Figure 1. Jaw RMS target-tracker difference for a.9hz sinusoidal target.

Size: px
Start display at page:

Download "Figure 1. Jaw RMS target-tracker difference for a.9hz sinusoidal target."

Transcription

1 Approaches o Bayesian Smooh Unimodal Regression George Woodworh Dec 3, 999 (Draf - please send commens o george-woodworh@uiowa.edu). Background Speech Ariculaion Daa The daa in Figure were obained by asking 5 subecs ranging in age from 8 o 73 years o rack, using aw movemens alone, a do moving sinusoidally in one dimension a.6 Hz on a video monior. Their aw movemens were capured elecronically by means of srain guages and ranslaed ino he moion of a cursor which was o rack (follow) he moving do. Fideliy of racking was measured in several ways, including TTD, he RMS difference beween arge and racker shown in Figure. Low values of TTD indicae ha he subec has high conrol of he speech ariculaor ((lips, aw, or voice). The invesigaors believed abiliy o conrol speech ariculaors o be unimodal in age, reaching a broad opimum in early o middle adulhood. Hence, hey wished o fi unimodal regressions o such daa. The purpose was o esablish agenorms agains which o compare he performance of neurologically compromised individuals. Targe-Tracker Difference Age Figure. Jaw RMS arge-racker difference for a.9hz sinusoidal arge.

2 Unimodal Regression Unimodal regression is a ype of order resriced inference (ORI). In he mos common formulaion of ORI, y, a px vecor of homoskedasic, independen, normally disribued random variables, has mean vecor µ which is know a priori o lie in a cone C. I.e. if µ and ν are in C hen µa νb is also in C for any non-negaive scalars a and b. The se of unimodal vecors is no a cone unless he posiion of he mode is known and herefore he mos powerful ools of ORI are no available in his case. To work around his difficuly, Frisen (986), suggesed esimaing µ for all possible posiions of he mode and selecing he mode wih he smalles residual sum of squares. He suggesed ha when a smooh esimae is required he iniial esimae could be smoohed wih a unimodal, non-negaive kernel, which preserves unimodaliy under convoluion. Convex funcions are eiher unimodal or monoone and lie in a cone; consequenly, he problem of covex (or concave) regression has received more aenion. However, convexiy (or concaviy) is considerably more resricive han unimodaliy. In his paper, I propose a Bayesian approach o smooh unimodal regression.. Bayesian, Smooh, Unimodal Regression Le y, n, be independen observaions from n subecs. Le x,!, xn be values of a covariae, e.g. age. y is normally disribued wih mean ( x ) µ and precision τ. The mean funcion µ () is assumed a priori o be smooh; i.e., i has a coninuous second derivaive. Le,!, p, p n, be he disinc covariae values. Sufficien saisics are n, y, and ss = ( y y ), and he log likelihood funcion is i i i i x= i p n τ ( ( )) l( µτ, ) = ln( τ ) ni yi µ i ssi (.) i= Bayesian analysis requires he specificaion of a prior disribuion for τ > and a prior condiional disribuion for µ () τ over he space of smooh, unimodal funcions (or some subse of ha space).

3 Ses of Smooh, Unimodal Funcions Le u ( ) be a smooh unimodal funcion over he inerval [,]. If he mode is an endpoin, hen u () is monoone, oherwise here will be an inerior mode u = u( ) a all poins in he modal inerval. If u is sricly unimodal, hen = =. Define Clearly () ( ) m ( ) = m sign( ) u u ( ) (.) m is non-decreasing and is smooh for [, ], and has a leas one coninuous derivaive a and. Thus if m() is any smooh, monoone funcion, hen he funcion v () u ( m m ()) = (.3) is smooh and unimodal; consequenly, funcions of form (.3) are a subse of smooh, unimodal funcions. An example of a smooh, unimodal funcion which canno be expressed his way is v () 3 =. Represenaion (.3) reduces he problem o esimaion of a smooh monoone funcion, which has been exensively invesigaed. Ramsay (998) proved ha any smooh monoone funcion has he represenaion s m( ) c c exp( w( u) du) ds =, (.4) where wu ( ) is any square inegrable funcion. He proposed a penalized maximum likelihood esimaion based on he likelihood funcion, n λ i i i= l( βτ,, w) = τ ( y β βm( )) w ( ) d (.5) The Bayesian inerpreaion of he penaly is ha w=dw, where W is a Wiener process wih precision λ. Combining (.3) and (.4), I propose he prior specificaion, s.5 u ( ) = u u u exp( λ dwu ( )) ds where W () is a sandard Wiener process., (.6)

4 .5 The smooh monoone funcion m( ) exp( dw ( u)) ds has he nonlinear sae space represenaion, where ( ) i i λ s = evaluaed a he poins,!, p m = m m e i i i m = m e i i u, v, i p, are independen random vecors defined by, vi i i i ui, (.7) i.5 ui = ln exp( λ W( s)) ds i. (.8) v = W( ) W( ) Alhough his approach is promising, is implemenaion requires a good approximaion o he oin disribuion of ( u v ),. For ha reason, I propose a second approach using b-splines. i i 3. B-spline represenaion of a smooh unimodal funcion. The normalized cubic b-spline basis funcions are smooh b (),!, b () wih knos a T,!, Tk have he propery ha he funcion K = K v () = vb(), (3.) has no more srong sign changes han does he finie weigh sequence v,!, vk (Schumaker98, Theorem 4.76). Since he basis funcions sum o one for all, his implies ha if he finie series is v,!, v K is unimodal, hen he smooh funcion v () is eiher unimodal or monoone. Thus funcions of he form (3.) wih unimodal weigh vecors v,!, vk are a subse of smooh monoone funcions. For a Bayesian analysis, he daa precision, τ, can be given a conugae (gamma) prior h( τ ) The problem is o specify a prior disribuion g( v τ ) for he weighs v,!, vk over he se of unimodal vecors. Once he priors are specified, he log poserior disribuion, up o an addiive funcion of he daa, is, n ( βτ,, ) = ( i β β ( i)) ( ) ( τ) i= l v τ y u g v h, (3.)

5 where K u () = vb() (3.3) = To specify he prior disribuion of v,!, vk, noe ha he vecor v,!, vk is unimodal if and only if i can be expressed in he form = * ( * ), where v v m m m m " m K is non-decreasing. There are several possibiliies for specifying a prior disribuion over he space of monoone vecors; order saisics of independen and idenically disribued random variables, cumulaive sums of independen, non-negaive random variables, ec. Informal invesigaion suggess ha if he prior is fairly diffuse, he exac specificaion is no criical; however, his poin requires furher work. Figure shows he poserior mean unimodal b-spline curve wih knos a 6,4,3,...,8. Daa precision was given a diffuse gamma prior wih mean 5 and shape parameer.5, which means ha he residual sandard deviaion had prior median. and wih prior probabiliy.95 was beween.6 and 4.5. The prior disribuion of he unimodal weighs was specified by, v = v ( v m ), m = z " z, (3.4).5 * * where z,!, z K, are independen, normally disribued random variables wih zero mean and precision., and v * has a Normal disribuion wih mean and precision. runcaed a zero. The poserior mean is shown in Figure ; he poserior disribuion of he residual sandard deviaion had mean.6 and 95% poserior credible inerval.48 o.8. The poserior disribuion was no sensiive o he hyperparameers (he mean and shape of he gamma disribuion of τ, he precision of z,!, z K, and he mean and precision of v * ). Compuaions were carried ou via Markov chain Mone-Carlo (Gelman, e al., 996; Gilks, e al. 996) using WinBUGS. (Spiegelhaler, e al., 999).

6 Targe-Tracker Difference Age Figure. Unimodal b-spline fi. References Frisen, M. "Unimodal Regression," The Saisician, 35, , 986. Ramsey, J.O. "Esimaing Smooh Monoone Funcions," J.R.Saisi.Soc. B, 6, Par, , 998 Schumaker, L.L. Spline Funcions: Basic Theory, New York, John Wiley & Sons, 98. Gelman A. and Rubin DB. Markov chain Mone Carlo mehods in biosaisics. Saisical Mehods in Medical Research 996; 5: Gilks, W.R., Richardson, S., and Spiegelhaler, D.J. Markov Chain Mone Carlo in Pracice, London, Chapman and Hall, 996. Spiegelhaler DJ, Thomas A, Bes NG. WinBUGS Version. User Manual. MRC Biosaisics Uni, Cambridge, UK, 999.

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data Chaper 2 Models, Censoring, and Likelihood for Failure-Time Daa William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Air Traffic Forecast Empirical Research Based on the MCMC Method

Air Traffic Forecast Empirical Research Based on the MCMC Method Compuer and Informaion Science; Vol. 5, No. 5; 0 ISSN 93-8989 E-ISSN 93-8997 Published by Canadian Cener of Science and Educaion Air Traffic Forecas Empirical Research Based on he MCMC Mehod Jian-bo Wang,

More information

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits DOI: 0.545/mjis.07.5009 Exponenial Weighed Moving Average (EWMA) Char Under The Assumpion of Moderaeness And Is 3 Conrol Limis KALPESH S TAILOR Assisan Professor, Deparmen of Saisics, M. K. Bhavnagar Universiy,

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE Topics MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 2-6 3. FUNCTION OF A RANDOM VARIABLE 3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE 3.3 EXPECTATION AND MOMENTS

More information

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests Ouline Ouline Hypohesis Tes wihin he Maximum Likelihood Framework There are hree main frequenis approaches o inference wihin he Maximum Likelihood framework: he Wald es, he Likelihood Raio es and he Lagrange

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T Smoohing Consan process Separae signal & noise Smooh he daa: Backward smooher: A an give, replace he observaion b a combinaion of observaions a & before Simple smooher : replace he curren observaion wih

More information

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED 0.1 MAXIMUM LIKELIHOOD ESTIMATIO EXPLAIED Maximum likelihood esimaion is a bes-fi saisical mehod for he esimaion of he values of he parameers of a sysem, based on a se of observaions of a random variable

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1 Chaper 5 Heerocedasic Models Inroducion o ime series (2008) 1 Chaper 5. Conens. 5.1. The ARCH model. 5.2. The GARCH model. 5.3. The exponenial GARCH model. 5.4. The CHARMA model. 5.5. Random coefficien

More information

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN

STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN Inernaional Journal of Applied Economerics and Quaniaive Sudies. Vol.1-3(004) STRUCTURAL CHANGE IN TIME SERIES OF THE EXCHANGE RATES BETWEEN YEN-DOLLAR AND YEN-EURO IN 001-004 OBARA, Takashi * Absrac The

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

Chapter 4. Location-Scale-Based Parametric Distributions. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Chapter 4. Location-Scale-Based Parametric Distributions. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University Chaper 4 Locaion-Scale-Based Parameric Disribuions William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based on he auhors

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu)

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu) CH Sean Han QF, NTHU, Taiwan BFS2010 (Join work wih T.-Y. Chen and W.-H. Liu) Risk Managemen in Pracice: Value a Risk (VaR) / Condiional Value a Risk (CVaR) Volailiy Esimaion: Correced Fourier Transform

More information

Using the Kalman filter Extended Kalman filter

Using the Kalman filter Extended Kalman filter Using he Kalman filer Eended Kalman filer Doz. G. Bleser Prof. Sricker Compuer Vision: Objec and People Tracking SA- Ouline Recap: Kalman filer algorihm Using Kalman filers Eended Kalman filer algorihm

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Reliability of Technical Systems

Reliability of Technical Systems eliabiliy of Technical Sysems Main Topics Inroducion, Key erms, framing he problem eliabiliy parameers: Failure ae, Failure Probabiliy, Availabiliy, ec. Some imporan reliabiliy disribuions Componen reliabiliy

More information

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif Chaper Kalman Filers. Inroducion We describe Bayesian Learning for sequenial esimaion of parameers (eg. means, AR coeciens). The updae procedures are known as Kalman Filers. We show how Dynamic Linear

More information

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis Speaker Adapaion Techniques For Coninuous Speech Using Medium and Small Adapaion Daa Ses Consaninos Boulis Ouline of he Presenaion Inroducion o he speaker adapaion problem Maximum Likelihood Sochasic Transformaions

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

Solutions to Odd Number Exercises in Chapter 6

Solutions to Odd Number Exercises in Chapter 6 1 Soluions o Odd Number Exercises in 6.1 R y eˆ 1.7151 y 6.3 From eˆ ( T K) ˆ R 1 1 SST SST SST (1 R ) 55.36(1.7911) we have, ˆ 6.414 T K ( ) 6.5 y ye ye y e 1 1 Consider he erms e and xe b b x e y e b

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering Inroducion o Arificial Inelligence V22.0472-001 Fall 2009 Lecure 18: aricle & Kalman Filering Announcemens Final exam will be a 7pm on Wednesday December 14 h Dae of las class 1.5 hrs long I won ask anyhing

More information

A Shooting Method for A Node Generation Algorithm

A Shooting Method for A Node Generation Algorithm A Shooing Mehod for A Node Generaion Algorihm Hiroaki Nishikawa W.M.Keck Foundaion Laboraory for Compuaional Fluid Dynamics Deparmen of Aerospace Engineering, Universiy of Michigan, Ann Arbor, Michigan

More information

Lecture 10 Estimating Nonlinear Regression Models

Lecture 10 Estimating Nonlinear Regression Models Lecure 0 Esimaing Nonlinear Regression Models References: Greene, Economeric Analysis, Chaper 0 Consider he following regression model: y = f(x, β) + ε =,, x is kx for each, β is an rxconsan vecor, ε is

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

3.1 More on model selection

3.1 More on model selection 3. More on Model selecion 3. Comparing models AIC, BIC, Adjused R squared. 3. Over Fiing problem. 3.3 Sample spliing. 3. More on model selecion crieria Ofen afer model fiing you are lef wih a handful of

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

Backward stochastic dynamics on a filtered probability space

Backward stochastic dynamics on a filtered probability space Backward sochasic dynamics on a filered probabiliy space Gechun Liang Oxford-Man Insiue, Universiy of Oxford based on join work wih Terry Lyons and Zhongmin Qian Page 1 of 15 gliang@oxford-man.ox.ac.uk

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

Chapter 14 Wiener Processes and Itô s Lemma. Options, Futures, and Other Derivatives, 9th Edition, Copyright John C. Hull

Chapter 14 Wiener Processes and Itô s Lemma. Options, Futures, and Other Derivatives, 9th Edition, Copyright John C. Hull Chaper 14 Wiener Processes and Iô s Lemma Copyrigh John C. Hull 014 1 Sochasic Processes! Describes he way in which a variable such as a sock price, exchange rae or ineres rae changes hrough ime! Incorporaes

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

Solution of Assignment #2

Solution of Assignment #2 Soluion of Assignmen #2 Insrucor: A. Simchi Quesion #1: a r 1 c i 7, and λ n c i n i 7 38.7.189 An approximae 95% confidence inerval for λ is given by ˆλ ± 1.96 ˆλ r.189 ± 1.96.189 7.47.315 Noe ha he above

More information

Dimitri Solomatine. D.P. Solomatine. Data-driven modelling (part 2). 2

Dimitri Solomatine. D.P. Solomatine. Data-driven modelling (part 2). 2 Daa-driven modelling. Par. Daa-driven Arificial di Neural modelling. Newors Par Dimiri Solomaine Arificial neural newors D.P. Solomaine. Daa-driven modelling par. 1 Arificial neural newors ANN: main pes

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

Lecture #31, 32: The Ornstein-Uhlenbeck Process as a Model of Volatility

Lecture #31, 32: The Ornstein-Uhlenbeck Process as a Model of Volatility Saisics 441 (Fall 214) November 19, 21, 214 Prof Michael Kozdron Lecure #31, 32: The Ornsein-Uhlenbeck Process as a Model of Volailiy The Ornsein-Uhlenbeck process is a di usion process ha was inroduced

More information

Object tracking: Using HMMs to estimate the geographical location of fish

Object tracking: Using HMMs to estimate the geographical location of fish Objec racking: Using HMMs o esimae he geographical locaion of fish 02433 - Hidden Markov Models Marin Wæver Pedersen, Henrik Madsen Course week 13 MWP, compiled June 8, 2011 Objecive: Locae fish from agging

More information

PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATES IN DIFFUSION AND FRACTIONAL-BROWNIAN MODELS

PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATES IN DIFFUSION AND FRACTIONAL-BROWNIAN MODELS eor Imov r. a Maem. Sais. heor. Probabiliy and Mah. Sais. Vip. 68, 3 S 94-9(4)6-3 Aricle elecronically published on May 4, 4 PROPERIES OF MAXIMUM LIKELIHOOD ESIMAES IN DIFFUSION AND FRACIONAL-BROWNIAN

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

SEIF, EnKF, EKF SLAM. Pieter Abbeel UC Berkeley EECS

SEIF, EnKF, EKF SLAM. Pieter Abbeel UC Berkeley EECS SEIF, EnKF, EKF SLAM Pieer Abbeel UC Berkeley EECS Informaion Filer From an analyical poin of view == Kalman filer Difference: keep rack of he inverse covariance raher han he covariance marix [maer of

More information

Answers to QUIZ

Answers to QUIZ 18441 Answers o QUIZ 1 18441 1 Le P be he proporion of voers who will voe Yes Suppose he prior probabiliy disribuion of P is given by Pr(P < p) p for 0 < p < 1 You ake a poll by choosing nine voers a random,

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France

Západočeská Univerzita v Plzni, Czech Republic and Groupe ESIEE Paris, France ADAPTIVE SIGNAL PROCESSING USING MAXIMUM ENTROPY ON THE MEAN METHOD AND MONTE CARLO ANALYSIS Pavla Holejšovsá, Ing. *), Z. Peroua, Ing. **), J.-F. Bercher, Prof. Assis. ***) Západočesá Univerzia v Plzni,

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

APPENDIX AVAILABLE ON THE HEI WEB SITE

APPENDIX AVAILABLE ON THE HEI WEB SITE APPENDIX AVAILABLE ON HE HEI WEB SIE Research Repor 83 Developmen of Saisical Mehods for Mulipolluan Research Par. Developmen of Enhanced Saisical Mehods for Assessing Healh Effecs Associaed wih an Unknown

More information

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB Elecronic Companion EC.1. Proofs of Technical Lemmas and Theorems LEMMA 1. Le C(RB) be he oal cos incurred by he RB policy. Then we have, T L E[C(RB)] 3 E[Z RB ]. (EC.1) Proof of Lemma 1. Using he marginal

More information

Maximum Likelihood Parameter Estimation in State-Space Models

Maximum Likelihood Parameter Estimation in State-Space Models Maximum Likelihood Parameer Esimaion in Sae-Space Models Arnaud Douce Deparmen of Saisics, Oxford Universiy Universiy College London 4 h Ocober 212 A. Douce (UCL Maserclass Oc. 212 4 h Ocober 212 1 / 32

More information

Innova Junior College H2 Mathematics JC2 Preliminary Examinations Paper 2 Solutions 0 (*)

Innova Junior College H2 Mathematics JC2 Preliminary Examinations Paper 2 Solutions 0 (*) Soluion 3 x 4x3 x 3 x 0 4x3 x 4x3 x 4x3 x 4x3 x x 3x 3 4x3 x Innova Junior College H Mahemaics JC Preliminary Examinaions Paper Soluions 3x 3 4x 3x 0 4x 3 4x 3 0 (*) 0 0 + + + - 3 3 4 3 3 3 3 Hence x or

More information

M-estimation in regression models for censored data

M-estimation in regression models for censored data Journal of Saisical Planning and Inference 37 (2007) 3894 3903 www.elsevier.com/locae/jspi M-esimaion in regression models for censored daa Zhezhen Jin Deparmen of Biosaisics, Mailman School of Public

More information

How to Deal with Structural Breaks in Practical Cointegration Analysis

How to Deal with Structural Breaks in Practical Cointegration Analysis How o Deal wih Srucural Breaks in Pracical Coinegraion Analysis Roselyne Joyeux * School of Economic and Financial Sudies Macquarie Universiy December 00 ABSTRACT In his noe we consider he reamen of srucural

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Temporal probability models. Chapter 15, Sections 1 5 1

Temporal probability models. Chapter 15, Sections 1 5 1 Temporal probabiliy models Chaper 15, Secions 1 5 Chaper 15, Secions 1 5 1 Ouline Time and uncerainy Inerence: ilering, predicion, smoohing Hidden Markov models Kalman ilers (a brie menion) Dynamic Bayesian

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation

Most Probable Phase Portraits of Stochastic Differential Equations and Its Numerical Simulation Mos Probable Phase Porrais of Sochasic Differenial Equaions and Is Numerical Simulaion Bing Yang, Zhu Zeng and Ling Wang 3 School of Mahemaics and Saisics, Huazhong Universiy of Science and Technology,

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems Essenial Microeconomics -- 6.5: OPIMAL CONROL Consider he following class of opimizaion problems Max{ U( k, x) + U+ ( k+ ) k+ k F( k, x)}. { x, k+ } = In he language of conrol heory, he vecor k is he vecor

More information

2017 3rd International Conference on E-commerce and Contemporary Economic Development (ECED 2017) ISBN:

2017 3rd International Conference on E-commerce and Contemporary Economic Development (ECED 2017) ISBN: 7 3rd Inernaional Conference on E-commerce and Conemporary Economic Developmen (ECED 7) ISBN: 978--6595-446- Fuures Arbirage of Differen Varieies and based on he Coinegraion Which is under he Framework

More information

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H. ACE 56 Fall 5 Lecure 8: The Simple Linear Regression Model: R, Reporing he Resuls and Predicion by Professor Sco H. Irwin Required Readings: Griffihs, Hill and Judge. "Explaining Variaion in he Dependen

More information

Christos Papadimitriou & Luca Trevisan November 22, 2016

Christos Papadimitriou & Luca Trevisan November 22, 2016 U.C. Bereley CS170: Algorihms Handou LN-11-22 Chrisos Papadimiriou & Luca Trevisan November 22, 2016 Sreaming algorihms In his lecure and he nex one we sudy memory-efficien algorihms ha process a sream

More information

Supplementary Document

Supplementary Document Saisica Sinica (2013): Preprin 1 Supplemenary Documen for Funcional Linear Model wih Zero-value Coefficien Funcion a Sub-regions Jianhui Zhou, Nae-Yuh Wang, and Naisyin Wang Universiy of Virginia, Johns

More information

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1 Modeling and Forecasing Volailiy Auoregressive Condiional Heeroskedasiciy Models Anhony Tay Slide 1 smpl @all line(m) sii dl_sii S TII D L _ S TII 4,000. 3,000.1.0,000 -.1 1,000 -. 0 86 88 90 9 94 96 98

More information

5. Stochastic processes (1)

5. Stochastic processes (1) Lec05.pp S-38.45 - Inroducion o Teleraffic Theory Spring 2005 Conens Basic conceps Poisson process 2 Sochasic processes () Consider some quaniy in a eleraffic (or any) sysem I ypically evolves in ime randomly

More information

Speech and Language Processing

Speech and Language Processing Speech and Language rocessing Lecure 4 Variaional inference and sampling Informaion and Communicaions Engineering Course Takahiro Shinozaki 08//5 Lecure lan (Shinozaki s par) I gives he firs 6 lecures

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Workshop on BSDEs Rennes, May 22-24, 213 Inroducion

More information

Foundations of Statistical Inference. Sufficient statistics. Definition (Sufficiency) Definition (Sufficiency)

Foundations of Statistical Inference. Sufficient statistics. Definition (Sufficiency) Definition (Sufficiency) Foundaions of Saisical Inference Julien Beresycki Lecure 2 - Sufficiency, Facorizaion, Minimal sufficiency Deparmen of Saisics Universiy of Oxford MT 2016 Julien Beresycki (Universiy of Oxford BS2a MT

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

Math 115 Final Exam December 14, 2017

Math 115 Final Exam December 14, 2017 On my honor, as a suden, I have neiher given nor received unauhorized aid on his academic work. Your Iniials Only: Iniials: Do no wrie in his area Mah 5 Final Exam December, 07 Your U-M ID # (no uniqname):

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

Right tail. Survival function

Right tail. Survival function Densiy fi (con.) Lecure 4 The aim of his lecure is o improve our abiliy of densiy fi and knowledge of relaed opics. Main issues relaed o his lecure are: logarihmic plos, survival funcion, HS-fi mixures,

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Utility maximization in incomplete markets

Utility maximization in incomplete markets Uiliy maximizaion in incomplee markes Marcel Ladkau 27.1.29 Conens 1 Inroducion and general seings 2 1.1 Marke model....................................... 2 1.2 Trading sraegy.....................................

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

A Robust Exponentially Weighted Moving Average Control Chart for the Process Mean

A Robust Exponentially Weighted Moving Average Control Chart for the Process Mean Journal of Modern Applied Saisical Mehods Volume 5 Issue Aricle --005 A Robus Exponenially Weighed Moving Average Conrol Char for he Process Mean Michael B. C. Khoo Universii Sains, Malaysia, mkbc@usm.my

More information

On the Separation Theorem of Stochastic Systems in the Case Of Continuous Observation Channels with Memory

On the Separation Theorem of Stochastic Systems in the Case Of Continuous Observation Channels with Memory Journal of Physics: Conference eries PAPER OPEN ACCE On he eparaion heorem of ochasic ysems in he Case Of Coninuous Observaion Channels wih Memory o cie his aricle: V Rozhova e al 15 J. Phys.: Conf. er.

More information

Stationary Time Series

Stationary Time Series 3-Jul-3 Time Series Analysis Assoc. Prof. Dr. Sevap Kesel July 03 Saionary Time Series Sricly saionary process: If he oin dis. of is he same as he oin dis. of ( X,... X n) ( X h,... X nh) Weakly Saionary

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Probabilisic reasoning over ime So far, we ve mosly deal wih episodic environmens Excepions: games wih muliple moves, planning In paricular, he Bayesian neworks we ve seen so far describe

More information

7630 Autonomous Robotics Probabilistic Localisation

7630 Autonomous Robotics Probabilistic Localisation 7630 Auonomous Roboics Probabilisic Localisaion Principles of Probabilisic Localisaion Paricle Filers for Localisaion Kalman Filer for Localisaion Based on maerial from R. Triebel, R. Käsner, R. Siegwar,

More information

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law Vanishing Viscosiy Mehod. There are anoher insrucive and perhaps more naural disconinuous soluions of he conservaion law (1 u +(q(u x 0, he so called vanishing viscosiy mehod. This mehod consiss in viewing

More information

DYNAMIC ECONOMETRIC MODELS Vol. 4 Nicholas Copernicus University Toruń Jacek Kwiatkowski Nicholas Copernicus University in Toruń

DYNAMIC ECONOMETRIC MODELS Vol. 4 Nicholas Copernicus University Toruń Jacek Kwiatkowski Nicholas Copernicus University in Toruń DYNAMIC ECONOMETRIC MODELS Vol. 4 Nicholas Copernicus Universiy Toruń 000 Jacek Kwiakowski Nicholas Copernicus Universiy in Toruń Bayesian analysis of long memory and persisence using ARFIMA models wih

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information