Dimitri Solomatine. D.P. Solomatine. Data-driven modelling (part 2). 2

Size: px
Start display at page:

Download "Dimitri Solomatine. D.P. Solomatine. Data-driven modelling (part 2). 2"

Transcription

1 Daa-driven modelling. Par. Daa-driven Arificial di Neural modelling. Newors Par Dimiri Solomaine Arificial neural newors D.P. Solomaine. Daa-driven modelling par. 1

2 Arificial neural newors ANN: main pes Arificial Neural Newors Feed Forward Feedbac Self-organising Linear Non-linear Hopfield Model Bolzman Machine Feaure Maps ART Supervised Unsupervised D.P. Solomaine. Daa-driven modelling par. 3 Linear regression as a simple ANN acual oupu value Y Y = a 1 X + a 0 x 1 a 1 a 0 model predics new oupu value v = a 0 +a 1 x 1 x new inpu value x v In one-dimensional case one inpu x, given T vecors daa {x, } =1, T he coefficiens of he equaion = f x = a 1 x + a 0 can be found. Then for he new V vecors {x v }, v =1, V his equaion can approximael reproduce he corresponding funcions values { v }, v =1, V X D.P. Solomaine. Daa-driven modelling par. 4

3 How o measure he error? Leas squares error is used since i allows for he bes esimaion of he parameers given errors for each measuremen are independen and normall disribued. Opimizaion problem has o be solved: find such a 0 and a 1 ha E is minimal: E T a0 a1x 1 in a similar fashion he problem can be posed for muliple a regression wih man inpus 0 x1 a 1 = a 0 +a 1 x 1 + a x x a D.P. Solomaine. Daa-driven modelling par. 5 Funcion approximaion: linear regression and ANN Y Y X X Linear regression Y = a 1 X + a Neural newor approximaion Y = f X, a 1,, a n D.P. Solomaine. Daa-driven modelling par. 6 3

4 ANN: muli-laer laer percepron MLP X Inpus X x 1 modelled real ssem weighs Hidden laer weighs a i b 1 f X observed Error = FX - fx min Oupus Z=FX z 1 x x 3 x Ninp 1 1 Nhid N inp Fao ai x i i1 = 1,..., N hid z z 3 z Nou Nhid z F bo b i1 = 1,..., N Fu 1 There are N inp +1N hid + N hid +1N ou weighs a i and b o be idenified b minimizing mean squared error YX - fx. Mehod used: gradien-based seepes descen mehod called error bacpropagaion D.P. Solomaine. Daa-driven modelling par. 7 ou 0 u Binar Sigmoid : Fu = 1/ 1 + e -u ANN: idenificaion of weighs b raining calibraion ANN error in reproducing he observed oupu OBS i i is: E N examp OBS i ANN i i1 Training of ANN is in solving a muli-exremum opimizaion problem: Find such values of weighs ha bring E o a minimum Problem of bacpropagaion algorihm - i assumes singleexremali D.P. Solomaine. Daa-driven modelling par. 8 4

5 Biological moivaion signals are ransmied beween neurons b elecrical pulses he neuron sums up he effecs of housands impulses if he inegraed poenial exceeds a hreshold, he cell fires - generaes an impulse ha ravels across he axon furher Dendries Cells bodies D.P. Solomaine. Daa-driven modelling par. 9 Hidden node x 1 a 1 a 0 u u = a 0 + a 1 x 1 + a x = g u x a Inpus o he newor are: x i, i = 1,..., N D.P. Solomaine. Daa-driven modelling par. 10 inp Oupu of he -h node of he hidden laer is = g a 0 + N inp i=1 a i x i, = 1,..., N hid 5

6 Oupu node 1 b 1 b 0 v v = b 0 + b b z = g v z b inpus are he oupus of hidden nodes 1... Nhid oupus are: z = g b 0 + N hid =1 b, = 1,..., N ou D.P. Solomaine. Daa-driven modelling par. 11 Transfer funcion g he ransfer funcion is usuall non-linear, bounded and differeniable. Widel used is he logisic funcion: 1 g u= 1+ e - u Oupu value Logisic funcion Slope = α/ Inpu value D.P. Solomaine. Daa-driven modelling par. 1 6

7 ANN complexi and is approximaing abili combinaion of ransfer funcions of hidden nodes produces a complex funcion wih man hidden nodes an funcion can be approximaed D.P. Solomaine. Daa-driven modelling par. 13 ANN complexi and is approximaing: example of approximaing a harmonic funcion one inpu x and wo oupus 1 and Oupus are given b sinx and cosx Daa is generaed b running x from 0 o 6.8 wih he sep 0.00 Training se: 315 insances Tes se: 1 insances x x D.P. Solomaine. Daa-driven modelling par. 14 7

8 Performance of ANNs as is complexi increases a 1 hidden node b hidden nodes c 3 hidden nodes d 4 hidden nodes D.P. Solomaine. Daa-driven modelling par. 15 ANN raining as an opimizaion problem If N ou funcions, each wih N inp independen inpu variables are given, and T insances vecors { x,x,...,x, f,..., f }, = 1,...,T are given, hen, on he basis of hese insances ANN can be rained so ha he error is minimal. Then if presened oher V insances vecors v v v { x1,x,...,x }, v= 1,...,V, f 1 Ninp 1 Nou { N 1 inp i would approximael reproduce he corresponding funcions values v v v { f, f,..., f }, v=1,...,v 1 N ou D.P. Solomaine. Daa-driven modelling par. 16 8

9 9 Deailed descripion of ANN error o be minimized Deailed descripion of ANN error o be minimized for oupu he error for he inpu paern is: E = f z E = f z oal for all oupus for inpu paern he error is: Toal error is he summaion of he errors for all oupu nodes for all T insances: z f E 1 f E 1 D.P. Solomaine. Daa-driven modelling par. 17 i i i hid ou ou o x a a g b b g f b b g f z f E ] [ 1 ] [ 1 min min Error funcion w.r.. weighs error surfaces 1 Error funcion w.r.. weighs error surfaces 1 D.P. Solomaine. Daa-driven modelling par. 18

10 How o updae weighs opimizaion is done b he seepes descen algorihm seps are made in he space of variables weighs w inhe direcion opposie o he direcion of he gradien of he funcion E w N+1 = w N E w N in individual weighs changes will be: w N 1 w s and he updae sep for weigh s is: w s s E w E N ww w w s N N his is he dela rule of Widrow and Hoff 1960 for a single linear percepron D.P. Solomaine. Daa-driven modelling par. 19 s s s Pracical issues of raining Preparing daa scaling inpu daa o preven newor paralsis g1.0 = 0.76 g.0 = g3.0 = g4.0 = so scale inpu daa o [-3, +3] scaling oupu daa since sigmoid func. is in range [0, 1]: Scale measured arge oupu daa o range [0, 1], or beer [0.1, 0.9] o allow ANN o exrapolae Appl he inverse scaling formulas in ANN esing or operaion he number of hidden nodes Nhid Ninp Nou choice of he acivaion funcions remove par of connecions opimal brain damage deal wih local opima re-randomize weighs D.P. Solomaine. Daa-driven modelling par. 0 10

11 Radial basis funcion newors D.P. Solomaine. Daa-driven modelling par. 1 Funcion approximaion b combining funcions linear regression splines: using cubic funcions ha would pass hrough he poins and he boundaries 1s and nd heir derivaives would be equal orhogonal funcions Chebshev polnomials combining simple ernel funcions D.P. Solomaine. Daa-driven modelling par. 11

12 Radial basis funcions use simple funcions Fx ha approximae he given funcion in he proximi o some represenaive locaions hese Fx depend onl on he disance from hese ceners and drop o zero as he disance from he ceners increase Ceners: 1 J D.P. Solomaine. Daa-driven modelling par. 3 Radial basis funcions funcion z =f x, where x is a vecor {x 1... x I } in I- dimensional space ceners w =1...J are seleced f x is approximaed b J z x F x w 1 ; b where x w is disance eg., Euclidean b are coefficiens i associaed wih he -h cener w. Ceners: 1 J D.P. Solomaine. Daa-driven modelling par. 4 1

13 Radial basis funcions we can choose he linear combinaion of basis funcions: I is common o choose Gaussian funcion for F: J z x b F x w 1 f r =exp r / is analogous o he sandard deviaion in a Gaussian normal disribuion Disance x w is usuall undersood in Euclidean sense and denoed as δ : I x w i1 so he approximaion becomes: J z x b 1 D.P. Solomaine. Daa-driven modelling par. 5 i i exp / Radial basis funcions J z x b 1 exp x w / The problem of approximaion requires: he placemen of he localized Gaussians o cover he space posiions of he ceners w i ; he conrol of he widh of each Gaussian parameer σ; he seing of he ampliude of each Gaussian parameers b i. D.P. Solomaine. Daa-driven modelling par. 6 13

14 Radial basis funcion problem viewed as a neural newor x i w i b x i z Gaussian funcions Linear funcions D.P. Solomaine. Daa-driven modelling par. 7 Training he RBF newor 1 1. Find he posiions of ceners {w }: Choose randoml J insances x and use hem as he posiions of he ceners {w } All oher insances are assigned o a class of he closes cener w, and he locaions of each cener are calculaed again using eg. -neares neighbor mehod. The above seps are repeaed unil he locaions of he ceners sop changing.. Calculae he oupu zx from each hidden neuron... D.P. Solomaine. Daa-driven modelling par. 8 14

15 Training he RBF newor Weighs {b } for he oupu laer are calculaed b solving a muliple linear regression problem, which is formulaed as he ssem of linear equaions. The oupu from he oupu node J can be expressed as b 1 z J where b he weigh on he connecion from he hidden node o he oupu node, - he oupu from he hidden node 4. If he oal error is more han he desired limi, change he number of he hidden unis repea all he seps D.P. Solomaine. Daa-driven modelling par. 9 1 Example: using RBF newor o reproduce SIN and COS funcion Inpu file: 1 inpu X, oupus SIN, COS,315 examples ceners found D.P. Solomaine. Daa-driven modelling par

16 Example: using RBF newor o reproduce behaviour of a 1-D modelling ssem SOBEK Inpu file: 7 inpus prev. rainfalls, flows, 1 oupu flow, 1303 examples 1 cener found D.P. Solomaine. Daa-driven modelling par. 31 Radial basis funcions: commens RBF newors provide a global approximaion o he arge funcion, represened b a linear combinaion of man local ernel funcions his can be viewed as he smooh linear combinaion of piecewise local non-linear funcions - ha is he bes funcion is chosen for a paricular range of inpu daa raining is faser han bacpropagaion newors since i is done in wo seps i is an eager mehod, bu used an idea of local approximaion as in laz mehods such as -NN D.P. Solomaine. Daa-driven modelling par. 3 16

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 175 CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 10.1 INTRODUCTION Amongs he research work performed, he bes resuls of experimenal work are validaed wih Arificial Neural Nework. From he

More information

The Rosenblatt s LMS algorithm for Perceptron (1958) is built around a linear neuron (a neuron with a linear

The Rosenblatt s LMS algorithm for Perceptron (1958) is built around a linear neuron (a neuron with a linear In The name of God Lecure4: Percepron and AALIE r. Majid MjidGhoshunih Inroducion The Rosenbla s LMS algorihm for Percepron 958 is buil around a linear neuron a neuron ih a linear acivaion funcion. Hoever,

More information

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis

Speaker Adaptation Techniques For Continuous Speech Using Medium and Small Adaptation Data Sets. Constantinos Boulis Speaker Adapaion Techniques For Coninuous Speech Using Medium and Small Adapaion Daa Ses Consaninos Boulis Ouline of he Presenaion Inroducion o he speaker adapaion problem Maximum Likelihood Sochasic Transformaions

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Aricle from Predicive Analyics and Fuurism July 6 Issue An Inroducion o Incremenal Learning By Qiang Wu and Dave Snell Machine learning provides useful ools for predicive analyics The ypical machine learning

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LDA, logisic

More information

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018 MATH 5720: Gradien Mehods Hung Phan, UMass Lowell Ocober 4, 208 Descen Direcion Mehods Consider he problem min { f(x) x R n}. The general descen direcions mehod is x k+ = x k + k d k where x k is he curren

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LTU, decision

More information

CSCE 496/896 Lecture 2: Basic Artificial Neural Networks. Stephen Scott. Introduction. Supervised Learning. Basic Units.

CSCE 496/896 Lecture 2: Basic Artificial Neural Networks. Stephen Scott. Introduction. Supervised Learning. Basic Units. (Adaped from Vinod Variyam, Ehem Alpaydin, Tom Michell, Ian Goodfellow, and Aurélien Géron) learning is mos fundamenal, classic form machine learning par comes from he par labels for examples (insances)

More information

NMR Spectroscopy: Principles and Applications. Nagarajan Murali 1D - Methods Lecture 5

NMR Spectroscopy: Principles and Applications. Nagarajan Murali 1D - Methods Lecture 5 NMR pecroscop: Principles and Applicaions Nagarajan Murali D - Mehods Lecure 5 D-NMR To full appreciae he workings of D NMR eperimens we need o a leas consider wo coupled spins. omeimes we need o go up

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Ensamble methods: Bagging and Boosting

Ensamble methods: Bagging and Boosting Lecure 21 Ensamble mehods: Bagging and Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Ensemble mehods Mixure of expers Muliple base models (classifiers, regressors), each covers a differen par

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

NONLINEAR SYSTEM IDENTIFICATION USING RBF NETWORKS WITH LINEAR INPUT CONNECTIONS

NONLINEAR SYSTEM IDENTIFICATION USING RBF NETWORKS WITH LINEAR INPUT CONNECTIONS Malaysian Journal of Compuer Science, Vol. No., June 998, pp. 74-80 NONLINEAR SYSEM IDENIFICAION USING RBF NEWORKS WIH LINEAR INPU CONNECIONS Mohd Yusoff Mashor School of Elecrical Elecronic Engineering

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91 ddiional Problems 9 n inverse relaionship exiss beween he ime-domain and freuency-domain descripions of a signal. Whenever an operaion is performed on he waveform of a signal in he ime domain, a corresponding

More information

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 31. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 3 Absolue and Relaive Accuracy DAC Design The Sring DAC . Review from las lecure. DFT Simulaion from Malab Quanizaion Noise DACs and ADCs generally quanize boh ampliude and ime If convering

More information

Experiments on logistic regression

Experiments on logistic regression Experimens on logisic regression Ning Bao March, 8 Absrac In his repor, several experimens have been conduced on a spam daa se wih Logisic Regression based on Gradien Descen approach. Firs, he overfiing

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1 CpS 570 Machine Learning School of EECS Washingon Sae Universiy CpS 570 - Machine Learning 1 Form of underlying disribuions unknown Bu sill wan o perform classificaion and regression Semi-parameric esimaion

More information

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES PROBLEMS FOR MATH 6 If a problem is sarred, all subproblems are due. If onl subproblems are sarred, onl hose are due. 00. Shor answer quesions. SLOPES OF TANGENT LINES (a) A ball is hrown ino he air. Is

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

Ensamble methods: Boosting

Ensamble methods: Boosting Lecure 21 Ensamble mehods: Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Schedule Final exam: April 18: 1:00-2:15pm, in-class Term projecs April 23 & April 25: a 1:00-2:30pm in CS seminar room

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A blood vessel is 6 millimeers (mm) long Disance wih circular cross secions of varying diameer. x (mm) 6 8 4 6 Diameer The able above gives he measuremens of he B(x)

More information

Online Convex Optimization Example And Follow-The-Leader

Online Convex Optimization Example And Follow-The-Leader CSE599s, Spring 2014, Online Learning Lecure 2-04/03/2014 Online Convex Opimizaion Example And Follow-The-Leader Lecurer: Brendan McMahan Scribe: Sephen Joe Jonany 1 Review of Online Convex Opimizaion

More information

Notes on Kalman Filtering

Notes on Kalman Filtering Noes on Kalman Filering Brian Borchers and Rick Aser November 7, Inroducion Daa Assimilaion is he problem of merging model predicions wih acual measuremens of a sysem o produce an opimal esimae of he curren

More information

Estimation of Poses with Particle Filters

Estimation of Poses with Particle Filters Esimaion of Poses wih Paricle Filers Dr.-Ing. Bernd Ludwig Chair for Arificial Inelligence Deparmen of Compuer Science Friedrich-Alexander-Universiä Erlangen-Nürnberg 12/05/2008 Dr.-Ing. Bernd Ludwig (FAU

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes WHAT IS A KALMAN FILTER An recursive analyical echnique o esimae ime dependen physical parameers in he presence of noise processes Example of a ime and frequency applicaion: Offse beween wo clocks PREDICTORS,

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Mathcad Lecture #8 In-class Worksheet Curve Fitting and Interpolation

Mathcad Lecture #8 In-class Worksheet Curve Fitting and Interpolation Mahcad Lecure #8 In-class Workshee Curve Fiing and Inerpolaion A he end of his lecure, you will be able o: explain he difference beween curve fiing and inerpolaion decide wheher curve fiing or inerpolaion

More information

Innova Junior College H2 Mathematics JC2 Preliminary Examinations Paper 2 Solutions 0 (*)

Innova Junior College H2 Mathematics JC2 Preliminary Examinations Paper 2 Solutions 0 (*) Soluion 3 x 4x3 x 3 x 0 4x3 x 4x3 x 4x3 x 4x3 x x 3x 3 4x3 x Innova Junior College H Mahemaics JC Preliminary Examinaions Paper Soluions 3x 3 4x 3x 0 4x 3 4x 3 0 (*) 0 0 + + + - 3 3 4 3 3 3 3 Hence x or

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Chapter 21. Reinforcement Learning. The Reinforcement Learning Agent

Chapter 21. Reinforcement Learning. The Reinforcement Learning Agent CSE 47 Chaper Reinforcemen Learning The Reinforcemen Learning Agen Agen Sae u Reward r Acion a Enironmen CSE AI Faculy Why reinforcemen learning Programming an agen o drie a car or fly a helicoper is ery

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

Lecture 10 - Model Identification

Lecture 10 - Model Identification Lecure - odel Idenificaion Wha is ssem idenificaion? Direc impulse response idenificaion Linear regression Regularizaion Parameric model ID nonlinear LS Conrol Engineering - Wha is Ssem Idenificaion? Experimen

More information

EE 435. Lecture 35. Absolute and Relative Accuracy DAC Design. The String DAC

EE 435. Lecture 35. Absolute and Relative Accuracy DAC Design. The String DAC EE 435 Lecure 35 Absolue and Relaive Accuracy DAC Design The Sring DAC Makekup Lecures Rm 6 Sweeney 5:00 Rm 06 Coover 6:00 o 8:00 . Review from las lecure. Summary of ime and ampliude quanizaion assessmen

More information

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance:

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance: Problem Se # Problem : a) Using phasor noaion, calculae he volage and curren waves on a ransmission line by solving he wave equaion Assume ha R, L,, G are all non-zero and independen of frequency From

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

Analyze patterns and relationships. 3. Generate two numerical patterns using AC

Analyze patterns and relationships. 3. Generate two numerical patterns using AC envision ah 2.0 5h Grade ah Curriculum Quarer 1 Quarer 2 Quarer 3 Quarer 4 andards: =ajor =upporing =Addiional Firs 30 Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 andards: Operaions and Algebraic Thinking

More information

ME 391 Mechanical Engineering Analysis

ME 391 Mechanical Engineering Analysis Fall 04 ME 39 Mechanical Engineering Analsis Eam # Soluions Direcions: Open noes (including course web posings). No books, compuers, or phones. An calculaor is fair game. Problem Deermine he posiion of

More information

A variational radial basis function approximation for diffusion processes.

A variational radial basis function approximation for diffusion processes. A variaional radial basis funcion approximaion for diffusion processes. Michail D. Vreas, Dan Cornford and Yuan Shen {vreasm, d.cornford, y.shen}@ason.ac.uk Ason Universiy, Birmingham, UK hp://www.ncrg.ason.ac.uk

More information

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts)

HW6: MRI Imaging Pulse Sequences (7 Problems for 100 pts) HW6: MRI Imaging Pulse Sequences (7 Problems for 100 ps) GOAL The overall goal of HW6 is o beer undersand pulse sequences for MRI image reconsrucion. OBJECTIVES 1) Design a spin echo pulse sequence o image

More information

CSE/NB 528 Lecture 14: From Supervised to Reinforcement Learning (Chapter 9) R. Rao, 528: Lecture 14

CSE/NB 528 Lecture 14: From Supervised to Reinforcement Learning (Chapter 9) R. Rao, 528: Lecture 14 CSE/NB 58 Lecure 14: From Supervised o Reinforcemen Learning Chaper 9 1 Recall from las ime: Sigmoid Neworks Oupu v T g w u g wiui w Inpu nodes u = u 1 u u 3 T i Sigmoid oupu funcion: 1 g a 1 a e 1 ga

More information

EE 301 Lab 2 Convolution

EE 301 Lab 2 Convolution EE 301 Lab 2 Convoluion 1 Inroducion In his lab we will gain some more experience wih he convoluion inegral and creae a scrip ha shows he graphical mehod of convoluion. 2 Wha you will learn This lab will

More information

This is an example to show you how SMath can calculate the movement of kinematic mechanisms.

This is an example to show you how SMath can calculate the movement of kinematic mechanisms. Dec :5:6 - Kinemaics model of Simple Arm.sm This file is provided for educaional purposes as guidance for he use of he sofware ool. I is no guaraeed o be free from errors or ommissions. The mehods and

More information

Resource Allocation in Visible Light Communication Networks NOMA vs. OFDMA Transmission Techniques

Resource Allocation in Visible Light Communication Networks NOMA vs. OFDMA Transmission Techniques Resource Allocaion in Visible Ligh Communicaion Neworks NOMA vs. OFDMA Transmission Techniques Eirini Eleni Tsiropoulou, Iakovos Gialagkolidis, Panagiois Vamvakas, and Symeon Papavassiliou Insiue of Communicaions

More information

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks -

Deep Learning: Theory, Techniques & Applications - Recurrent Neural Networks - Deep Learning: Theory, Techniques & Applicaions - Recurren Neural Neworks - Prof. Maeo Maeucci maeo.maeucci@polimi.i Deparmen of Elecronics, Informaion and Bioengineering Arificial Inelligence and Roboics

More information

Ensemble Confidence Estimates Posterior Probability

Ensemble Confidence Estimates Posterior Probability Ensemble Esimaes Poserior Probabiliy Michael Muhlbaier, Aposolos Topalis, and Robi Polikar Rowan Universiy, Elecrical and Compuer Engineering, Mullica Hill Rd., Glassboro, NJ 88, USA {muhlba6, opali5}@sudens.rowan.edu

More information

1 Widrow-Hoff Algorithm

1 Widrow-Hoff Algorithm COS 511: heoreical Machine Learning Lecurer: Rob Schapire Lecure # 18 Scribe: Shaoqing Yang April 10, 014 1 Widrow-Hoff Algorih Firs le s review he Widrow-Hoff algorih ha was covered fro las lecure: Algorih

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Particle Swarm Optimization

Particle Swarm Optimization Paricle Swarm Opimizaion Speaker: Jeng-Shyang Pan Deparmen of Elecronic Engineering, Kaohsiung Universiy of Applied Science, Taiwan Email: jspan@cc.kuas.edu.w 7/26/2004 ppso 1 Wha is he Paricle Swarm Opimizaion

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing M Business Forecasing Mehods Exponenial moohing Mehods ecurer : Dr Iris Yeung Room No : P79 Tel No : 788 8 Types of Exponenial moohing Mehods imple Exponenial moohing Double Exponenial moohing Brown s

More information

Chapter 4. Truncation Errors

Chapter 4. Truncation Errors Chaper 4. Truncaion Errors and he Taylor Series Truncaion Errors and he Taylor Series Non-elemenary funcions such as rigonomeric, eponenial, and ohers are epressed in an approimae fashion using Taylor

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

Recursive Estimation and Identification of Time-Varying Long- Term Fading Channels

Recursive Estimation and Identification of Time-Varying Long- Term Fading Channels Recursive Esimaion and Idenificaion of ime-varying Long- erm Fading Channels Mohammed M. Olama, Kiran K. Jaladhi, Seddi M. Djouadi, and Charalambos D. Charalambous 2 Universiy of ennessee Deparmen of Elecrical

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

Rapid Termination Evaluation for Recursive Subdivision of Bezier Curves

Rapid Termination Evaluation for Recursive Subdivision of Bezier Curves Rapid Terminaion Evaluaion for Recursive Subdivision of Bezier Curves Thomas F. Hain School of Compuer and Informaion Sciences, Universiy of Souh Alabama, Mobile, AL, U.S.A. Absrac Bézier curve flaening

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Virtual force field based obstacle avoidance and agent based intelligent mobile robot

Virtual force field based obstacle avoidance and agent based intelligent mobile robot Virual force field based obsacle avoidance and agen based inelligen mobile robo Saurabh Sarkar *a, Sco Reynolds b, Ernes Hall a a Dep of Mechinical Engineering, Universiy of Cincinnai b Dep. of Compuer

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T Smoohing Consan process Separae signal & noise Smooh he daa: Backward smooher: A an give, replace he observaion b a combinaion of observaions a & before Simple smooher : replace he curren observaion wih

More information

Linear and Nonlinear Identification of Dryer System Using Artificial Intelligence and Neural Networks

Linear and Nonlinear Identification of Dryer System Using Artificial Intelligence and Neural Networks Linear and Nonlinear Idenificaion of Dryer Sysem Using Arificial Inelligence and Neural Neworks By Mosafa Darvishi A Pracical Approach Toward Sysem Idenificaion The MATLAB codes relaed o his work can be

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source Muli-scale D acousic full waveform inversion wih high frequency impulsive source Vladimir N Zubov*, Universiy of Calgary, Calgary AB vzubov@ucalgaryca and Michael P Lamoureux, Universiy of Calgary, Calgary

More information

CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang

CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang CHBE320 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS Professor Dae Ryook Yang Spring 208 Dep. of Chemical and Biological Engineering CHBE320 Process Dynamics and Conrol 4- Road Map of he Lecure

More information

Content-Based Shape Retrieval Using Different Shape Descriptors: A Comparative Study Dengsheng Zhang and Guojun Lu

Content-Based Shape Retrieval Using Different Shape Descriptors: A Comparative Study Dengsheng Zhang and Guojun Lu Conen-Based Shape Rerieval Using Differen Shape Descripors: A Comparaive Sudy Dengsheng Zhang and Guojun Lu Gippsland School of Compuing and Informaion Technology Monash Universiy Churchill, Vicoria 3842

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, Arrhenius

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

ES.1803 Topic 22 Notes Jeremy Orloff

ES.1803 Topic 22 Notes Jeremy Orloff ES.83 Topic Noes Jeremy Orloff Fourier series inroducion: coninued. Goals. Be able o compue he Fourier coefficiens of even or odd periodic funcion using he simplified formulas.. Be able o wrie and graph

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Robotics I. April 11, The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1.

Robotics I. April 11, The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1. Roboics I April 11, 017 Exercise 1 he kinemaics of a 3R spaial robo is specified by he Denavi-Harenberg parameers in ab 1 i α i d i a i θ i 1 π/ L 1 0 1 0 0 L 3 0 0 L 3 3 able 1: able of DH parameers of

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004 Augmened Realiy II Kalman Filers Gudrun Klinker May 25, 2004 Ouline Moivaion Discree Kalman Filer Modeled Process Compuing Model Parameers Algorihm Exended Kalman Filer Kalman Filer for Sensor Fusion Lieraure

More information

On-line Adaptive Optimal Timing Control of Switched Systems

On-line Adaptive Optimal Timing Control of Switched Systems On-line Adapive Opimal Timing Conrol of Swiched Sysems X.C. Ding, Y. Wardi and M. Egersed Absrac In his paper we consider he problem of opimizing over he swiching imes for a muli-modal dynamic sysem when

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Lecure 7 April 8, 6.3: Signals and Sysems C Fourier ransform C Fourier ransform Represening signals by heir frequency conen. X(j)= x()e j d ( analysis equaion) x()= π X(j)e j d

More information

CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS

CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS CHEAPEST PMT ONLINE TEST SERIES AIIMS/NEET TOPPER PREPARE QUESTIONS For more deails see las page or conac @aimaiims.in Physics Mock Tes Paper AIIMS/NEET 07 Physics 06 Saurday Augus 0 Uni es : Moion in

More information

Math 2214 Solution Test 1B Fall 2017

Math 2214 Solution Test 1B Fall 2017 Mah 14 Soluion Tes 1B Fall 017 Problem 1: A ank has a capaci for 500 gallons and conains 0 gallons of waer wih lbs of sal iniiall. A soluion conaining of 8 lbsgal of sal is pumped ino he ank a 10 galsmin.

More information

3.1 More on model selection

3.1 More on model selection 3. More on Model selecion 3. Comparing models AIC, BIC, Adjused R squared. 3. Over Fiing problem. 3.3 Sample spliing. 3. More on model selecion crieria Ofen afer model fiing you are lef wih a handful of

More information

Pattern Classification (VI) 杜俊

Pattern Classification (VI) 杜俊 Paern lassificaion VI 杜俊 jundu@usc.edu.cn Ouline Bayesian Decision Theory How o make he oimal decision? Maximum a oserior MAP decision rule Generaive Models Join disribuion of observaion and label sequences

More information

Learning & Neural Networks

Learning & Neural Networks BCS-PAR Summer School on Paern Recogniion Eeer 003 Learning & Neural Neworks Regression & Learning Learning Paradigm &Nework Archiecure Percepron & Mulilaer Percepron RBF & SVM Learning & Generalisaion

More information

AP Calculus BC 2004 Free-Response Questions Form B

AP Calculus BC 2004 Free-Response Questions Form B AP Calculus BC 200 Free-Response Quesions Form B The maerials included in hese files are inended for noncommercial use by AP eachers for course and exam preparaion; permission for any oher use mus be sough

More information

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11.

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11. 1 Mah 334 Tes 1 KEY Spring 21 Secion: 1 Insrucor: Sco Glasgow Daes: Ma 1 and 11. Do NOT wrie on his problem saemen bookle, excep for our indicaion of following he honor code jus below. No credi will be

More information

CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang

CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS. Professor Dae Ryook Yang CHE302 LECTURE IV MATHEMATICAL MODELING OF CHEMICAL PROCESS Professor Dae Ryook Yang Fall 200 Dep. of Chemical and Biological Engineering Korea Universiy CHE302 Process Dynamics and Conrol Korea Universiy

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

Lecture 9: September 25

Lecture 9: September 25 0-725: Opimizaion Fall 202 Lecure 9: Sepember 25 Lecurer: Geoff Gordon/Ryan Tibshirani Scribes: Xuezhi Wang, Subhodeep Moira, Abhimanu Kumar Noe: LaTeX emplae couresy of UC Berkeley EECS dep. Disclaimer:

More information