold M, we define he orreponding redued u grph Ĝ follow. Fir we remove ny opologilly rivil u; h i, we repeedly remove ny edge wih verex of degree 1 h i no on he oundry of M. We hen ugmen he u grph y dding ll he oundry edge of M. Finlly, we onr eh mximl ph hrough degree-2 verie ino ingle edge. The reuling redued u grph Ĝ i 2-edge onneed, nd eh of i verie h degree le 3. Every verex of Ĝ i eiher rnh poin or oundry poin of G, nd every edge of Ĝ orrepond o eiher u ph or oundry ph in G. However, in generl, no ll rnh poin nd u ph in G re repreened in Ĝ. Lemm 4.2. Le M e polyhedrl 2-mnifold wih genu g nd k oundry omponen. Any redued u grph Ĝ of M i onneed, h eween mx{1, k} nd 4g +2k 2 verie, nd h eween g + mx{0, 2k 1} nd 6g + 3k 3 edge.

11 10 Jeff Erikon nd Sriel Hr-Peled Proof: Le G e he u grph orreponding o Ĝ, fer ll he rivil u hve een removed. The oundry of he polygonl hem M \ G n e priioned ino u ph nd oundry ph, eh orreponding o n edge in Ĝ. Thu, Ĝ i onneed. Le v nd e denoe he numer of verie nd edge in Ĝ, repeively. If ny verex in Ĝ h degree d 4, we n reple i wih d 3 rivlen verie nd d 3 new edge of lengh zero. Thu, in he wor e, every verex in Ĝ h degree exly 3, whih implie h 3v = 2e. Sine Ĝ i emedded in M wih ingle fe, Euler formul implie h v e + 1 = χ = 2 2g k if M i orienle, nd v e + 1 = χ = 2 g k if M i non-orienle. I follow h v 4g + 2k 2 nd e 6g + 3k 3, limed. On he oher hnd, Ĝ h le one verex on eh oundry omponen of M, nd le one verex even if M h no oundry, o v mx{1, k}. Thu, Euler formul implie h 2 2g k = v e + 1 mx{1, k} e + 1 if M i orienle, or equivlenly, e 2g + mx{0, 2k 1}. Similrly, if M i non-orienle, Euler formul implie h e g + mx{0, 2k 1}. Our minimum u grph lgorihm exploi Lemm 4.1 y ompoing poenil minimum u grph ou of O(g + k) hore ph. Unforunely, ingle pir of node in M ould e joined y 2 Ω(n) hore ph, in 2 Ω(g+k) differen ioopy le, in he wor e. To void hi ominoril exploion, we n dd rndom infinieiml weigh ε w(e) o eh edge e. The Iolion Lemm of Mulmuley, Vzirni, nd Vzirni [MVV87] implie h if he weigh w(e) re hoen independenly nd uniformly from he ineger e {1, 2,..., n 2 }, ll hore ph re unique wih proiliy le 1 1/n; ee lo [CRS95, KS01]. 4 We re now finlly redy o derie our minimum u grph lgorihm. Theorem 4.3. The minimum u grph of polyhedrl 2-mnifold M wih genu g nd k oundry omponen n e ompued in ime n O(g+k). Proof: We egin y ompuing he hore ph eween every pir of verie in M in O(n 2 log n) ime y running Dijkr ingle-oure hore ph lgorihm for eh verex [Dij59, Joh77], reking ie uing rndom infinieiml weigh deried ove. One hee hore ph nd midpoin hve een ompued, our lgorihm enumere y rue fore every poile u grph h ifie Lemm 4.1 nd 4.2, nd reurn he mlle uh grph. Eh u grph i peified y e V of up o 4g + 2k 2 verie of M, e E of up o 6g + 3k 3 edge of M, rivlen muligrph Ĝ wih verie V, nd ignmen of edge in E o edge in Ĝ. Eh edge (v, w) of Ĝ i igned unique edge e E o define he orreponding u ph in M. Thi u ph i he onenion of he hore ph from v o e, e ielf, nd he hore ph from e o w. If he midpoin of hi u ph i no in he inerior of e, we delre he u ph invlid, ine i viole Lemm 4.1. (Beue 4 Alernely, if we hooe w(e) uniformly from he rel inervl [0, 1], hore ph re unique wih proiliy 1. Thi my ound unreonle, u rell h no polynomil-ime lgorihm i known o ompre um of qure roo of ineger in ny model of ompuion h doe no inlude qure roo primiive operion [Blö91]. Thu, o ompue Euliden hore ph in geomeri grph wih ineger verex oordine, we mu eiher ume ex rel rihmei or (grudgingly) ep ome pproximion error [GGJ77].

12 Opimlly Cuing Surfe ino Dik 11 Figure 6. From lef o righ: non-epring, eenil u epring, nd rivil yle on 2-mnifold. hore ph eween verie re unique, he midpoin of ny u ph in he miniml u grph mu lie in he inerior of n edge.) If ll he u ph re vlid, we hen hek h every pir of u ph i dijoin, exep poily heir endpoin, nd h removing ll he u ph from M leve opologil dik. Our rue-fore lgorihm onider O(n 4g+2k 2 ) differen verex e V, O(n 6g+3k 2 ) differen edge e E, mo ( ) (4g+2k 2) 2 6g+3k 2 differen grph Ĝ for eh verex e, nd mo (6g + 3k 2)! differen ignmen of edge in eh grph Ĝ o edge in eh edge e E. Thu, n O(g+k) poenil u grph re onidered logeher. The vlidiy of eh poenil u grph n e heked in O(n) ime. 5 Finding Shor Nonrivil Cyle A ep owrd effiienly ompuing pproxime minimum u grph, we develop lgorihm o ompue hore nd nerly-hore nonrivil yle in rirry 2-mnifold, poily wih oundry. Alhough our mo effiien pproximion lgorihm for u grph require only pproxime hore nonrivil yle on mnifold wihou oundry, we elieve hee lgorihm re of independen inere. We diinguih eween wo ype of nonrivil imple yle. A imple yle γ in M i non-epring if M \ γ h only one onneed omponen. A imple yle γ in M i eenil if i i no onrile o poin or ingle oundry yle of M. Every nonepring yle i eenil, u he onvere i no rue. Formlly, non-epring yle re homologilly nonrivil, nd eenil yle re homoopilly nonrivil. See Figure 6. A n e een immediely from Figure 6, i i no poile o deermine wheher yle i non-epring, eenil, or rivil y exmining only lol neighorhood. Dey nd Shipper [DS95] derie n lgorihm o deermine wheher n rirry irui i onrile in O(n) ime; heir lgorihm egin y ompuing n rirry u grph of he mnifold. Forunely, we hll ee horly, we n implify heir lgorihm oniderly when he given yle i imple. 5.1 Shore Cyle We egin y deriing how o find he hore nonrivil yle hrough given verex. Our lgorihm ue ominion of Dijkr ingle-oure hore ph lgorihm [Dij59] nd

13 12 Jeff Erikon nd Sriel Hr-Peled modifiion of he nonil polygonl hem lgorihm of Lzru e l. [LPVV01]. Our lgorihm i imilr o he pproh ken y Gukov nd Wood [GW01] o find nd remove mll hndle from geomeri model reonrued from noiy d; ee lo [WHDS02]. The lgorihm of Lzru e l. uild onneed ue S of ringuled mnifold wihou oundry, ring wih ingle ringle nd dding new ringle on he oundry of S one ime. If new ringle inere he oundry of S in more hn one omponen, he lgorihm hek whih of he following hree e hold: (1) M \ S i onneed; (2) neiher omponen of M \ S i dik; or (3) one omponen of M \ S i dik. In he finl e, he lgorihm dd he dik omponen o S nd oninue erhing he oher omponen of M \ S. If we run hi lgorihm unil eiher e (1) or e (2) hold, he ol running ime i O(n). See Lzru e l. [LPVV01] for furher deil. Fir we derie righforwrd generlizion of he lgorihm ued y Lzru o deermine he ruure of M \ S. Lemm 5.1. Le M e onneed polyhedrl 2-mnifold M whoe genu g nd numer of oundry omponen k re known. Any imple yle γ in M 1 n e lified nonepring, eenil u epring, or rivil in O(m) ime, where m i he omplexiy of he mller omponen of M \ γ. In priulr, if γ i non-epring, he running ime i O(n). Proof: We perform wo imulneou deph-fir erhe, ring from eiher ide of ny verex of γ. If eiher erh mee verex lredy viied y he oher, γ i non-epring yle. The running ime in hi e i rivilly O(n). Converely, if one erh hl wihou meeing he oher, γ i epring yle. Le C e he mller omponen of M \ γ. To deermine wheher γ i eenil, we ompue he Euler hrerii nd he numer of oundry omponen of C, whih we denoe y χ(c) nd k(c), repeively. (Thi n e done on he fly during he deph-fir erh phe.) Le χ denoe he Euler hrerii of M. The yle γ i onrile if nd only if one of he following ondiion hold. ˆ C i dik, or equivlenly, χ(c) = 1. ˆ C i n nnulu, or equivlenly, χ(c) = 0 nd k(c) = 2. ˆ M \ C i dik, or equivlenly, χ(c) = χ 1. The equivlene follow from he inluion-exluion formul χ(a B) = χ(a) + χ(b) χ(a B). ˆ M \ C i n nnulu, or equivlenly, χ(c) = χ(m) nd k(c) = k(m). If none of hee ondiion hold, hen γ i eenil. The ol running ime if γ i epring yle i O(m), where m i he omplexiy of C. Noe h we n implify hi lgorihm lighly if he mnifold h no oundry, ine in h e neiher omponen of M \ γ i n nnulu. We will ue hi implifiion in our pproxime u grph lgorihm.

14 Opimlly Cuing Surfe ino Dik 13 Lemm 5.2. Le u e verex of polyhedrl 2-mnifold M, poily wih oundry. The hore eenil yle in M 1 h onin u n e ompued in O(n log n) ime. Proof: We find he hore eenil yle hrough u y imuling irulr wve expnding from u. Whenever he wve ouhe ielf, eiher we hve he hore eenil yle hrough u, or one omponen of he wve ound dik in M nd we n oninue expnding he oher omponen. We modify he lgorihm of Lzru e l. [LPVV01] follow. Fir, S i no longer e of ringle u more generl onneed ue of verie, edge, nd fe of M. Iniilly, S onin only he oure verex u. Seond, we ue Dijkr lgorihm o deermine he order for edge o e dded. We dd fe o S only when ll i verie hve een dded o S, eiher direly or pr of noher fe. We run he lgorihm from Lemm 5.1 whenever S i no longer imply onneed, h i, when we dd new edge vw wih oh endpoin on he oundry of S. If M\S i dionneed, we oninue only if one omponen of M \ S i dik or n nnulu, n e heked uing Lemm 5.1. In h e, we dd he dik or nnulu omponen of M \ S o S, dird he verie of h omponen from he Dijkr prioriy queue, nd oninue erhing in he oher omponen. If M \ S i onneed, or if neiher omponen i dik or n nnulu, we hve found he hore eenil yle hrough u, oniing of he hore ph from u o v, he edge vw, nd he hore ph from w o u. Dijkr lgorihm require O(n log n) ime. Eh ime we find rivil yle, we pend O(m) ime nd dird dik wih omplexiy le m. Thu, he ol ime pen performing yle lifiion nd minining he wvefron e S i O(n). Thu, he ol running ime of our lgorihm i O(n log n). Running hi lgorihm one for every verex of M immediely give u he hore eenil yle. Corollry 5.3. Le M e polyhedrl 2-mnifold, poily wih oundry. The hore eenil yle in M 1 n e ompued in O(n 2 log n) ime. A imple modifiion of our lgorihm llow u o find hore non-epring yle in he me ympoi ime. Lemm 5.4. Le u e verex of polyhedrl 2-mnifold M, poily wih oundry. The hore non-epring yle in M 1 h onin u n e ompued in O(n log n) ime. Proof: The only hnge from he previou lgorihm i h if we diover n eenil epring yle, we oninue reurively in oh omponen of M\S. The o of Dijkr lgorihm i ill O(n log n), u we now mu pend exr ime in he yle-lifiion lgorihm of Lemm 5.1. A efore, he ol ime pen finding rivil yle i O(n), ine we n hrge he erh ime o he dirded omponen. Le T (n, g) denoe he ol ime pen finding epring eenil yle. Thi funion ifie he reurrene T (n, g) T (m, h) + T (n m, g h) + O(m),

15 14 Jeff Erikon nd Sriel Hr-Peled where m n/2 i he omplexiy of he mller omponen of M \ S nd h i i genu. The e e of he reurrene i T (n, 1) = 0, ine every eenil yle on genu-1 urfe i non-epring. Similr reurrene pper in he nlyi of oupu-eniive plnr onvex hull lgorihm [BS97, CSY97, KS86, Wen97], uggeing h he oluion o our reurrene i T (n, g) = O(n log g). Indeed, we n prove hi y induion follow. Suppoe T (n, g) T (m, h) + T (n m, g h) + m for ome onn. We lim h T (n, g) n lg g. The induive hypohei implie h T (n, g) m lg h + (n m) lg(g h) + m mx (m lg h + (n m) lg(g h)) + m. 1 h g 1 A imple ppliion of derivive implie h he righ hnd ide of hi inequliy i mximized when h = mg/n. Thu, T (n, g) m lg mg (n m)g + (n m) lg + m n n = n lg g + m lg m + (n m) lg(n m) n lg n + m. Sine m n/2 nd n m n, we n implify hi inequliy o T (n, g) n ln g + m lg(n/2) + (n m) lg n n lg n + m = n lg g, ompleing he proof. Thu, he ol ime pen in he yle-lifiion phe of our lgorihm i O(n log g). Sine g n, hi i domined y he o of minining he Dijkr prioriy queue. Corollry 5.5. Le M e n polyhedrl 2-mnifold, poily wih oundry. The hore non-epring yle in M 1 n e ompued in O(n 2 log n) ime. 5.2 Nerly-Shore Cyle A we will rgue in he nex eion, ompuing hor nonrivil yle i he olenek in our pproxime u grph lgorihm. Forunely, ex minimum yle re no neery for our reul. We n peed up our u grph lgorihm, wihou ignifinly inreing he pproximion for, y erhing for nonrivil yle mo wie long he hore. Our pproximion lgorihm ume h he mnifold M h no oundry; forunely, we hll ee in he nex eion, hi i uffiien for our purpoe. Our pproximion lgorihm work follow. Fir, we ompue e of hore ph (in f, u grph) h inere every non-epring yle in he mnifold M. Then we onr eh hore ph π in hi e o poin nd find he hore nonrivil yle hrough h poin, deried y Lemm 5.2 nd 5.4.

16 Opimlly Cuing Surfe ino Dik 15 Lemm 5.6. Le π e hore ph eween wo verie in polyhedrl 2-mnifold M, nd le γ e he hore eenil (rep. non-epring) yle in M 1 h inere π. In O(n log n) ime, one n ompue n eenil (rep. non-epring) yle γ in M uh h γ 2 γ. Proof: Le M e he mnifold oined y onring he hore ph π o ingle verex v. Beue π h no yle, M h he me opologil ype M. Le γ e he hore eenil (rep. non-epring) yle in M h pe hrough v. Clerly, γ γ. We n ompue hi yle in O(n log n) ime y Lemm 5.2 (rep. Lemm 5.4). We onru yle γ in M y onening wo ph nd, where onin he edge of γ nd i he uph of π eween he endpoin of. The equene of edge onrion h rnform M o M lo rnform γ o γ. Hene, γ i n eenil yle of M. Beue i uph of hore ph, i ully he hore ph eween he endpoin of, o = γ. I follow h γ = + 2 γ 2 γ. Thi lemm ugge nurl lgorihm for finding hor nonrivil yle: Compue e of hore ph h inere every non-epring yle (nd hu every eenil yle), nd hen run he lgorihm from Lemm 5.6 for eh ph in hi e. Lemm 5.7. Le M e polyhedrl 2-mnifold wihou oundry. In O(n log n) ime, one n ompue e Π of O(g) hore ph on M 1 uh h every non-epring yle (nd hu every eenil yle) in M 1 inere le one ph in Π. Proof: We ompue u grph G follow. Fir we ompue hore-ph ree T from n rirry iniil verex v uing Dijkr lgorihm. We hen ompue n rirry pnning ree T of he dul of M \ T, h i, he grph whoe verie re fe of M nd whoe edge join pir of fe h hre ommon edge no in T. Anlyi imilr o Lemm 4.2 implie h here re O(g) edge h do no pper in T nd whoe dul edge o no pper in T. Cll hi e of unlimed edge E. Le Π e he e of O(g) hore ph from v o he endpoin of E; hee ph re ll in T. Finlly, le G = Π E. We eily oerve h M \ G i opologil dik, o G i u grph. I follow h every non-epring yle in M 1 inere G. Sine every verex of G i lo verex of ome ph in Π, every non-epring yle in M 1 inere le one ph in Π. Noie h hi lgorihm doe no work if M h oundry, ine he dul grph of M \ T ould e dionneed. Corollry 5.8. Le M e polyhedrl 2-mnifold wih genu g nd no oundry, nd le γ e i hore eenil (rep. non-epring) yle. In O(gn log n) ime, one n ompue n eenil (rep. non-epring) yle γ in M 1 uh h γ 2 γ. Proof: We onru e Π of O(g) hore ph, le one of whih i gurneed o inere γ, deried in he previou lemm. Then for eh ph π Π, we onr π o poin nd find he hore nonrivil yle hrough h poin in O(n log n) ime, deried y Lemm 5.6.

17 16 Jeff Erikon nd Sriel Hr-Peled 6 Approxime Minimum Cu Grph We now derie imple polynomil-ime greedy lgorihm o onru n pproxime minimum u grph for ny polyhedrl mnifold M. To hndle mnifold wih oundry, i will e onvenien o onider he following implified form. Given mnifold M wih genu g nd k oundry omponen, he orreponding punured mnifold (M, P ) oni of mnifold M wih he me genu M u wihou oundry, nd e P of k poin in M, lled punure. To onru M, we onr every oundry omponen of M o ingle poin, whih eome one of he punure in P. 5 If ny verex of M h muliple edge o he me oundry omponen, M onin only he edge wih mlle weigh, reking ie uing he Iolion Lemm ove. If M h no oundry, hen M = M nd P =. Our gol now i o ompue he minimum u grph of M h ouhe every punure in P ; heneforh, we ll hi imply he minimum u grph of (M, P ). Thi reduion i moived y he following rivil oervion. Lemm 6.1. The minimum u grph of ny polyhedrl 2-mnifold M h he me lengh he minimum u grph of (M, P ). Our pproximion lgorihm work follow. We repeedly u long hor nonrivil yle unil our urfe eome olleion of punured phere, onne he punure on eh omponen y uing long minimum pnning ree, nd finlly (if neery) reglue ome previouly u edge o oin ingle dik. The reuling u grph i ompoed of ue of he edge of he hor nonrivil yle nd ll he edge of he minimum pnning fore. 6.1 Uing Shor Nonrivil Cyle The fir omponen of our lgorihm i urouine o ompue pproximely hore nonrivil yle, deried y Corollry 5.8. A required y h lgorihm, he inpu mnifold M h no oundry; he punure re ompleely ignored. The following rgumen rele he lengh of he hore nonrivil yle o he lengh of he minimum u grph. Lemm 6.2. Le G e ny u grph of polyhedrl 2-mnifold M wih genu g nd no oundry. The hore yle in G onin O((log g)/g) of he ol lengh of G. Proof: Fir onider he redued u grph Ĝ, onrued y repeedly onring ny edge wih verex of degree le hn hree, in Seion 4. Every verex in Ĝ h degree le 3. Wihou lo of generliy, ume h every verex in Ĝ h degree exly 3, pliing eh high-degree verex ino ree of degree-3 verie if neery, in he proof of Lemm 4.2. A righforwrd ouning rgumen implie h ny rivlen grph whoe 5 We ould imule hi onrion y rifiilly igning every oundry edge of M weigh of zero, lhough hi would require few imple hnge in our lgorihm.

18 Opimlly Cuing Surfe ino Dik 17 girh (minimum yle lengh) i mu hve le /2 2 verie if i odd, nd le 2 2 /2 2 verie if i even [Big98]. By Lemm 4.2, Ĝ h mo 4g 2 verie, o Ĝ mu hve yle ˆγ wih mo 2(lg g + 1) = O(log g) edge. Sring wih Ĝ0 = Ĝ, we induively define equene of redued grph Ĝ1, Ĝ2,... follow. For eh i > 0, le ˆγ i denoe he hore yle in Ĝi 1. We oin Ĝi y reduing he grph Ĝi 1 \ ˆγ i, or equivlenly, removing he verie of ˆγ i nd ll heir edge, nd hen onring ˆγ i nery lengh-2 ph o ingle edge. Our erlier rgumen implie h eh yle ˆγ i h mo 2(lg g + 1) edge. Thu, for eh i, we hve E(Ĝi) = E(Ĝi 1) 6(lg g + 1). Lemm 4.2 implie h he originl redued u grph Ĝ h le g edge, o we n repe hi proe le g/6(lg g + 1) ime. Le γ i denoe he yle in he originl u grph G orreponding o Ĝi. By our onruion, γ i nd γ j re dijoin for ll i j, o we hve e of le g/6(lg g + 1) dijoin yle in G. A le one of hee yle h lengh mo 6(lg g + 1)/g = O((log g)/g) ime he ol lengh of G. Sine every yle in he minimum u grph i non-epring, nd herefore eenil, we immediely hve he following orollry. Corollry 6.3. For ny polyhedrl 2-mnifold M wih genu g nd no oundry, oh he lengh of he hore non-epring yle nd he lengh of he hore eenil yle re mo O((log g)/g) ime he lengh of he minimum u grph of M. 6.2 Punure-Spnning Tree The eond omponen of our u grph lgorihm i urouine o ompue he minimum punure-pnning ree of punured mnifold (M, P ), h i, he minimum pnning ree of he punure P in he hore-ph meri of M 1. Lemm 6.4. The minimum punure-pnning ree of ny punured polyhedrl 2-mnifold (M, P ) n e ompued in O(n log n) ime. Proof: We imule Krukl minimum pnning ree lgorihm [Kru56, Tr83] y dding hore punure-o-punure ph one ime, in inreing order of lengh. To ompue he hore ph, we imulneouly propge wvefron from ll k punure uing Dijkr lgorihm. Whenever wo wvefron (i.e., wo growing hore-ph ree) ollide, we dd new edge o he evolving minimum pnning ree nd merge hoe wo wvefron. To implemen hi lgorihm effiienly, we minin he wvefron in union-find d ruure. The reuling running ime i O(n log n). Thi i eenilly he lgorihm propoed y Tkhhi nd Muym [TM80] o ompue pproxime Seiner ree in rirry grph. The me lgorihm w lo reenly ued y Sheffer [She02] nd y Lévy e l. [LPRM02] o ompue u grph, where urfe feure wih high diree urvure ply he role of punure.

19 18 Jeff Erikon nd Sriel Hr-Peled Lemm 6.5. The lengh of he minimum punure-pnning ree of ny punured polyhedrl 2-mnifold (M, P ) i mo wie he lengh of ny u grph of (M, P ). Proof: The minimum Seiner ree of P i he ugrph of M 1 of minimum ol weigh h inlude every poin in P. Sine ny u grph of (M, P ) mu ouh every punure, no u grph i horer hn hi minimum Seiner ree. On he oher hnd, he minimum pnning ree of P h mo wie he lengh of he minimum Seiner ree [KMB81, TM80]. 6.3 Anlyi We now hve ll he omponen of our greedy u grph lgorihm. A ny ge of he lgorihm, we hve punured mnifold (M, P ). Our lgorihm repeedly u long hor non-epring yle of M, uing Corollry 5.8. Thi u ree one or wo new oundry irle, whih we ollpe o new punure. When he mnifold i redued o olleion of punured phere, we u long he minimum punure-pnning ree of eh omponen uing he lgorihm in Lemm 6.4. Eh non-epring yle u redue he genu of M y 1. Thi immediely implie h our lgorihm perform exly g yle u, o he overll running ime i g O(gn log n) + O(n log n) = O(g 2 n log n). For ny grph X, le X denoe i ol lengh. Le G denoe he minimum u grph of (M, P ). Le (M i, P i ) denoe he punured mnifold fer g i yle u hve een performed, o M i h genu i, nd le G i denoe he minimum u grph of M i, ignoring he punure P i. Sine ollping edge nno inree he minimum u grph lengh, we hve G i G g G for ll i. Le γ i denoe he hor non-epring yle of M i found y Corollry 5.8. (We eily oerve h ny u grph of M i mu inere hi yle.) Lemm 6.2 nd Corollry 5.8 imply h γ i O((log i)/i) G i for ll i nd j. Summing over ll g u, we onlude h he ol lengh of ll yle u i mo g O((log i)/i) G i = O(log 2 g) G. i=1 Similrly, Lemm 6.5 implie h he minimum punure-pnning fore h lengh mo 2 G. Finlly, regluing previouly u edge o oin ingle dik only redue he lengh of he finl u grph. Thu, he finl u grph ompued y our lgorihm h lengh mo O(log 2 g) G. Theorem 6.6. Given polyhedrl 2-mnifold M wih genu g nd k oundry omponen, n O(log 2 g)-pproximion of i minimum u grph n e onrued in O(g 2 n log n) ime. Cuing long hor eenil yle ined of hor non-epring yle led o exly he me ympoi running ime nd pproximion ound, lhough he lgorihm nd

20 Opimlly Cuing Surfe ino Dik 19 i nlyi re lighly more omplied. For purpoe of nlyi, we n divide he lgorihm ino phe, where in he ih phe, we u long hor eenil yle of every omponen of he mnifold h h genu i. Eenil yle u n epre he mnifold ino muliple omponen, u ine eh omponen mu hve nonrivil opology, he lgorihm perform mo g 1 epring u. A he end of he lgorihm, if neery, we reglue long ome previouly u edge o oin ingle opologil dik. We refer o he erlier verion of hi pper for furher deil [EHP02]. 7 Open Prolem We hve developed new lgorihm o ompue ex nd pproxime miniml u grph for mnifold urfe wih rirry genu nd rirry oundry omplexiy. Our pproximion lgorihm i priulrly imple. Our reul ugge everl open prolem, he mo oviou of whih i o improve he running ime nd pproximion for of our lgorihm. I he minimum u grph prolem fixed-prmeer rle [DF99]? Th i, n we ompue ex minimum u grph in ime f(g, k) n O(1) for ome funion f? The imilriy o he Seiner prolem offer ome hope here, ine he minimum Seiner ree of k node in n n-node grph n e ompued in O(3 k n + 2 k n 2 + n 3 ) ime [DW71, HW94]. The pproximion lgorihm of Theorem 6.6 i omewh indire. I ompue hor u grph y repeedly ompuing reonle u grph nd hen exring hor nonrivil yle h iner wih hi u grph. I i nurl o onjeure h one n ompue uh hor u grph direly, reuling in fer lgorihm. In priulr, we onjeure h n pproximely minimum u grph n e ompued in O(gn log n) ime. How well n we pproxime he minimum u grph in nerly-liner ime? There re everl imple heurii o ompue good u grph in O(n log n) ime, uh he dul hore-ph lgorihm ued y Gu e l. [GGH02] nd y Seiner nd Fiher [SF02], nd he lgorihm deried in he proof of Lemm 5.7. How well do hee lgorihm pproxime he minimum u grph? More generlly, i here imple, pril, O(1)-pproximion lgorihm, like he minimum pnning ree pproximion of Seiner ree? In f, i migh e h our lgorihm provide uh n pproximion, our urren nlyi eem o e fr from igh. Unforunely, he generl Seiner ree prolem i MAXSNP-hrd [BP89], o n effiien (1 + ε)-pproximion lgorihm for rirry ε > 0 eem unlikely. Severl uhor hve poined ou ppren rdeoff eween he quliy of prmeerizion nd he lengh of he required u grph; ee, for exmple, Sorkine e l. [SCOGL02]. How hrd i i o ompue he (pproximely) hore u grph required for prmeerizion whoe diorion i le hn ome given limi? Converely, how hrd i i o (pproximely) minimize he diorion of prmeerizion, given n upper ound on he permied lengh of he urfe u? The omplexiy of hee prolem lerly depend he whih diorion meure i ued, u we expe lmo ny vrin of hi prolem o e NP-hrd.

21 20 Jeff Erikon nd Sriel Hr-Peled Finlly, n our ide e pplied o oher ueful fmilie of urve on mnifold, uh homology generor (fmilie of 2g yle h inere in g pir) nd pn deompoiion (mximl e of pirwie dijoin eenil yle [Thu97])? Aknowledgmen. We would like o hnk Herer Edelrunner for n enlighening iniil onverion. We re lo greful o Nog Alon, Seven Gorler, John Hr, Benjmin Sudkov, Kim Whileey, nd Zoë Wood for helpful diuion. Referene [AE98] [AMD02] [Big98] [Blö91] Ulrike Axen nd Herer Edelrunner. Audiory More nlyi of ringuled mnifold. In H.-C. Hege nd K. Polhier, edior, Mhemil Viulizion, pge Springer-Verlg, Pierre Alliez, Mrk Meyer, nd Mhieu Derun. Inerive geomery remehing. In Pro. SIGGRAPH 02, o pper, Normn Bigg. Conruion for ui grph wih lrge girh. Ele. J. Comin., 5:A1, J. Blömer. Compuing um of rdil in polynomil ime. In Pro. 32nd Annu. IEEE Sympo. Found. Compu. Si., pge , [BP89] Mrhll Bern nd Pul Plmn. The Seiner prolem wih edge lengh 1 nd 2. Inform. Pro. Le., 32(4): , [BS97] [BVIG91] [CL02] [CRS95] B. K. Bhhry nd S. Sen. On imple, pril, opiml, oupu-eniive rndomized plnr onvex hull lgorihm. J. Algorihm, 25: , Chki Benni, Jen-Mr Vézien, Gérrd Igléi, nd André Gglowiz. Pieewie urfe flening for non-diored exure mpping. In Thom W. Sedererg, edior, Compuer Grphi (SIGGRAPH 91 Proeeding), volume 25, pge , Èri Colin de Verdiére nd Frni Lzru. Opiml yem of loop on n orienle urfe. In Pro. 43rd Annu. IEEE Sympo. Found. Compu. Si., pge o pper, Sureh Chri, Pnkj Rohgi, nd Arvind Srinivn. Rndomne-opiml unique elemen iolion wih ppliion o perfe mhing nd reled prolem. SIAM J. Compu., 24(5): , [CSY97] T. M. Chn, J. Snoeyink, nd C. K. Yp. Priml dividing nd dul pruning: Oupu-eniive onruion of 4-d polyope nd 3-d Voronoi digrm. Diree Compu. Geom., 18: , 1997.

22 Opimlly Cuing Surfe ino Dik 21 [DEG99] [DF99] [DG99] [Dij59] Tml Dey, Herer Edelrunner, nd Sumn Guh. Compuionl opology. In B. Chzelle, J. E. Goodmn, nd R. Pollk, edior, Advne in Diree nd Compuionl Geomery, volume 223 of Conemporry Mhemi, pge Amerin Mhemil Soiey, Providene, RI, R. G. Downey nd M. R. Fellow. Prmeerized Complexiy. Monogrph in Compuer Siene. Springer-Verlg, Tml K. Dey nd Sumn Guh. Trnforming urve on urfe. J. Compu. Sy. Si., 58: , E. W. Dijkr. A noe on wo prolem in onnexion wih grph. Numerihe Mhemik, 1: , [DS95] Tml K. Dey nd Hijo Shipper. A new ehnique o ompue polygonl hem for 2-mnifold wih ppliion o null-homoopy deeion. Diree Compu. Geom., 14:93 110, [DW71] S. Dreyfu nd R. Wgner. The Seiner prolem in grph. Nework, 1: , [EDD + 95] [EHP02] [Epp01] Mhi Ek, Tony DeRoe, Tom Duhmp, Hughe Hoppe, Mihel Lounery, nd Werner Suezle. Mulireoluion nlyi of rirry mehe. In Pro. SIGGRAPH 95, pge , Jeff Erikon nd Sriel Hr-Peled. Opimlly uing urfe ino dik. In Pro. 18h Annu. ACM Sympo. Compu. Geom., pge , Dvid Eppein. Seveneen proof of Euler formul: V E + F = 2. In The Geomery Junkyrd. My hp:// eppein/junkyrd/ euler/. [Flo97] Mihel S. Floer. Prmeerizion nd mooh pproximion of urfe ringulion. Compu. Aided Geom. Deign, 14(4): , [FW99] George K. Frni nd Jeff R. Week. Conwy ZIP proof. Amer. Mh. Monhly, 106: , hp://new.mh.uiu.edu/zipproof/. [GGH02] [GGJ77] [GJ77] Xinfeng Gu, Sephen J. Gorler, nd Hughe Hoppe. Geomery imge. In Pro. SIGGRAPH 02, o pper, M. R. Grey, R. L. Grhm, nd D. S. Johnon. The omplexiy of ompuing Seiner miniml ree. SIAM J. Appl. Mh., 32: , M. R. Grey nd D. S. Johnon. The reiliner Seiner ree prolem i NPomplee. SIAM J. Appl. Mh., 32: , [GW01] Igor Gukov nd Zoë Wood. Topologil noie removl. In Pro. Grphi Inerfe, pge 19 26, 2001.

23 22 Jeff Erikon nd Sriel Hr-Peled [Hn66] M. Hnn. On Seiner prolem wih reiliner dine. SIAM J. Appl. Mh., 14: , [HAT + 00] [H01] [HSKK01] [HW94] [Joh77] [KAB95] [KMB81] [Kru56] [KS86] [KS01] [LPRM02] [LPVV01] [LSS + 98] Seven Hker, Sigur Angenen, Allen Tnnenum, Ron Kikini, Guillermo Spiro, nd Mihel Hlle. Conforml urfe prmeerizion for exure mpping. IEEE Trn. Viuliz. Compu. Grph., 6(2): , Allen Hher. Algeri Topology. Cmridge Univeriy Pre, hp: // hher/. Mki Hilg, Yohihi Shingw, Tku Kohmur, nd Toiyu L. Kunii. Topology mhing for fully uomi imilriy eimion of 3d hpe. In Pro. SIGGRAPH 01, pge , Mihel Hlle nd Todd Wrehm. A ompendium of prmeerized omplexiy reul. SIGACT New, 25(3): , hp://we..mun./ hrold/w hier/ompendium.hml. Donld B. Johnon. Effiien lgorihm for hore ph in pre nework. J. Ao. Compu. Mh., 24(1):1 13, R. Kimmel, A. Amir, nd A. M. Brukein. Finding hore ph on urfe uing level e propogion. IEEE Trn. PAMI, 17: , L. Kou, G. Mrkowky, nd L. Bermn. A f lgorihm for Seiner ree. A Inform., 15: , J. B. Krukl, Jr. On he hore pnning uree of grph nd he rveling lemn prolem. Pro. Amer. Mh. So., 7:48 50, D. G. Kirkprik nd R. Seidel. The ulime plnr onvex hull lgorihm? SIAM J. Compu., 15: , Adm Klivn nd Dniel A. Spielmn. Rndomne effiien ideniy eing of mulivrie polynomil. In Pro. 33rd Annu. ACM Sympo. Theory Compu., pge , Bruno Lévy, Sylvin Peijen, Niol Ry, nd Jérome Millo. Le qure onforml mp for uomi exure l generion. In Pro. SIGGRAPH 02, o pper, Frni Lzru, Mihel Pohiol, Ger Veger, nd Ann Verrou. Compuing nonil polygonl hem of n orienle ringuled urfe. In Pro. 17h Annu. ACM Sympo. Compu. Geom., pge 80 89, Aron W. F. Lee, Wim Swelden, Peer Shröder, Lwrene Cowr, nd Dvid Dokin. MAPS: Mulireoluion dpive prmeerizion of urfe. In Pro. SIGGRAPH 98, pge , 1998.

24 Opimlly Cuing Surfe ino Dik 23 [LV99] [MMP87] F. Lzru nd Anne Verrou. Level e digrm of polyhedrl oje. In Pro. 5h ACM Sympo. Solid Modeling Appl., pge , Joeph S. B. Mihell, D. M. Moun, nd C. H. Ppdimiriou. The diree geodei prolem. SIAM J. Compu., 16: , [Mun00] Jme R. Munkre. Topology. Prenie-Hll, 2nd ediion, [MVV87] [PB00] Ken Mulmuley, Umeh V. Vzirni, nd Vijy V. Vzirni. Mhing i ey mrix inverion. Cominori, 7: , D. Piponi nd G. Borhukov. Semle exure mpping of udiviion urfe y model peling nd exure lending. In Pro. SIGGRAPH 00, pge , [SCOGL02] Olg Sorkine, Dniel Cohen-Or, Rony Goldenhl, nd Dni Lihinki. Bounded-diorion pieewie meh prmeerizion. In Pro. 12h IEEE Viulizion Conf., o pper, [SdS00] [SF02] [She02] All Sheffer nd Eri de Surler. Surfe prmeerizion for mehing y ringulion flening. In Pro. 9h Inernionl Mehing Roundle, pge , hp:// Dvir Seiner nd Anh Fiher. Cuing 3D freeform oje wih genu-n ino ingle oundry urfe uing opologil grph. In Pro. 7h ACM Sympo. Solid Modeling Appl., o pper, All Sheffer. Spnning ree em for reduing prmeerizion diorion of ringuled urfe. In Pro. Shpe Modeling Inernionl, [Si93] John Sillwell. Clil Topology nd Cominoril Group Theory, volume 72 of Grdue Tex in Mhemi. Springer-Verlg, 2nd ediion, [Tr83] R. E. Trjn. D Sruure nd Nework Algorihm, volume 44 of CBMS- NSF Regionl Conferene Serie in Applied Mhemi. Soiey for Induril nd Applied Mhemi, Phildelphi, PA, [Thu97] Willim Thuron. Three-Dimenionl Geomery nd Topology, Volume 1. Prineon Univeriy Pre, New Jerey, [TM80] H. Tkhhi nd A. Muym. An pproxime oluion for he nework Seiner ree prolem. Mh. Jponi, 24: , [Ti95] J. N. Tiikli. Effiien lgorihm for glolly opiml rjeorie. IEEE Trn. Auomi Conrol, 40: , [Veg97] G. Veger. Compuionl opology. In Jo E. Goodmn nd Joeph O Rourke, edior, Hndook of Diree nd Compuionl Geomery, hper 28, pge CRC Pre LLC, Bo Ron, FL, 1997.

25 24 Jeff Erikon nd Sriel Hr-Peled [VY90] G. Veger nd C. K. Yp. Compuionl omplexiy of ominoril urfe. In Pro. 6h Annu. ACM Sympo. Compu. Geom., pge , [Wen97] Rephel Wenger. Rndomized quikhull. Algorihmi, 17: , [WHDS02] Zoë Wood, Hughe Hoppe, Mhieu Derun, nd Peer Shröder. Iourfe opology implifiion. Tehnil Repor MSR-TR , Miroof Reerh, hp:// [ZKK01] Gil Zigelmn, Ron Kimmel, nd Nhum Kiryi. Texure mpping uing urfe flening vi muli-dimenionl ling. IEEE Trn. Viul. Compu. Grph., 8: , 2001.

Optimally Cutting a Surface into a Disk

Optimally Cutting a Surface into a Disk Opimlly Cuing Surfe ino Dik Jeff Erikon Sriel Hr-Peled Univeriy of Illinoi Urn-Chmpign {jeffe,riel}@.uiu.edu hp://www..uiu.edu/ {jeffe,riel} ABSTRACT We onider he prolem of uing e of edge on polyhedrl

More information

1 The Network Flow Problem

1 The Network Flow Problem 5-5/65: Deign & Anlyi of Algorihm Ooer 5, 05 Leure #0: Nework Flow I l hnged: Ooer 5, 05 In hee nex wo leure we re going o lk ou n imporn lgorihmi prolem lled he Nework Flow Prolem. Nework flow i imporn

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

Graduate Algorithms CS F-18 Flow Networks

Graduate Algorithms CS F-18 Flow Networks Grue Algorihm CS673-2016F-18 Flow Nework Dvi Glle Deprmen of Compuer Siene Univeriy of Sn Frnio 18-0: Flow Nework Diree Grph G Eh ege weigh i piy Amoun of wer/eon h n flow hrough pipe, for inne Single

More information

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017 Uer ID (NOT he 9 igi numer): gurell4 CS351 Deign & Anlyi of Algorihm Fll 17 Seion A Te 3 Soluion Inruor: Rihr Peng In l, Weney, Nov 15, 17 Do no open hi quiz ookle unil you re iree o o o. Re ll he inruion

More information

Maximum Flow. Flow Graph

Maximum Flow. Flow Graph Mximum Flow Chper 26 Flow Grph A ommon enrio i o ue grph o repreen flow nework nd ue i o nwer queion ou meril flow Flow i he re h meril move hrough he nework Eh direed edge i ondui for he meril wih ome

More information

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples CS 7 Algorihm Fll 24 Dvid Wgner /3 Noe The min-u problem Le G = (V,E) be direed grph, wih oure verex V nd ink verex V. Aume h edge re lbelled wih o, whih n be modelled o funion : E N h oie non-negive inegrl

More information

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

ALG 5.3 Flow Algorithms:

ALG 5.3 Flow Algorithms: ALG 5. low Algorihm: () Mx-flow, min-u Theorem () Augmening Ph () 0 - flow (d) Verex Conneiviy (e) Plnr low Min Reding Seleion: CLR, Chper 7 Algorihm Profeor John Reif Auxillry Reding Seleion: Hndou: "Nework

More information

Bisimulation, Games & Hennessy Milner logic p.1/32

Bisimulation, Games & Hennessy Milner logic p.1/32 Clil lnguge heory Biimulion, Gme & Henney Milner logi Leure 1 of Modelli Memii dei Proei Conorreni Pweł Sooińki Univeriy of Souhmon, UK I onerned rimrily wih lnguge, eg finie uom regulr lnguge; uhdown

More information

Lecture 2: Network Flow. c 14

Lecture 2: Network Flow. c 14 Comp 260: Avne Algorihms Tufs Universiy, Spring 2016 Prof. Lenore Cowen Srie: Alexner LeNil Leure 2: Nework Flow 1 Flow Neworks s 16 12 13 10 4 20 14 4 Imgine some nework of pipes whih rry wer, represene

More information

Robust Network Coding for Bidirected Networks

Robust Network Coding for Bidirected Networks Rou Nework Coding for Bidireed Nework A. Sprinon, S. Y. El Rouyhe, nd C. N. Georghide Ar We onider he prolem of nding liner nework ode h gurnee n innneou reovery from edge filure in ommuniion nework. Wih

More information

Designing A Fanlike Structure

Designing A Fanlike Structure Designing A Fnlike Sruure To proeed wih his lesson, lik on he Nex buon here or he op of ny pge. When you re done wih his lesson, lik on he Conens buon here or he op of ny pge o reurn o he lis of lessons.

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Arc Operads and Arc Algebras

Arc Operads and Arc Algebras ISSN 364-0380 (on line) 465-3060 (prined) 5 Geomery & Topology Volume 7 (003) 5 568 Pulihed: 8 Augu 003 G G G G T T T G T T T G T G T GG TT G G G G GG T T T TT Ar Operd nd Ar Alger Rlph M Kufmnn Muriel

More information

ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER

ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER Mh. Appl. 1 (2012, 91 116 ON DIFFERENTIATION OF A LEBESGUE INTEGRAL WITH RESPECT TO A PARAMETER JIŘÍ ŠREMR Abr. The im of hi pper i o diu he bolue oninuiy of erin ompoie funion nd differeniion of Lebegue

More information

5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1

5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1 Nework flow -. Nework flow Nework flow Mximum flow prolem Ford-Fulkeron lgorihm Min-co flow Nework flow Nework N i e of direced grph G = (V ; E) ource 2 V which h only ougoing edge ink (or deinion) 2 V

More information

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445 CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

A LOG IS AN EXPONENT.

A LOG IS AN EXPONENT. Ojeives: n nlze nd inerpre he ehvior of rihmi funions, inluding end ehvior nd smpoes. n solve rihmi equions nlill nd grphill. n grph rihmi funions. n deermine he domin nd rnge of rihmi funions. n deermine

More information

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t) /0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

GeoTrig Notes Conventions and Notation: First Things First - Pythogoras and His Triangle. Conventions and Notation: GeoTrig Notes 04-14

GeoTrig Notes Conventions and Notation: First Things First - Pythogoras and His Triangle. Conventions and Notation: GeoTrig Notes 04-14 Convenions nd Noion: GeoTrig Noes 04-14 Hello ll, his revision inludes some numeri exmples s well s more rigonomery heory. This se of noes is inended o ompny oher uorils in his series: Inroduion o EDA,

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2 ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER Seion Eerise -: Coninuiy of he uiliy funion Le λ ( ) be he monooni uiliy funion defined in he proof of eisene of uiliy funion If his funion is oninuous y hen

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

defines eigenvectors and associated eigenvalues whenever there are nonzero solutions ( 0

defines eigenvectors and associated eigenvalues whenever there are nonzero solutions ( 0 Chper 7. Inroduion In his hper we ll explore eigeneors nd eigenlues from geomeri perspeies, lern how o use MATLAB o lgerilly idenify hem, nd ulimely see how hese noions re fmously pplied o he digonlizion

More information

VIA2 VIA1 MET2 VIA1. VIA2 w3 VIA2 MET1 MET3 MET3 MET2

VIA2 VIA1 MET2 VIA1. VIA2 w3 VIA2 MET1 MET3 MET3 MET2 VIA DESIGN RULE CONSIDERATION IN MULTI-LAYER MAZE ROUTING ALGORITHMS Jon Cong, Jie Fng nd Kei-Yong Khoo Comuer Siene Dermen, UCLA Lo Angele, CA 90095 el. 310-2065449, fx. 310-825-2273 fong, jfng, khoog@.ul.edu

More information

Max-flow and min-cut

Max-flow and min-cut Mx-flow nd min-cu Mx-Flow nd Min-Cu Two imporn lgorihmic prolem, which yield euiful duliy Myrid of non-rivil pplicion, i ply n imporn role in he opimizion of mny prolem: Nework conneciviy, irline chedule

More information

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1

Some basic notation and terminology. Deterministic Finite Automata. COMP218: Decision, Computation and Language Note 1 COMP28: Decision, Compuion nd Lnguge Noe These noes re inended minly s supplemen o he lecures nd exooks; hey will e useful for reminders ou noion nd erminology. Some sic noion nd erminology An lphe is

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

two values, false and true used in mathematical logic, and to two voltage levels, LOW and HIGH used in switching circuits.

two values, false and true used in mathematical logic, and to two voltage levels, LOW and HIGH used in switching circuits. Digil Logi/Design. L. 3 Mrh 2, 26 3 Logi Ges nd Boolen Alger 3. CMOS Tehnology Digil devises re predominnly mnufured in he Complemenry-Mel-Oide-Semionduor (CMOS) ehnology. Two ypes of swihes, s disussed

More information

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it CSC 36S Noe Univeriy of Torono, Spring, 2003 Flow Algorihm The nework we will conider are direced graph, where each edge ha aociaed wih i a nonnegaive capaciy. The inuiion i ha if edge (u; v) ha capaciy

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

Max-flow and min-cut

Max-flow and min-cut Mx-flow nd min-cu Mx-Flow nd Min-Cu Two imporn lgorihmic prolem, which yield euiful duliy Myrid of non-rivil pplicion, i ply n imporn role in he opimizion of mny prolem: Nework conneciviy, irline chedule

More information

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix. Mh 7 Exm - Prcice Prolem Solions. Find sis for he row spce of ech of he following mrices. Yor sis shold consis of rows of he originl mrix. 4 () 7 7 8 () Since we wn sis for he row spce consising of rows

More information

International ejournals

International ejournals Avilble online ww.inernionlejournl.om Inernionl ejournl Inernionl Journl of Mhemil Siene, Tehnology nd Humniie 7 (0 8-8 The Mellin Type Inegrl Trnform (MTIT in he rnge (, Rmhndr M. Pie Deprmen of Mhemi,

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

Chapter 2: Evaluative Feedback

Chapter 2: Evaluative Feedback Chper 2: Evluive Feedbck Evluing cions vs. insrucing by giving correc cions Pure evluive feedbck depends olly on he cion ken. Pure insrucive feedbck depends no ll on he cion ken. Supervised lerning is

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

SECTION C-C PARALLEL/DEPRESSED CORNER PEDESTRIAN CURB RAMP DETAILS X"

SECTION C-C PARALLEL/DEPRESSED CORNER PEDESTRIAN CURB RAMP DETAILS X N 0 MODIIED N 0 UED WHEN RIGH-O-WY I ONRINED WLK NON-WLKLE OR WLKLE URE RIGH ORM MY E UED % MX. PLOED/REVIED://0 K O UR LOW LINE RON O GUER PERPENDIULR WLK NON-WLKLE OR WLKLE URE % MX. %-0% DIGONL HLL

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 4, 7 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

ECE Microwave Engineering

ECE Microwave Engineering EE 537-635 Microwve Engineering Adped from noes y Prof. Jeffery T. Willims Fll 8 Prof. Dvid R. Jcson Dep. of EE Noes Wveguiding Srucures Pr 7: Trnsverse Equivlen Newor (N) Wveguide Trnsmission Line Model

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

The realization of low order FSM method and its application Jiai He1,a, Xiangyang Liu1,b, Chengquan Pei2,3,c

The realization of low order FSM method and its application Jiai He1,a, Xiangyang Liu1,b, Chengquan Pei2,3,c 3rd Inernionl Conferene on Mhinery, Meril nd Informion ehnology ppliion (ICMMI 05 he relizion of low order FSM mehod nd i ppliion Jii He,, Xingyng Liu,b, Chengqun Pei,3, Shool of Compuer nd Communiion,

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

The Forming Theory and Computer Simulation of the Rotary Cutting Tools with Helical Teeth and Complex Surfaces

The Forming Theory and Computer Simulation of the Rotary Cutting Tools with Helical Teeth and Complex Surfaces Compuer nd Informion Siene The Forming Theory nd Compuer Simulion of he Rory Cuing Tools wih Helil Teeh nd Comple Surfes Hurn Liu Deprmen of Mehnil Engineering Zhejing Universiy of Siene nd Tehnology Hngzhou

More information

AN IMPROVED CREEP AND SHRINKAGE BASED MODEL FOR DEFLECTIONS OF COMPOSITE MEMBERS REINFORCED WITH CARBON FIBER REINFORCED BARS

AN IMPROVED CREEP AND SHRINKAGE BASED MODEL FOR DEFLECTIONS OF COMPOSITE MEMBERS REINFORCED WITH CARBON FIBER REINFORCED BARS N MPROVED CREEP ND SHRNKGE BSED MODEL FOR DEFLECTONS OF COMPOSTE MEMBERS RENFORCED WTH CRBON FBER RENFORCED BRS M.. Fruqi, S. Bhdr D. Sun, nd J. Si Deprmen o Civil nd rhieurl Engineering, Tex & M Univeriy,

More information

Released Assessment Questions, 2017 QUESTIONS

Released Assessment Questions, 2017 QUESTIONS Relese Assessmen Quesions, 17 QUESTIONS Gre 9 Assessmen of Mhemis Aemi Re he insruions elow. Along wih his ookle, mke sure ou hve he Answer Bookle n he Formul Shee. You m use n spe in his ook for rough

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

t s (half of the total time in the air) d?

t s (half of the total time in the air) d? .. In Cl or Homework Eercie. An Olmpic long jumper i cpble of jumping 8.0 m. Auming hi horizonl peed i 9.0 m/ he lee he ground, how long w he in he ir nd how high did he go? horizonl? 8.0m 9.0 m / 8.0

More information

18 Extensions of Maximum Flow

18 Extensions of Maximum Flow Who are you?" aid Lunkwill, riing angrily from hi ea. Wha do you wan?" I am Majikhie!" announced he older one. And I demand ha I am Vroomfondel!" houed he younger one. Majikhie urned on Vroomfondel. I

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

Figure 1. The left-handed and right-handed trefoils

Figure 1. The left-handed and right-handed trefoils The Knot Group A knot is n emedding of the irle into R 3 (or S 3 ), k : S 1 R 3. We shll ssume our knots re tme, mening the emedding n e extended to solid torus, K : S 1 D 2 R 3. The imge is lled tuulr

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN)

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN) EE 537-635 Microwve Engineering Fll 7 Prof. Dvid R. Jcson Dep. of EE Noes Wveguides Pr 7: Trnsverse Equivlen Newor (N) Wveguide Trnsmission Line Model Our gol is o come up wih rnsmission line model for

More information

Dynamic Response of an Active Filter Using a Generalized Nonactive Power Theory

Dynamic Response of an Active Filter Using a Generalized Nonactive Power Theory Dynmi Repone of n Aive Filer Uing Generlized Nonive Power heory Yn Xu Leon M. olber John N. Chion Fng Z. Peng yxu3@uk.edu olber@uk.edu hion@uk.edu fzpeng@mu.edu he Univeriy of enneee Mihign Se Univeriy

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network.

Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network. Sovie Rail Nework, Max Flow, Min u OS Kevin Wayne Fall Reference: On he hiory of he ranporaion and maximum flow problem. lexander Schrijver in Mah Programming, :,. Minimum u Problem u Flow nework.! Digraph

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion

More information

Solving Evacuation Problems Efficiently. Earliest Arrival Flows with Multiple Sources

Solving Evacuation Problems Efficiently. Earliest Arrival Flows with Multiple Sources Solving Evcuion Prolem Efficienly Erlie Arrivl Flow wih Muliple Source Ndine Bumnn Univeriä Dormund, FB Mhemik 441 Dormund, Germny ndine.umnn@mh.uni-dormund.de Mrin Skuell Univeriä Dormund, FB Mhemik 441

More information

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises 0/0/206 Ma/CS 6a Cla 4: Flow Exercie Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d e Sink 0/0/206 Flow

More information

Reminder: Flow Networks

Reminder: Flow Networks 0/0/204 Ma/CS 6a Cla 4: Variou (Flow) Execie Reminder: Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d

More information

Problem Set 9 Due December, 7

Problem Set 9 Due December, 7 EE226: Random Proesses in Sysems Leurer: Jean C. Walrand Problem Se 9 Due Deember, 7 Fall 6 GSI: Assane Gueye his problem se essenially reviews Convergene and Renewal proesses. No all exerises are o be

More information

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples. Improper Inegrls To his poin we hve only considered inegrls f(x) wih he is of inegrion nd b finie nd he inegrnd f(x) bounded (nd in fc coninuous excep possibly for finiely mny jump disconinuiies) An inegrl

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx Tutoril 2 Euler Lgrnge In one entene: d Fy = F d Importnt ft: ) The olution of EL eqution i lled eterml. 2) Minmum / Mimum of the "Mot Simple prolem" i lo n eterml. 3) It i eier to olve EL nd hek if we

More information

CSCI565 - Compiler Design

CSCI565 - Compiler Design CSCI565 - Compiler Deign Spring 6 Due Dte: Fe. 5, 6 t : PM in Cl Prolem [ point]: Regulr Expreion nd Finite Automt Develop regulr expreion (RE) tht detet the longet tring over the lphet {-} with the following

More information

Global alignment in linear space

Global alignment in linear space Globl linmen in liner spe 1 2 Globl linmen in liner spe Gol: Find n opiml linmen of A[1..n] nd B[1..m] in liner spe, i.e. O(n) Exisin lorihm: Globl linmen wih bkrkin O(nm) ime nd spe, bu he opiml os n

More information

Cylindrically Symmetric Marder Universe and Its Proper Teleparallel Homothetic Motions

Cylindrically Symmetric Marder Universe and Its Proper Teleparallel Homothetic Motions J. Bsi. Appl. i. Res. 4-5 4 4 TeRod Publiion IN 9-44 Journl of Bsi nd Applied ienifi Reserh www.erod.om Clindrill mmeri Mrder Universe nd Is Proper Teleprllel Homohei Moions Amjd Ali * Anwr Ali uhil Khn

More information

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso Sph3u Prcice Uni Te: Kinemic (Soluion) LoRuo Nme: Tuey, Ocober 3, 07 Ku: /45 pp: /0 T&I: / Com: Thi i copy of uni e from 008. Thi will be imilr o he uni e you will be wriing nex Mony. you cn ee here re

More information

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1 8. a For ep repone, inpu i u, U Y a U α α Y a α α Taking invere Laplae ranform a α e e / α / α A α 0 a δ 0 e / α a δ deal repone, α d Y i Gi U i δ Hene a α 0 a i For ramp repone, inpu i u, U Soluion anual

More information

Network Flow. Data Structures and Algorithms Andrei Bulatov

Network Flow. Data Structures and Algorithms Andrei Bulatov Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow

More information

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics) Mh Lr # In-l Workh Vor n Mri (Bi) h n o hi lr, o hol l o: r mri n or in Mh i mri prorm i mri mh oprion ol m o linr qion ing mri mh. Cring Mri Thr r rl o r mri. Th "Inr Mri" Wino (M) B K Poin Rr o

More information

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m PHYS : Soluions o Chper 3 Home Work. SSM REASONING The displcemen is ecor drwn from he iniil posiion o he finl posiion. The mgniude of he displcemen is he shores disnce beween he posiions. Noe h i is onl

More information

Bounding the Locality of Distributed Routing Algorithms

Bounding the Locality of Distributed Routing Algorithms Nonme mncrip No. (will e inered y he edior) Bonding he Locliy of Diried Roing Algorihm Proenji Boe Pz Crmi Sephne Drocher Received: de / Acceped: de Arc We exmine ond on he locliy of roing. A locl roing

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Sud. Univ. Beş-Bolyi Mh. 6(5, No. 3, 355 366 Hermie-Hdmrd-Fejér ype inequliies for convex funcions vi frcionl inegrls İmd İşcn Asrc. In his pper, firsly we hve eslished Hermie Hdmrd-Fejér inequliy for

More information

MATH4455 Module 10 Evens, Odds and Ends

MATH4455 Module 10 Evens, Odds and Ends MATH4455 Module 10 Even, Odd nd End Min Mth Conept: Prity, Ple Vlue Nottion, Enumertion, Story Prolem Auxiliry Ide: Tournment, Undireted grph I. The Mind-Reding Clultor Prolem. How doe the mind-reding

More information

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01 CS 1 Algorim nd Progrm Exm Soluion Jonn Turnr 11/8/01 B n nd oni, u ompl. 1. (10 poin). Conidr vrion of or p prolm wi mulipliiv o. In i form of prolm, lng of p i produ of dg lng, rr n um. Explin ow or

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information

Today s topics. CSE 421 Algorithms. Problem Reduction Examples. Problem Reduction. Undirected Network Flow. Bipartite Matching. Problem Reductions

Today s topics. CSE 421 Algorithms. Problem Reduction Examples. Problem Reduction. Undirected Network Flow. Bipartite Matching. Problem Reductions Today opic CSE Algorihm Richard Anderon Lecure Nework Flow Applicaion Prolem Reducion Undireced Flow o Flow Biparie Maching Dijoin Pah Prolem Circulaion Loweround conrain on flow Survey deign Prolem Reducion

More information