arxiv: v2 [cs.ds] 15 Oct 2015

Size: px
Start display at page:

Download "arxiv: v2 [cs.ds] 15 Oct 2015"

Transcription

1 O the Dsplcemet for Coverg Ut Itervl wth Rdomly Plced Sesors Rfł Kpelko,, Evgelos Krks b, rxv:57893v [csds] 5 Oct 5 Deprtmet of Computer Scece, Fculty of Fudmetl Problems of Techology, Wrocłw Uversty of Techology, Pold b School of Computer Scece, Crleto Uversty, Ottw, ON, Cd Abstrct Cosder moble sesors plced depedetly t rdom wth the uform dstrbuto o brrer represeted s the ut le segmet [, ] The sesors hve detcl sesg rdus, sy r Whe sesor s dsplced o the le dstce equl to d t cosumes eergy movemet whch s proportol to some fxed power > of the dstce d trveled The eergy cosumpto of system of sesors thus dsplced s defed s the sum of the eergy cosumptos for the dsplcemet of the dvdul sesors We focus o the problem of eergy effcet dsplcemet of the sesors so tht ther fl plcemet the sesor system esures coverge of the brrer d the eergy cosumed for the dsplcemet of the sesors to these fl postos s mmzed expectto I prtculr, we lyze the problem of dsplcg the sesors from ther tl postos so s to tt coverge of the ut tervl d derve trde-offs for ths dsplcemet s fucto of the sesor rge We obt severl tght bouds ths settg thus geerlzg severl of the results of [] to y power > Keywords: brrer, dsplcemet, dstce, rdom, sesors, Itroducto Oe of the most mportt problems sesor etworks s mmzg bttery cosumpto whe ccomplshg vrous tsks such s motorg evromet, trckg evets log brrer d commuctg I ths study, the evromet cossts of le segmet d for the motorg problem we re terested esurg coverge of the brrer the sese tht every pot the le segmet s wth the rge of sesor Correspodg uthor t: Deprtmet of Computer Scece, Fculty of Fudmetl Problems of Techology, Wrocłw Uversty of Techology, Wybrzeże Wyspńskego 7, 5-37 Wrocłw, Pold Tel: ; fx: Eml ddresses: rflkpelko@pwredupl Rfł Kpelko, krks@scscrletoc Evgelos Krks Reserch supported prt by NSERC Dscovery grt

2 We cosder the cse where the sesors re equpped wth omdrectol sesg tes of detcl rge r > Brrer coverge s ot gurteed sce the sesors hve bee plced tlly depedetly t rdom wth the uform dstrbuto o brrer To tt coverge of the le segmet t s requred to dsplce the sesors from ther orgl loctos to ew postos o the le whle t the sme tme tkg to ccout ther sesg rge r Further, for some fxed costt > f sesor s dsplced dstce d the eergy cosumed by ths sesor s cosdered to be proportol to d More geerlly, for set of sesors, f the th sesor s dsplced dstce d, for,,,, the the eergy cosumed by the whole system of sesors s d I ths pper we study the mmum totl or sum eergy cosumpto expectto the movemet of the sesors so s to tt coverge of the ut segmet whe the eergy cosumed per sesor s proportol to some fxed power of the dstce trveled Relted work There s extesve lterture bout re d brrer lso kow s permeter coverge by set of sesors eg, see [3, 5] The coverge problem for plr doms wth pre-exstg chor or destto pots ws troduced [] The determstc verso of the sesor dsplcemet problem o ler dom or tervl ws troduced [4] Severl optmzto vrts of the dsplcemet problem were cosdered The complexty of fdg lgorthm tht optmzes the dsplcemet depeds o the types of the sesors, the type of the dom, d 3 whether oe s mmzg the sum or mxmum of the sesor movemets For the ut tervl the problem of mmzg the sum s NP-complete f the sesors my hve dfferet rges but s polyoml tme whe ll the sesor rges re detcl [5] The problem of mmzg the mxmum s NP-complete f the rego cossts of two tervls[4] but s polyoml tme for sgle tervl eve whe the sesors my hve dfferet rges[3] Relted work o determstc lgorthms for mmzg the totl d mxmum movemet of sesors for brrer coverge of plr rego my be foud [] More mporttly, our work s closely relted to the work of [] where the uthors cosder the expected mmum totl dsplcemet for estblshg full coverge of ut tervl for sesors plced uformly t rdom Our lyss d problem sttemet geerlzes some of the work of [] from to ll expoets > Outle d results of the pper Our work geerlzes some of the work of [] to the more geerl settg whe the cost of movemet s proportol to fxed power of the dstce dsplcemet The overll orgzto of the pper s s follows I Secto we provde severl bsc combtorl fcts tht wll be used the sequel I Secto 3 we prove combtorlly how to obt tght bouds whe the rge of the sesors s r We show tht expected sum of dsplcemet to the power s! +O, + whes eve turl umber, d Θ, whes odd turl umber I Secto 4 we prove the occurrece of threshold whereby the expected mmum sum

3 of dsplcemets to the power s turl umber rems Θ + f provded tht r, where f > d f o 3/ I Secto 5 we study the more geerl verso of the sesors movemet to the power, where > d r > Ifr 6 we frst preset the Algorthm tht uses expected l O, totl movemet to power, where > Flly, Secto 6 provdes the coclusos Bsc fcts I ths secto we recll some kow fcts bout specl fuctos d specl umbers whch wll be useful the lyss the ext sectos The Euler Bet fucto see [4] Bc,d x c x d dx s defed for ll complex umbersc,d such src > drd > Moreover, for teger umberc,d we hve Bc,d c+d c c Let us defe fucto g c:d x x c x d o the tervl [,] We sy tht rdom vrble X c,d cocetrted o the tervl [,] hs the Bc,d dstrbuto wth prmetersc,d f t hs the probblty desty fucto fx Bc,d x c x d Hece, Pr[X c,d < t] Bc,d We wll use the followg ottos for the rsg fctorl [9] { k fork ++k fork, k t { fork k fork g c:d xdx 3 Let [ { k], k} be the Strlg umbers of the frst d secod kd respectvely, whch re defed for ll teger umbers such tht k The followg two equtos for Strlg umbers of the frst d secod kd re well kow see [9, detty 6] d [9, detty 63]: x m { } m x l, 4 l l 3

4 x m l [ ] m m l x l, 5 l Assume thtbbe costt depedet ofm The the followg Strlg umbers [ ] [ ] { } { } m m+b m m+b,, 6 m b m m b m re polyomls the vrbled of degreeb see [9] Let k be the Euler umbers, whch re defed for ll teger umbers such tht k The followg three dettes for Euler umbers re well kow see dettes64,643 d644 [9]: m l l m! m! { } m b m+b l m b l b l [ ] m b m+l m b l b l Let d, f N {} Notce tht see [9, detty 54] d d l d f d l l d++l d!d! d+! m, 7, 8 9 f +d+ d f+ We wll lso use Euler s Fte Dfferece Theorem see [8, detty ] Assume tht s turl umber Let f m dm N {} The { f m < f! f m 3 Tght boud for totl dsplcemet to the powerwhe r I ths secto we exted Theorem from [] for the dsplcemet to the power, where s turl umber Assume thtsesors wth rge re throw uformly d depedetly t rdom the ut tervl d move from ther curret locto to the chor loctot, for,, Notce tht the oly wy to tt the coverge s for the sesors to occupy the postos t, for,, We prove tht expected sum of dsplcemet to the powers! +O, whe + s eve turl umber, d Θ, whes odd turl umber We beg wth the followg lemm whch wll be helpful the proof of Theorem 4

5 Lemm Assume thts eve turl umber The! + + +O Proof Let {,,} Applyg equto A9, equto A d equto A6 we deduce tht + l l l + l l { } l l l l + l l l { } l l l l + + l + l l l l l { }[ ] l l + l+ l3 l + + l3+ Hece d l l 3 C + k l l 3 + C + + k + k l k l l { }[ ] l l + l +k+ l + k l + + l l l l { }[ ] l +l4 k + l4 +l 4 k + k + k +l 4 l 4 Sce l s the polyoml of vrble of degree l, { l +l 4 k} s the polyoml of vrble l of degree k l l 4 d [ +l 4 k+] + k s the 5

6 polyoml of vrble+ k of degreel 4 see A, we obt tht,c + k s the polyoml of vrble of degree less thek Applyg detty A4 for m, b k l 4 d detty A5 for m +l 4 k +, b l 4 we observe tht the coeffcet of the term k the polyomlsc + k equls d +,k k l4 l 4 k l 4! l4 l4 l 4! + k +l 4 Therefore, from equto A3 we hve d +,k k k! k k l4 + k +l 4 l 4 Applyg detty we deduce tht d +,! +! Hece from equto A6 we get C + k Puttg everythg together, we obt l 4 fk <! fk k k! +O + Ths completes the proof of Lemm + C + k 3 Tght boud for totl dsplcemet to the powerwhe r ds eve turl umber Theorem Let be eve turl umber Assume tht moble sesors re throw uformly d depedetly t rdom the ut tervl The expected sum 6

7 of dsplcemets to the power of ll sesors to move from ther curret locto to the chor loctot, for,,, respectvely s! +O + Proof Let X be the th order sttstc, e, the posto of the th sesor tervl [,] We kow tht the rdom vrble X hs the B, + dstrbuto For exmple see [] Assume tht s eve turl umber Let D be the expected dstce to the power betwee X d the th sesor chor posto, t, o the ut tervl, hece gve by: Now we defe D x t g : + xdx t x g : + xdx D, t x g : + xdx for {,,,} d {,,,} Observe tht D D, From the defto of Bet fucto d detty A we get D, + Hece pplyg Lemm we coclude tht D,! + Ths fshes the proof of Theorem +O 3 Tght boud for totl dsplcemet to the power whe r d s odd turl umber Theorem 3 Letbe odd turl umber Assume thtmoble sesors re throw uformly d depedetly t rdom the ut tervl The expected sum of dsplcemets to the powerof ll sesors to move from ther curret locto to chor loctot, for,,, respectvely sθ 7

8 Proof Let be odd turl umber Frstly, observe tht the result for follows from [[], Theorem ] Therefore, we my ssume tht 3 Let D be the expected dstce to the power betwee X d the th trget sesor posto, v, o the ut tervl, hece gve by: D t x g : + xdx D Frst we prove the upper boud We use dscrete Hölder equlty wth prmeters +, + d get D D D Next we use Hölder equlty for tegrls wth prmeters +, + d get t x g : + x dx t x + + g : + x dx, so + D + 4 Puttg together Theorem d equtos 3, 4 we deduce tht D + Θ + Θ + Next we prove the lower boud We use dscrete Hölder equlty wth prmeters,d get D D D Next we use Hölder equlty for tegrls wth prmeters v x g : + x dx v x g : + x dx 5, d get, 8

9 so D Puttg together Theorem d equtos 5, 6 we obt D D Θ Θ D 6 Ths fshes the proof of the lower booud d completes the proof of Theorem 3 4 A Threshold o the mmum dsplcemet I ths secto we prove the occurrece of threshold whereby the expected mmum sum of dsplcemets to power, where s turl umber, rems Θ provded tht r + f, wheref > df o 3/ Defto 4 Gve,r we deote bye r the expected mmum sum of dsplcemet to the powerwhere s turl umber of sesors wth rger Theorem 5 Assume thts turl umber Letr > be the rge of the sesors Ifr + f, wheref > df o 3/, thee r Θ Proof Let be turl umber Assume tht r +f, wheref > d f o 3/ Throughout the proof we use the fct thte Θ Frst we prove the upper boud E r O Ths s esy becuse we c dsplce the sesors to the chor postos, for,,, t totl dsplcemet cost of O Ths suffces f r sce ths cse the cotguous coverge s ssured Next we prove the lower boud E r Ω We would lke to kow how much we c reduce the sum of dsplcemets f we chge the rdus from + f to, where f > d f o 3/ Let b be the sequece such tht b b b, b r, b r db + b r, for,, LetX be the posto of the th sesor the tervl[,] It s suffcet to show tht E[ X b ] Ω 9

10 Let us recll tht, for,,, Usg the equlty for N we get X X b + b E[ X b ] + E[ X ] By Theorem, Theorem 3 we kow b 7 E[ X ] Θ 8 Assume tht b m +f + + f,, for,,, Let m+ be the smllest postve, such tht +f + + f > Clerly, f the th sesor occupes posto b, for,,,m, the the dstce betwee cosecutve sesors s equl to r Observe tht b b + +, for,,,m d mx,,, b f Hece, b + f Therefore, we coclude tht for ll sequecesb, such tht b b b, b r, b r db + b r, for,,, Puttg together 7, 8 d 9 we get b + f o E[ X b ] + Θ o Θ Ths s suffcet to complete the proof of Theorem Upper bouds for totl dsplcemet whe r > Now we study more geerl verso of the sesor movemet to power, where > Suppose tht sesors wth rdus r f re throw rdomly d depedetly wth the uform dstrbuto the ut tervl The questo s how to

11 estmte the totl expected movemet to the power for f >? If f > 6 we preset Algorthm tht uses expected O l, totl movemet to power, where > The correctess of the lgorthm s derved from Theorem 8 We beg wth Theorem whch dctes how to pply the results of Theorem d Theorem 3 to dsplcemets to the frctol power Theorem 6 Let > Assume tht moble sesors re throw uformly d depedetly t rdom the ut tervl The expected sum of dsplcemets to the power of ll sesors to move from ther curret locto to chor loctot, for,,, respectvely so Proof By Theorem d Theorem 3 we my ssume tht > d / N Let D be the expected dstce to the power betwee X d the th sesor posto, t, o the ut tervl, hece gve by: D t x g : + xdx The we use dscrete Hölder equlty wth prmeters, d get D D D Next we use Hölder equlty for tegrls wth prmeters, d get t x g : + x dx so t x g : + x D dx D Puttg together Theorem, Theorem 3 d equtos, we deduce tht D Ths fshes the proof of Theorem 6 Θ Θ Now we gve lemm whch dctes how to scle the results of Theorem 6 to tervls of rbtrry legth,

12 Lemm 7 Let > Assume tht m moble sesors re throw uformly d depedetly t rdom the tervl of legth x The sesors re to be moved to equdstt postos wth the tervl t dstce x/m from ech other The the totl expected movemet to the powerof the sesors so x m Proof Assume tht m sesors re the tervl[, x] The multply ther coordtes by /x From Theorem 6 the totl movemet to the power the ut tervl s O Now by multplyg ther coordtes byxwe get the desred result m Our upper boud o the totl sesor movemet to power s bsed o the Algorthm Algorthm Dsplcemet to the power whe >, p 9 4 +, A 3 4 +, x x s the rel soluto of the equto 3 such thtx 9 4 +lx 3 Requre: x moble sesors wth detcl sesg rdus r f, f > 6 plced uformly d depedetly t rdom o the tervl[, ] Esure: The fl postos of sesors to tt coverge of the tervl[, ] : Dvde the tervl to subtervls of legth pl ; pl sesors the : f there s subtervl wth fewer th 3 3: moves ll sesors to postos tht re equdstt; 4: else 5: ech subtervl choose Al sesors t rdom d move the chose sesors to equdstt posto so s to cover the subtervl; 6: ed f Theorem 8 Fx > Let f > 6 d x, where x s the soluto of the x equto 9 4 +lx 3 such tht x 3 Assume tht sesors of rdus r f re throw rdomly d depedetly wth uform dstrbuto o ut tervl The the totl expected movemet to powerof sesors requred to cover the tervl s O l Proof Assume tht > Let p da 3 4 +, x s the soluto of x the equto 9 4 +lx 3 such tht x 3 Frst of ll, observe tht pl > 3 for x We wll prove tht the totl expected movemet to power of Algorthm s O l There re two cses to cosder Cse : There exsts subtervl wth fewer th 3 sesors I ths cse pl the totl expected movemet to powerso by Theorem 6 Cse : All subtervls cot t lest 3 x x we deduce tht, Al 3 pl pl sesors From the equlty Hece t s possble to choose Al

13 sesors t rdom ech subtervl wth more th 3 the sequece Al 6 pl Applyg equlty x > x we see tht > Al pl for x pl sesors Let us cosder Observe tht pl 3, Al 4 for x 3 Puttg together Equto d Equto 3 we get Al f > pl Therefore, Al chose sesors re eough to tt the coverge By the depedece of the sesors postos, the Al chose sesors y gve subtervl re dstrbuted rdomly d depedetly wth uform dstrbuto over the subtervl of legth By Lemm 7 the totl expected movemet to power sde ech subtervl s pl O Al O pl l l Sce, there re pl subtervls, the totl expected movemet to power over ll subtervls must be O l It rems to cosder the probblty wth whch ech of these cses occurs The proof of the theorem wll be cosequece of the followg Clm Clm 9 Let p The probblty tht fewer th 3 pl + y subtervl s< Proof Clm 9 Frst of ll, from the equlty x x we get +l pl 3 pl sesors fll Hece, 3 pl pl +l 4 pl 3

14 The umber of sesors fllg subtervl s Beroull process wth probblty of success By Cheroff bouds, the probblty tht gve subtervl hs fewer th pl pl +l pl sesors s less the + l < Specfclly we use the Cheroff boud + m pl, δ tht oe hs fewer th +l Pr[X < δm] < e δ m/, pl pl As there re +l sesors occurs wth probblty less th the proof of Clm 9 pl pl + pl subtervls, the evet Ths d Equto 4 completes Usg Clm 9 we c upper boud the totl expected movemet to power s follows: O pl + whch proves Theorem 8 l O l, + pl + O 6 Cocluso I ths pper we studed the expected mmum totl or sum eergy cosumpto the movemet of sesors wth detcl rge whe the eergy cosumed per sesor s proportol to some fxed power of the dstce trveled We obted bouds o the expected mmum eergy cosummed depedg o the rge of the sesors A Appedx I ths Appedx we gve exct symptotc o the expected sum of dsplcemet to the power, whe s odd turl umber of ll sesors to move from ther curret rdom locto o the ut tervl to the chor locto We show tht the the expected sum of dsplcemet to the powers Γ + +O + 4 It s

15 worthwhle to meto tht, eve though there s the smple formul o the expected sum of dsplcemet to the power, whe s odd turl umber, the lyss of symptotc s techclly complcted Let us otce tht the proof we use severl tmes Eulers Fte Dfferece Theorem see Equto A6 A Prelmres I ths subsecto we recll some useful dettes volvg specl fucto d specl umbers tht wll be used through the Appedx The Euler Bet fucto see [4] Bc,d x c x d dx A s defed for ll complex umbersc,d such src > drd > Moreover, for teger umberc,d we hve Bc,d c+d c A c Let us defe fucto g c:d x x c x d o the tervl [,] We sy tht rdom vrble X c,d cocetrted o the tervl [,] hs the Bc,d dstrbuto wth prmetersc,d f t hs the probblty desty fucto fx Bc,d x c x d Hece Pr[X c,d < t] Bc,d t g c:d xdx We wll use the complete regulrzed Bet fucto see [4] Iz;c,d Bc,d z x c x d dx, wherec,d > d z Notce tht see [4, Idetty 87] Iz;c,d Iz;c,d Γc+d z c z d ΓcΓd A3 A4 A5 The Euler Gmm fuctoγz t z e t dt s defed forz > Moreover, we hveγ+!, whes turl umber Let d,f N {} The d f k f +d+ d f+, k f f + f+ + f c l l, wherec l re some costs depedet osee [9, Formul 678] l A6 A7 5

16 We wll use the followg boml detty see [8, Idetty 93] b π b b+ Γ f mod A8 +, b Notce tht, pplyg Formul A8 y mthemtcl softwre tht performs symbolc clculto we get expressos cofrmg Formul A8 We wll lso use the followg ottos for the rsg fctorl [9] { k fork ++k fork, k { fork k fork Let [ { k], k} be the Strlg umbers of the frst d secod kd respectvely, whch re defed for ll teger umbers such tht k The followg three equtos for Strlg umbers of the frst d secod kd re well kow see [9, Idetty 6], [9, Idetty 6] d [9, Idetty 63]: x m l { m l } x l, A9 x m l [ m l ]x l A x m l [ ] m m l x l, l A Assume tht b be s costt depedet of m The the followg Strlg umbers [ ] [ ] { } { } m m+b m m+b,, A m b m m b m re polyomls the vrbled of degreeb see [9] Let k be the Euler umbers, whch re defed for ll teger umbers such tht k The followg three dettes for Euler umbers re well kow see Idettes64,643 d644 [9]: m l l m! m! { } m b m+b l m b l b l [ ] m b m+l m b l b l m, A3, A4 A5 6

17 We wll use Euler s Fte Dfferece Theorem see [8, Idetty ] Assume tht s turl umber Let f m dm N {} The { f m < f A6! f m We wll lso use the followg forms of Strlg s formul see [6, pge 54], [9, Formul 94] πm m+ e m+ m+ < m! < πm m+ e m+ m, A7 m! πm m+ e m +O A8 m A Exct symptotc Ths secto s devoted to the proof of Theorem 4 We beg wth the followg sequeces of lemms whch wll be helpful the proof of Theorem 4 Lemm Assume thts odd turl umber The + O + Proof Let {,,} Applyg Equto A9, Equto A s well Equto A6 we deduce tht + l l l + l l { } l l l l + l l l { } l l l l + + l + l l l l l { }[ ] l l + l+ l3 l + + l3+ l l 3 l l 3 Hece + C + + k + k k 7

18 d C + k l l l { }[ ] l l + l +k+ l + k l + + l l l l { }[ ] l +l4 k + l4 +l 4 k + k + k +l 4 l 4 Sce l s the polyoml of vrble of degree l, { l +l 4 k} s the polyoml of vrble l of degreek l l 4 see A d [ +l 4 k+] + k s the polyoml of vrble+ k of degreel 4 see A, we obt tht, C + k s the polyoml of vrble of degree less thek Hece from Equto A6 we get C + k for k < Puttg everythg together, we obt + + k + k + + k O + k + Ths completes the proof of Lemm C + k C + k Lemm Assume thts odd turl umber Let t The A + A d let + t g : + xdx O + 8

19 Proof Observe tht A + l,l l,l l l Applyg Equto A d Equto A we deduce tht + l 5 l 3 l 5 l5 l5 + l5 [ ] l5 l6 l 5 l 6 l 5 l 6 [ ] l3 + l3 l 3 l 3 l5 [ ] l5 l6 l 5 l 6 l 5 l 6 [ ] l3 l3 l3 l4 l4 l 3 l 4 l 4 Therefore, the coeffcet of the term l l the polyoml + equls l,l l 3+l 4l l5 [ ] l 5 l 6 l 5+l 6l [ ] l3 l3 l4 l 3 l 4 Sce [ ] l 6 s the polyoml of vrble of degree l6, l 5 s the polyoml of vrble of degreel 5, [ ] l 3 s the polyoml of vrble of degreel3 see A d l 3 l 4 s the polyoml of vrble l3 of degree l 4, we obt tht, l,l s the polyoml of vrble of degree l + l Hece from Equto A6 we get l,l for l +l < + 9

20 Therefore A + l,l, + l+l l,l l l O the other hd, from Equto A3 we deduce tht t g : + xdx Pr[X : + < t ] < A9 A Puttg together Equto A9, Equto A d Idetty A7 for k d f l we hve Therefore A Ths completes the proof of Lemm l l+ l + +O l t g : + xdx O + Lemm Assume thts odd turl umber Let t d let The B B + q +p + k q,p, q +p +k k+ + + whereb l,l re some costts depedet o, d B p + 3 π, 3 + t k b q,p q p, A b q,p Γ + + A Proof Frst of ll, we dscuss the proof of Equto A Defe +k C, k+ t k + Observe tht C, + k + + q,p, q,p q p,

21 where q,p re some costts depedet o, O the other hd C, + + k Applyg Equto A d Equto A we deduce tht k k k + k k k + [ [ k k ] k q k q q q3 ] q3 + q3 q 3 [ k ] q k q q [ ] q3 q3 q3 q4 q4 q 3 q q 4 4 q 3 Therefore, the coeffcet of the term q the polyoml k k + equls [ ][ ] c k k q3 q q3 q4 A3 k q q 3 q 4 q +q 3+q 4q Applyg Equto A d Equto A we deduce tht +k + k +k [ k ] p + k p k p p +k [ k ] p k p p p3 k p p 3 p3 k p Therefore, the coeffcet of the term p the polyoml +k + k equls d k p p +p 3p [ k k p ] k p p 3 p 3 p p3 A4 Hece, the coeffcet of the term l p the polyoml k k k + +k + k

22 equls Notce tht q,p k q,p c k q d k p A5 Observe tht [ ] k k q s the polyoml of vrblek of degreeq see A, [ s the polyoml of vrble of degree q 3 d q 3 q 4 s the polyoml of vrble q 3 of degree q 4 Therefore c k q s the polyoml of vrble of degree less th q Observe tht [ ] k k p s the polyoml of vrble k of degreep see A d k p p 3 s the polyoml of vrble k of degreep3 Therefore, d k q s the polyoml of vrble of degree less th p Applyg ths d Idetty A7 we coclude tht q,p s the polyoml of vrble of degree less thq +p + Therefore from Equto A6 d Equto A5 we deduce tht Let Therefore Hece B + q,p for q +p < b q,p + + q,p b q,p for q +p < q,p, q +p Ths s eough to prove the frst prt of Lemm Now we prove Equto A Let us recll tht d q,p b q,p k c k q d k p + q,p q 3 ] A6 b q,q q p see Equto A3 d Equto A4 for the defto ofc k q dd k p Applyg Idetty A5 form k,b q d Idetty A5 form,b q 3

23 we observe tht the coeffcet of the term k q q3 the polyoml c k q equls A q,q 3 q q3 q3 q! q 3! Therefore, from Equto A3 we hve A q,q 3 q3 q! q q! q Applyg Idetty A5 for m k, b p we observe tht the coeffcet of the term k p k p3 p3 k the polyomlc q equls B p,p 3 p p! p 3! p Therefore, from Equto A3 we hve B p,p 3 p p! p p 3! Hece c k q A q,q 3 k q q3 + l,l k l l q +q 3q l +l <q k q q! + l,l k l l, l +l <q where l,l re some costs depedet ok, d k p B p,p 3 k p k p3 p +p 3p k p3 + A7 b l3,l 4 k l3 l4 l +l <p p k p! + b l3,l 4 k l3 l4, l 3+l 4<p A8 where b l3,l 4 re some costs depedet o k, Puttg together Formul A7, Formul A8, Idetty A7 forf l df l 3 s well Idetty A6 we obt + c k q d k p k + k k q k q! p k p! 3

24 Applyg ths we get B p + 3, 3 b q,p q +p q +p k B p + 3, 3 + k q q! q +p k + k B p + 3, 3 c k q d k p p k p! A9 Usg the defto of Euler Bet fucto see A forc p + 3, d 3 we hve B p + 3, 3 q +p Observe tht q k q! k x / x p+/ q +p k! q k q! k x / x / x p k p! p k p! dx k x x / x / k +k! x k +k k +k x x x x + k x wherec l5,l 6 re some costs dpedet o,k + l 3+l 4< + k + k x A3 c l5,l 6 l3 k l4, dx dx 4

25 Therefore, from Equto A7 forf l 4 d Idetty A6 we hve Notce tht + x x k k +k + x k k +k k x + k x k +k A3 b b b k b b Therefore, from Equto A7 for f b d Idetty A8 we hve + k +k k π +! Γ + + whered l7 re some costs dpedet o Applyg ths d Idetty A6 we get q +p k l 7< d l7 l7 + k +k π!! Γ A3 + Puttg together Formuls A9, A3, A3, A3 d the defto of Euler Bet fucto see A forc +,d + we deduce tht B p + 3 π, 3 b q,p! Γ +B +, + Flly, pplyg the bsc dettybc,d ΓcΓd Γc+d for c d dγ+ +! we get q +p Ths fshes the proof of Lemm B p + 3 π, 3 b q,p Γ/+ / +, Lemm 3 Let c d let t The t + t +c 3/ B c+ 3 π, 3 +O A33 5

26 Before provg Lemm 3, let us otce tht there s some terest reserch commuty for fdg the symptotcs of the sum smlr to A33 Kløve [] studed the verge worst cse probblty of udetected error for ler codes of legthd dmeso k over lphbet of sze q d lyzed the followg sum I [6] the uthor obted symptotcs expso of the more geerl sums k, for k The techques used the symptotc lyss belogs to the lytcl lyss of lgorthms Lter Hwg [] derved uform symptotc expressos of some Abel sums pperg some problems codg theory I [] the uthors cosder the expected mxmum totl e, sum of movemets of detcl sesors plced uformly t rdom ut tervl so s to tt complete coverge of the ut tervl[, ] d elemetry proved tht t + t Θ, where t I the proof of Lemm 3 we lso pply elemetry techques d obt the exct symptotc Proof Fxc LetE + +c We + dvde the sum to four prts: E E + + E + + E +E A34 We pproxmte the four prts seprtely It s esy to see tht E Θ For the frst d thrd term, we use Strlg s formul A7 form,m dm, s well s Iequltese < e,e > to deduce tht E e + π +c +c + Applyg the bsc equlty + x x < e, whex forx we hve Therefore E 3e 3 3 3e π +c π c E + + E O c O Hece the frst, thrd d fourth term cotrbuteo d the symptotcs depeds o the secod term For the secod term + we use Strlg s formul A8 6

27 form, m dm to deduce tht +c +c +O π +O +O +c +O π Hece E +c +c π + + +O Now we pply the pproxmtosl + x x + Ox, e x + Ox d get +c + + +O Therefore E +c +O π Usg the equlty +c +c +c +c +c we get +c + +c O + Therefore, we c dd the terms bck, so we hve + E E +O +O π +c The remg sum we pproxmte wth tegrl Hece +c +c +O x x +c dx+, wth mx x<+ fx f see [7, Pge 79] Observe [ tht, the ] fuctofx x +c x s mootoe cresg over the tervl, +c +c [ ] d mootoe decresg over the tervl +c +c, Hece the error term telescopes o the tervl, +c +c [ ] [ ] d telescopes o the tervl +c +c, 7

28 Therefore O +c Notce tht see Equto A x x +c dx +c x x +c dx +c B c+ 3, 3 Puttg ll together we deduce tht the secod term cotrbutes + E π +O +c 3 B c+ 3 π, 3 +O +c B c+ 3, 3 +O +c +O Ths esly completes the proof of Lemm 3 Theorem 4 Let be odd turl umber Assume tht moble sesors re throw uformly d depedetly t rdom the ut tervl The expected sum of dsplcemets to the power of ll sesors to move from ther curret locto to the loctot, for,,, respectvely s Γ + + +O Proof Assume tht s odd turl umber Let E be the expected dstce to the powerbetweex d the th sesor posto,t, o the ut tervl, hece gve by: E t x g : + xdx To prove the tght boud observe tht where E E, +E,, A35 E, E, x t g : + xdx t t x g : + xdx The proof of Theorem 4 proceeds log the followg steps We gve the estmto of the sum E, see Equto A36 The we wrte E, s the sum of E,, d E,, We gve the estmto of the sum E,, see Equto A38 The we wrte E,, s the sum of E,,, d G,,, We estmte 8

29 E,,, see Equto A4 d E,,, see Equto A4 Flly from Equtos A35 A4 we deduce the tght boud Frstly we estmte E, We show tht E, O A36 + Now we defe E,, t x g : + xdx for {,,,} d {,,,} Observe tht E, E,, The defto of Bet fucto d Idetty A mply tht E,, + Applyg Lemm to the sequecee,, we coclude tht E, O + Ths fshes the proof of Equto A36 Now we estmtee, Let E, t, t x g : + xdx for {,,,} d {,,,} Observe tht E, E,, O the other hd, Equto A d Equto A4 mply tht + t + x g : + xdx It,+, + + Hece from Equto A5 we get It,+, + It,, k 9 +k t + t +k k +

30 Therefore where d E,,, LetE,, E,,, E,, E,,, +E,,,, t t x x dx + t Usg Lemm we get Observe tht E,, Let k +k k+ + + E,,, de,, E,,, E,,, E, E,, E,, t + t + + t + t +k E,,, Hece +E,, A37 O A k t + t + q, p, q +p > + +k k+ + + b q,p q p, t + t + q, p, q +p Applyg Lemm we deduce tht E,, E,,, + b q,p q p, + t k +E,,, A39 3

31 From Lemm 3 forc p we hve E,,, O, A4 From Equto A Lemm d Lemm 3 forc p we deduce tht E,,, Γ + + +O A4 Flly, puttg together Equtos A35 A4 fshes the proof of Theorem 4 A3 Cocluso I ths Appedx, we derved the exct symptotc of the expected sum of dsplcemet to the power, whes odd turl umber of ll sesors to move from ther curret rdom locto o the ut tervl to the chor locto Refereces [] B Arold, N Blkrsh, d H Ngr A frst course order sttstcs, volume 54 SIAM, 99 [] B Bhttchry, M Burmester, Y Hu, E Krks, Q Sh, d A Wese Optml movemet of moble sesors for brrer coverge of plr rego TCS, 45: , 9 [3] D Che, Y Gu, J L, d H Wg Algorthms o mmzg the mxmum sesor movemet for brrer coverge of ler dom Algorthm Theory SWAT, pges 77 88, [4] J Czyzowcz, E Krks, D Krzc, I Lmbdrs, L Nry, J Optry, L Stcho, J Urrut, d M Yzd O mmzg the mxmum sesor movemet for brrer coverge of le segmet ADHOCNOW, pges 94, 9 [5] J Czyzowcz, E Krks, D Krzc, I Lmbdrs, L Nry, J Optry, L Stcho, J Urrut, d M Yzd O mmzg the sum of sesor movemets for brrer coverge of le segmet ADHOCNOW, pges 9 4, [6] W Feller A Itroducto to Probblty Theory d ts Applctos, volume Joh Wley, NY, 968 [7] P Flolet d B Sedgewck A Itroducto to the Alyss of Algorthms Addso-Wesley, 995 [8] H Gould d J Qutce Tbles of Combtorl Idettes, volume 4 gould/vol4pdf 3

32 [9] R Grhm, D Kuth, d O Ptshk Cocrete Mthemtcs A Foudto for Computer Scece Addso-Wesley, Redg, MA, 994 [] H Hwg Uform symptotcs of some bel sums rsg codg theory Theoretcl Computer Scece, 63:45 58, [] T Kløve Bouds o the worst cse probblty of udetected error IEEE Trsctos o Iformto Theory, 4:98 3, 995 [] E Krks, D Krzc, O Morles-Poce, L Nry, J Optry, d S Shede Expected sum d mxmum of dsplcemet of rdom sesors for coverge of dom I Proceedgs of the 5th ACM symposum o Prllelsm lgorthms d rchtectures, pges 73 8 ACM, 3 [3] S Kumr, T H L, d A Aror Brrer coverge wth wreless sesors I Proceedgs of the th ul Itertol Coferece o Moble Computg d Networkg, pges ACM, 5 [4] NIST Dgtl Lbrry of Mthemtcl Fuctos [5] A Spull, C Westphl, B Lu, d J Wg Brrer coverge of le-bsed deployed wreless sesor etworks I INFOCOM, pges 7 35 IEEE, 9 [6] W Szpkowsk O symptotcs of cert sums rsg codd theory IEEE Trsctos o Iformto Theory, 46:87 9, 995 3

arxiv: v1 [cs.ds] 31 Jul 2015

arxiv: v1 [cs.ds] 31 Jul 2015 O the Dspcemet for Coverg Ut Iterv wth Rdomy Pced Sesors Rfł Kpeko,, Evgeos Krks b, rxv:57893v [csds] 3 Ju 5 Deprtmet of Computer Scece, Fcuty of Fudmet Probems of Techoogy, Wrocłw Uversty of Techoogy,

More information

arxiv: v3 [cs.ds] 22 Jun 2016

arxiv: v3 [cs.ds] 22 Jun 2016 O the spcemet for Coverg Ut Iterv wth Rdomy Pced Sesors Rfł Kpeko Evgeos Krks b eprtmet of Computer Scece Fcuty of Fudmet Probems of Techoogy Wrocłw Uversty of Techoogy Pod b Schoo of Computer Scece Creto

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Random variables and sampling theory

Random variables and sampling theory Revew Rdom vrbles d smplg theory [Note: Beg your study of ths chpter by redg the Overvew secto below. The red the correspodg chpter the textbook, vew the correspodg sldeshows o the webste, d do the strred

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE G Tstsshvl DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE (Vol) 008 September DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE GSh Tstsshvl e-ml: gurm@mdvoru 69004 Vldvosto Rdo str 7 sttute for Appled

More information

Differential Method of Thin Layer for Retaining Wall Active Earth Pressure and Its Distribution under Seismic Condition Li-Min XU, Yong SUN

Differential Method of Thin Layer for Retaining Wall Active Earth Pressure and Its Distribution under Seismic Condition Li-Min XU, Yong SUN Itertol Coferece o Mechcs d Cvl Egeerg (ICMCE 014) Dfferetl Method of Th Lyer for Retg Wll Actve Erth Pressure d Its Dstrbuto uder Sesmc Codto L-M XU, Yog SUN Key Lbortory of Krst Evromet d Geologcl Hzrd

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Edted 05 (verso ) Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

#A27 INTEGERS 13 (2013) SOME WEIGHTED SUMS OF PRODUCTS OF LUCAS SEQUENCES

#A27 INTEGERS 13 (2013) SOME WEIGHTED SUMS OF PRODUCTS OF LUCAS SEQUENCES #A27 INTEGERS 3 (203) SOME WEIGHTED SUMS OF PRODUCTS OF LUCAS SEQUENCES Emrah Kılıç Mathematcs Departmet, TOBB Uversty of Ecoomcs ad Techology, Akara, Turkey eklc@etu.edu.tr Neşe Ömür Mathematcs Departmet,

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Xidian University Liu Congfeng Page 1 of 22

Xidian University Liu Congfeng Page 1 of 22 Rdom Sgl rocessg Chpter Expermets d robblty Chpter Expermets d robblty Cotets Expermets d robblty.... Defto of Expermet..... The Smple Spce..... The Borel Feld...3..3 The robblty Mesure...3. Combed Expermets...5..

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core Topc : Algebr Topc

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

Probabilistic approach to the distribution of primes and to the proof of Legendre and Elliott-Halberstam conjectures VICTOR VOLFSON

Probabilistic approach to the distribution of primes and to the proof of Legendre and Elliott-Halberstam conjectures VICTOR VOLFSON Probblstc pproch to the dstrbuto of prmes d to the proof of Legedre d Ellott-Hlberstm cojectures VICTOR VOLFSON ABSTRACT. Probblstc models for the dstrbuto of prmes the turl umbers re costructed the rtcle.

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS

SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS Bullet of Mthemtcl Alyss d Applctos ISSN: 181-191, URL: http://www.mth.org Volume 4 Issue 4 01, Pges 76-90. SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS

More information

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002) Nevlle Robbs Mathematcs Departmet, Sa Fracsco State Uversty, Sa Fracsco, CA 943 (Submtted August -Fal Revso December ) INTRODUCTION The Lucas tragle s a fte tragular array of atural umbers that s a varat

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

Itō Calculus (An Abridged Overview)

Itō Calculus (An Abridged Overview) Itō Clculus (A Abrdged Overvew) Arturo Ferdez Uversty of Clfor, Berkeley Sttstcs 157: Topcs I Stochstc Processes Semr Aprl 14, 211 1 Itroducto I my prevous set of otes, I troduced the cocept of Stochstc

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Abstrct Pell equto s mportt reserch object elemetry umber theory of defte equto ts form s smple, but t s rch ture My umber theory problems ce trsforme

Abstrct Pell equto s mportt reserch object elemetry umber theory of defte equto ts form s smple, but t s rch ture My umber theory problems ce trsforme The solvblty of egtve Pell equto Jq Wg, Lde C Metor: Xgxue J Bejg Ntol Dy School No66 Yuqu Rod Hd Dst Bejg Ch PC December 8, 013 1 / 4 Pge - 38 Abstrct Pell equto s mportt reserch object elemetry umber

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET Abstract. The Permaet versus Determat problem s the followg: Gve a matrx X of determates over a feld of characterstc dfferet from

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

The Occupancy and Coupon Collector problems

The Occupancy and Coupon Collector problems Chapter 4 The Occupacy ad Coupo Collector problems By Sarel Har-Peled, Jauary 9, 08 4 Prelmares [ Defto 4 Varace ad Stadard Devato For a radom varable X, let V E [ X [ µ X deote the varace of X, where

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

EFFECT OF CRACK PARAMETERS ON FREE VIBRATIONS OF THE BERNOULLI-EULER BEAM

EFFECT OF CRACK PARAMETERS ON FREE VIBRATIONS OF THE BERNOULLI-EULER BEAM Jourl of Appled themtcs d Computtol echcs 05 () 67-7 www.mcm.pcz.pl p-in 99-9965 DOI: 0.75/jmcm.05..7 e-in 353-0588 EFFECT OF CRACK PARAETER ON FREE VIBRATION OF THE BERNOULLI-EULER BEA Izbel Zmorsk Dwd

More information

Metric Spaces: Basic Properties and Examples

Metric Spaces: Basic Properties and Examples 1 Metrc Spces: Bsc Propertes d Exmples 1.1 NTODUCTON Metrc spce s dspesble termedte course of evoluto of the geerl topologcl spces. Metrc spces re geerlstos of Euclde spce wth ts vector spce structure

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Modeling uncertainty using probabilities

Modeling uncertainty using probabilities S 1571 Itroduto to I Leture 23 Modelg uertty usg probbltes Mlos Huskreht mlos@s.ptt.edu 5329 Seott Squre dmstrto Fl exm: Deember 11 2006 12:00-1:50pm 5129 Seott Squre Uertty To mke dgost feree possble

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS ZETA REGULARIZATION METOD APPLIED TO TE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EU (Uversty of Bsque coutry) I Sold Stte Physcs Addres: Prctctes

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test Fal verso The teral structure of atural umbers oe method for the defto of large prme umbers ad a factorzato test Emmaul Maousos APM Isttute for the Advacemet of Physcs ad Mathematcs 3 Poulou str. 53 Athes

More information

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN Euroe Jour of Mthemtcs d omuter Scece Vo. No. 6 ISSN 59-995 ISSN 59-995 ON AN INVESTIGATION O THE MATRIX O THE SEOND PARTIA DERIVATIVE IN ONE EONOMI DYNAMIS MODE S. I. Hmdov Bu Stte Uverst ABSTRAT The

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information