Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1

Size: px
Start display at page:

Download "Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1"

Transcription

1 Modeling and Forecasing Volailiy Auoregressive Condiional Heeroskedasiciy Models Anhony Tay Slide 1

2 line(m) sii dl_sii S TII D L _ S TII 4,000. 3, , , Anhony Tay Slide

3 Auoregressive Condiional Heeroskedasiciy (ARCH) Model Pure ARCH(1) [Mean equaion] y 1/ iid, ~(0,1) h u u N [Variance equaion] h 1 1 Anhony Tay Slide 3

4 y 1/ iid, ~(0,1) h u u N h 1 1 E[ y y, y,...] E[ y, y,...] 1 1 E h u y y 1/ [ 1,,...] h E[ u y, y,...] 0 1/ 1 This resul implies - uncondiional mean is zero - serially uncorrelaed process E[ E[ y y y,...]] E[ y E[ y y,...]] E[ y.0] Pure ARCH(1) model herefore does no (and canno) describe any sor of cyclicaliy or predicabiliy in he mean Anhony Tay Slide 4

5 y iid h u, u ~(0,1) N, 1/ h 1 1 var[ y y, y,...] var[ y y, y,...] 1 1 i.e. h is he condiional variance of 1/ var[ h u y 1, y,...] h var[ u y, y,...] h 1 Condiional variance depends on he pas values of y (We usually assume and 1 o be posiive o ensure posiive variances) y Anhony Tay Slide 5

6 Incidenally, he uncondiional variance is: Var y [ ] E[ y ] E[ h ](since E[ y ] E[ h u ] E[ E[ h u y ]] E[ h E[ u y ]] E[ h]) 1 1 E[ y ] 1 1 E[ y ] 1 1 E[ h ] 1 1 E[ y ] 1 1 E[ y ] 1 1 E[ h ] (1 1...) herefore consan and finie if 1 1 Anhony Tay Slide 6

7 [ Mean equaion ] y 1/ iid, ~(0,1) h u u N h 1 1 We can have a non-rivial mean equaion: AR(1) - ARCH(1) model: y y, / iid, ~(0,1) h u u N h 1 1 Anhony Tay Slide 7

8 y y / iid, ~(0,1) h u u N h 1 1 Can show: E[ y y 1,...] 0 1y 1 ( E[ y 1,...] 0) var[ y y,...] var[ y,...] h Noice ha y 0 1y 1, so in your compuaions Same wih condiional variance E[. y, y,...] E[.,,...] 1 1 Anhony Tay Slide 8

9 How he ARCH model capures volailiy-clusering y 1/ iid, ~(0,1) h u u N h 1 1 Focus on volailiy Suppose If y 1 y small (so happens) hen h 1 is small (which means ha var[ y 1 y,...] so y 1 large is small) ends o be small; if so, hen cycle coninues hen h 1 is large (which means ha var[ y 1 y,...] so y 1 is large) ends o be large; if so, hen cycle coninues Anhony Tay Slide 9

10 Anoher example y y / iid, ~(0,1) h u u N h 1 1 Suppose small (so happens) If 1 hen h 1 is small (which means ha var[ 1 y,...] so 1 large is small) ends o be small; if so, hen cycle coninues hen h 1 is large (which means ha var[ 1 y,...] so 1 is large) ends o be large; if so, hen cycle coninues Anhony Tay Slide 10

11 Volailiy clusering can also accoun, a leas parially, for excess kurosis or faails dl_sii.his 3,600 3,00,800,400,000 1,600 1, S eries : DL_S TII S am ple 1/04/ /6/011 O bs ervaions 6993 M ean M edian M axim um M inim um S d. Dev S kewness K urosis K E[( Y E[ Y ]) ] () Jarque-B era P robabiliy This is parially due o he presence of volailiy clusering (large observaions cluser, so you ge oo many of hem) ARCH processes imply excess kurosis even when condiionally normal Anhony Tay Slide 11

12 Anoher feaure of series wih volailiy clusering: square of residuals ofen show ARMA-ype properies Ignoring he MA(1), which is negligible in he dl_sii series, regress dl_sii on a consan, and compue he correllogram of squared residuals: equaion eq1.ls dl_sii c eq1.correlsq Anhony Tay Slide 1

13 ARCH(1)-ype errors possesses his propery h u, 1/ h 1 1 Rewrie variance equaion as () h 1 1 which akes he form of an AR(1) in squares of (You can view h as a zero-mean error erm) Anhony Tay Slide 13

14 Applicaion: Forecasing STII wihou ARCH You can show: log(stii) clearly I(1) work wih DL_STII The correllogram shows MA(1)? Anhony Tay Slide 14

15 1/31/007 equaion eq1.ls dl_sii c ma(1) eq1.correl Dependen Variable: DL_STII residual correllogram Sample (adjused): 1/07/1985 1/31/007 Included observaions: 5996 afer adjusmens Convergence achieved afer 6 ieraions MA Backcas: 1/04/1985 Variable Coefficien Sd. Error -Saisic Prob. C MA(1) R-squared Anhony Tay Slide 15

16 In-sample fi as well as he one-sep ahead forecass Residual Acual Fied Y Y_F Y_UP Y_DOWN Anhony Tay Slide 16

17 The sandardized residuals also show evidence of volailiy clusering: In addiion o he correllogram of squared residuals, we can es for ARCH errors using Engle s LM es: Esimae his mean equaion, calculae he residuals ˆ, regress and calculae he TR ˆ on ˆ 1,,, ˆ ˆ 3 Anhony Tay Slide 17

18 This saisic follows a chi-square disribuion wih m degrees of freedom under he null of no condiional heeroskedasiciy in he errors. eq1.arches Heeroskedasiciy Tes: ARCH F-saisic Prob. F(1,5993) Obs*R-squared Prob. Chi-Square(1) Tes Equaion: Dependen Variable: RESID^ Variable CoefficienSd. Error -Saisic Prob. C E RESID^(-1) The es clearly rejecs he null of no condiional heeroskedasiciy Anhony Tay Slide 18

19 Forecasing Volailiy Forecasing an ARCH processes is no as sraighforward as AR processes y 1/ iid, ~(0,1) h u u N h 1 1 The one-sep ahead forecas y 1 is simply y 1 0 To compue he one-sep ahead forecas of variance of y 1, use var[ y 1 y,...] var[ y y,...] h y : Anhony Tay Slide 19

20 To ge he wo-sep ahead forecas for he variance, noe ha var[ y y,...] var[ y,...] E[ y,...] E[ h u y,...] E[ u y,...] E[ h y,...] 1 Since we have h h u, E[ h 1 y,...] h 1, E[ u,...] 1 1 y, var[ y y,...]()(1) h y y Anhony Tay Slide 0

21 In general, var[ y y,...] h...(1...) y, k 1 k k 1 k As k, var[ y k y,...] as long as Tha is, he k -sep ahead forecas of he variance of variance as he forecas horizon increases oward infiniy y converges o he uncondiional Anhony Tay Slide 1

22 Back o DL_STII: Fiing MA(1)-ARCH(1) and Forecas equaion.eq.arch(1,0) dl_sii c ma(1) Dependen Variable: DL_STII Mehod: ML - ARCH (Marquard) - Normal disribuion Sample (adjused): 1/07/1985 1/31/007 Included observaions: 5996 afer adjusmens Variable Coefficien Sd. Error z-saisic Prob. C MA(1) Variance Equaion C E RESID(-1)^ R-squared Mean dependen var Adjused R-squared S.D. dependen var S.E. of regression Akaike info crierion Sum squared resid Schwarz crierion Log likelihood Hannan-Quinn crier Durbin-Wason sa Invered MA Roos Anhony Tay Slide

23 There are no imporan changes o he esimae of he mean equaion The coefficien of ˆ 1 The fied sandard deviaion of in he variance equaion is clearly significan y is shown on he lef The fied and acuals are shown on he righ wih he +/- sandard deviaions. eq.makegarch h_ha line h_ha^0.5 genr dl_sii_ha = dl_sii-resid genr upp = dl_sii_ha + *h_ha^0.5 genr low = dl_sii_ha - *h_ha^0.5 line dl_sii dl_sii_ha upp low Anhony Tay Slide 3

24 H_HAT^ The one-sep ahead forecass are shown below Y Y_F Y_UP Y_DOWN Anhony Tay Slide 4

25 There is some improvemen in ha we are capuring some of he changes in volailiy, bu clearly he model sill does no properly describe and forecas volailiy here does no seem o be enough flexibiliy, and for long periods he inervals are sill far oo wide. Anhony Tay Slide 5

26 How do we evaluae he fi of ARCH model? The R says nohing abou he volailiy fi i only ells us how well he mean equaion fis he daa. The R here is acually smaller han in he pure MA(1) esimaion oupu Wih consan plus pure ARCH models we will usually ge negaive R s (why?) Anhony Tay Slide 6

27 To evaluae how well he ARCH model fis he volailiy, we make use of 1/ Our ARCH model produces esimaes of iid, ~(0,1) h u u N 1/ h (h_ha^0.5) We also have he residuals ˆ from he MA(1) model ha was fi o he daa Compue If h ˆ are good esimaes of he rue sandardized residuals should be iid uˆ ˆ ˆ 1/ h ( sandardized residuals ) h and mean equaion is correcly specified, hen he The correllogram of he sandardized residuals and heir squares should no show any dynamics: Anhony Tay Slide 7

28 eq.correl correl. of sandardized res. eq.correlsq correllogram of squared residuals I appears he mean equaion has done a good job (Q-sas on he lef) whereas he volailiy equaion could use some improvemens (again Q-sas, on he righ-hand figure) alhough he correlaions appear small Anhony Tay Slide 8

29 The hisogram of he sand. res. also ells us somehing useful abou he model. eq.his,500,000 S eries : S andardiz ed Res iduals S am ple 1/07/1985 1/31/007 O bs ervaions ,500 1, M ean M edian M ax im um M inim um S d. Dev S k ewnes s K uros is Jarque-B era P robabiliy Kurosis is much smaller han for he raw daa Some excess kurosis was removed by sandardizaion by 1/ h Bu sandardized residuals sill no normally disribued Anhony Tay Slide 9

30 ARCH(1) specificaion ofen no rich enough GARCH Models y 1/ iid, ~(0,1) h u u N h h Consider he variance equaion for he GARCH(1,1) process Recursively subsiuing backwards gives h h h () h (1) h (1...) Anhony Tay Slide 30

31 equaion eq3.arch(1,1) dl_sii c ma(1) Dependen Variable: DL_STII Mehod: ML - ARCH (Marquard) - Normal disribuion Sample (adjused): 1/07/1985 1/31/007 Included observaions: 5996 afer adjusmens Convergence achieved afer 36 ieraions eq3.correlsq Variable Coefficien Sd. Error z-saisic Prob. C MA(1) Variance Equaion C 5.35E-06.51E-07f RESID(-1)^ GARCH(-1) ,600 eq3.his R-squared 0.04 Mean dependen var Adj R-squared 0.03 S.D. dependen var S.E. of regression Akaike info crierion Sum sq resid Schwarz crierion Log likelihood Hannan-Quinn crier DW sa Invered MA Roos ,400 1,00 1, Series : Sandardized Residuals Sample 1/07/1985 1/31/007 O bs ervaions 5996 M ean M edian M ax im um M inim um S d. Dev S k ewnes s K uros is Jarque-B era P robabiliy Anhony Tay Slide 31

32 The one-sep ahead forecass over he forecas sample shows a subsanial improvemen: Y Y_F Y_UP Y_DOWN Anhony Tay Slide 3

33 GARCH-in-Mean y h 0 1 1/ iid, ~(0,1) h u u N h... h... h 1 1 p p 1 1 q q This allows he condiional mean of y o be correlaed wih he condiional variance In he following, sandard deviaion h 1/ equaion: is included as a regressor in he mean Anhony Tay Slide 33

34 equaion eq3.arch(1,1, archm=sd) dl_sii c ma(1) Dependen Variable: DL_STII Mehod: ML - ARCH (Marquard) - Normal disribuion Sample: 1/01/004 10/6/011 Included observaions: 040 Convergence achieved afer 1 ieraions Variable Coefficien Sd. Error z-saisic C MA(1) Variance Equaion C RESID(-1)^ GARCH(-1) R-squared Mean dependen var Adjused R-squared S.D. dependen var S.E. of regression Akaike info crierion Sum squared resid 0.31 Schwarz crierion Log likelihood Hannan-Quinn crier Durbin-Wason sa Invered MA Roos Anhony Tay Slide 34

Cointegration and Implications for Forecasting

Cointegration and Implications for Forecasting Coinegraion and Implicaions for Forecasing Two examples (A) Y Y 1 1 1 2 (B) Y 0.3 0.9 1 1 2 Example B: Coinegraion Y and coinegraed wih coinegraing vecor [1, 0.9] because Y 0.9 0.3 is a saionary process

More information

Regression with Time Series Data

Regression with Time Series Data Regression wih Time Series Daa y = β 0 + β 1 x 1 +...+ β k x k + u Serial Correlaion and Heeroskedasiciy Time Series - Serial Correlaion and Heeroskedasiciy 1 Serially Correlaed Errors: Consequences Wih

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

Stationary Time Series

Stationary Time Series 3-Jul-3 Time Series Analysis Assoc. Prof. Dr. Sevap Kesel July 03 Saionary Time Series Sricly saionary process: If he oin dis. of is he same as he oin dis. of ( X,... X n) ( X h,... X nh) Weakly Saionary

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1 Chaper 5 Heerocedasic Models Inroducion o ime series (2008) 1 Chaper 5. Conens. 5.1. The ARCH model. 5.2. The GARCH model. 5.3. The exponenial GARCH model. 5.4. The CHARMA model. 5.5. Random coefficien

More information

Econ Autocorrelation. Sanjaya DeSilva

Econ Autocorrelation. Sanjaya DeSilva Econ 39 - Auocorrelaion Sanjaya DeSilva Ocober 3, 008 1 Definiion Auocorrelaion (or serial correlaion) occurs when he error erm of one observaion is correlaed wih he error erm of any oher observaion. This

More information

Volatility. Many economic series, and most financial series, display conditional volatility

Volatility. Many economic series, and most financial series, display conditional volatility Volailiy Many economic series, and mos financial series, display condiional volailiy The condiional variance changes over ime There are periods of high volailiy When large changes frequenly occur And periods

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

Distribution of Least Squares

Distribution of Least Squares Disribuion of Leas Squares In classic regression, if he errors are iid normal, and independen of he regressors, hen he leas squares esimaes have an exac normal disribuion, no jus asympoic his is no rue

More information

Wisconsin Unemployment Rate Forecast Revisited

Wisconsin Unemployment Rate Forecast Revisited Wisconsin Unemploymen Rae Forecas Revisied Forecas in Lecure Wisconsin unemploymen November 06 was 4.% Forecass Poin Forecas 50% Inerval 80% Inerval Forecas Forecas December 06 4.0% (4.0%, 4.0%) (3.95%,

More information

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting Chaper 15 Time Series: Descripive Analyses, Models, and Forecasing Descripive Analysis: Index Numbers Index Number a number ha measures he change in a variable over ime relaive o he value of he variable

More information

Lecture 15. Dummy variables, continued

Lecture 15. Dummy variables, continued Lecure 15. Dummy variables, coninued Seasonal effecs in ime series Consider relaion beween elecriciy consumpion Y and elecriciy price X. The daa are quarerly ime series. Firs model ln α 1 + α2 Y = ln X

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance Lecure 5 Time series: ECM Bernardina Algieri Deparmen Economics, Saisics and Finance Conens Time Series Modelling Coinegraion Error Correcion Model Two Seps, Engle-Granger procedure Error Correcion Model

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests Ouline Ouline Hypohesis Tes wihin he Maximum Likelihood Framework There are hree main frequenis approaches o inference wihin he Maximum Likelihood framework: he Wald es, he Likelihood Raio es and he Lagrange

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

Wednesday, November 7 Handout: Heteroskedasticity

Wednesday, November 7 Handout: Heteroskedasticity Amhers College Deparmen of Economics Economics 360 Fall 202 Wednesday, November 7 Handou: Heeroskedasiciy Preview Review o Regression Model o Sandard Ordinary Leas Squares (OLS) Premises o Esimaion Procedures

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Solutions to Odd Number Exercises in Chapter 6

Solutions to Odd Number Exercises in Chapter 6 1 Soluions o Odd Number Exercises in 6.1 R y eˆ 1.7151 y 6.3 From eˆ ( T K) ˆ R 1 1 SST SST SST (1 R ) 55.36(1.7911) we have, ˆ 6.414 T K ( ) 6.5 y ye ye y e 1 1 Consider he erms e and xe b b x e y e b

More information

Dynamic Models, Autocorrelation and Forecasting

Dynamic Models, Autocorrelation and Forecasting ECON 4551 Economerics II Memorial Universiy of Newfoundland Dynamic Models, Auocorrelaion and Forecasing Adaped from Vera Tabakova s noes 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum.

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum. January 01 Final Exam Quesions: Mark W. Wason (Poins/Minues are given in Parenheses) (15) 1. Suppose ha y follows he saionary AR(1) process y = y 1 +, where = 0.5 and ~ iid(0,1). Le x = (y + y 1 )/. (11)

More information

5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models

5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models 5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models General form of nonlinear or linear regression models: y = h(x,β) + ε, ε iid N(0,σ ). Assume ha he x and ε sochasically independen. his assumpion

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size.

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size. Mehodology. Uni Roo Tess A ime series is inegraed when i has a mean revering propery and a finie variance. I is only emporarily ou of equilibrium and is called saionary in I(0). However a ime series ha

More information

Forecasting optimally

Forecasting optimally I) ile: Forecas Evaluaion II) Conens: Evaluaing forecass, properies of opimal forecass, esing properies of opimal forecass, saisical comparison of forecas accuracy III) Documenaion: - Diebold, Francis

More information

Testing the Random Walk Model. i.i.d. ( ) r

Testing the Random Walk Model. i.i.d. ( ) r he random walk heory saes: esing he Random Walk Model µ ε () np = + np + Momen Condiions where where ε ~ i.i.d he idea here is o es direcly he resricions imposed by momen condiions. lnp lnp µ ( lnp lnp

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING

ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING Inernaional Journal of Social Science and Economic Research Volume:02 Issue:0 ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING Chung-ki Min Professor

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Solutions: Wednesday, November 14

Solutions: Wednesday, November 14 Amhers College Deparmen of Economics Economics 360 Fall 2012 Soluions: Wednesday, November 14 Judicial Daa: Cross secion daa of judicial and economic saisics for he fify saes in 2000. JudExp CrimesAll

More information

3.1 More on model selection

3.1 More on model selection 3. More on Model selecion 3. Comparing models AIC, BIC, Adjused R squared. 3. Over Fiing problem. 3.3 Sample spliing. 3. More on model selecion crieria Ofen afer model fiing you are lef wih a handful of

More information

A Hybrid Model for Improving. Malaysian Gold Forecast Accuracy

A Hybrid Model for Improving. Malaysian Gold Forecast Accuracy In. Journal of Mah. Analysis, Vol. 8, 2014, no. 28, 1377-1387 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/10.12988/ijma.2014.45139 A Hybrid Model for Improving Malaysian Gold Forecas Accuracy Maizah Hura

More information

Box-Jenkins Modelling of Nigerian Stock Prices Data

Box-Jenkins Modelling of Nigerian Stock Prices Data Greener Journal of Science Engineering and Technological Research ISSN: 76-7835 Vol. (), pp. 03-038, Sepember 0. Research Aricle Box-Jenkins Modelling of Nigerian Sock Prices Daa Ee Harrison Euk*, Barholomew

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

Arima Fit to Nigerian Unemployment Data

Arima Fit to Nigerian Unemployment Data 2012, TexRoad Publicaion ISSN 2090-4304 Journal of Basic and Applied Scienific Research www.exroad.com Arima Fi o Nigerian Unemploymen Daa Ee Harrison ETUK 1, Barholomew UCHENDU 2, Uyodhu VICTOR-EDEMA

More information

Linear Combinations of Volatility Forecasts for the WIG20 and Polish Exchange Rates

Linear Combinations of Volatility Forecasts for the WIG20 and Polish Exchange Rates Eliza Buszkowska Universiy of Poznań, Poland Linear Combinaions of Volailiy Forecass for he WIG0 and Polish Exchange Raes Absrak. As is known forecas combinaions may be beer forecass hen forecass obained

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T Smoohing Consan process Separae signal & noise Smooh he daa: Backward smooher: A an give, replace he observaion b a combinaion of observaions a & before Simple smooher : replace he curren observaion wih

More information

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates)

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates) ECON 48 / WH Hong Time Series Daa Analysis. The Naure of Time Series Daa Example of ime series daa (inflaion and unemploymen raes) ECON 48 / WH Hong Time Series Daa Analysis The naure of ime series daa

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information

Applied Time Series Notes White noise: e t mean 0, variance 5 2 uncorrelated Moving Average

Applied Time Series Notes White noise: e t mean 0, variance 5 2 uncorrelated Moving Average Applied Time Series Noes Whie noise: e mean 0, variance 5 uncorrelaed Moving Average Order 1: (Y. ) œ e ) 1e -1 all Order q: (Y. ) œ e ) e â ) e all 1-1 q -q ( 14 ) Infinie order: (Y. ) œ e ) 1e -1 ) e

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

- The whole joint distribution is independent of the date at which it is measured and depends only on the lag.

- The whole joint distribution is independent of the date at which it is measured and depends only on the lag. Saionary Processes Sricly saionary - The whole join disribuion is indeenden of he dae a which i is measured and deends only on he lag. - E y ) is a finie consan. ( - V y ) is a finie consan. ( ( y, y s

More information

Stability. Coefficients may change over time. Evolution of the economy Policy changes

Stability. Coefficients may change over time. Evolution of the economy Policy changes Sabiliy Coefficiens may change over ime Evoluion of he economy Policy changes Time Varying Parameers y = α + x β + Coefficiens depend on he ime period If he coefficiens vary randomly and are unpredicable,

More information

Vector autoregression VAR. Case 1

Vector autoregression VAR. Case 1 Vecor auoregression VAR So far we have focused mosl on models where deends onl on as. More generall we migh wan o consider oin models ha involve more han one variable. There are wo reasons: Firs, we migh

More information

Lecture 3: Exponential Smoothing

Lecture 3: Exponential Smoothing NATCOR: Forecasing & Predicive Analyics Lecure 3: Exponenial Smoohing John Boylan Lancaser Cenre for Forecasing Deparmen of Managemen Science Mehods and Models Forecasing Mehod A (numerical) procedure

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j = 1: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME Moving Averages Recall ha a whie noise process is a series { } = having variance σ. The whie noise process has specral densiy f (λ) = of

More information

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions Business School, Brunel Universiy MSc. EC5501/5509 Modelling Financial Decisions and Markes/Inroducion o Quaniaive Mehods Prof. Menelaos Karanasos (Room SS269, el. 01895265284) Lecure Noes 6 1. Diagnosic

More information

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model:

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model: Dynamic Economeric Models: A. Auoregressive Model: Y = + 0 X 1 Y -1 + 2 Y -2 + k Y -k + e (Wih lagged dependen variable(s) on he RHS) B. Disribued-lag Model: Y = + 0 X + 1 X -1 + 2 X -2 + + k X -k + e

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

MODELING AND FORECASTING EXCHANGE RATE DYNAMICS IN PAKISTAN USING ARCH FAMILY OF MODELS

MODELING AND FORECASTING EXCHANGE RATE DYNAMICS IN PAKISTAN USING ARCH FAMILY OF MODELS Elecronic Journal of Applied Saisical Analysis EJASA (01), Elecron. J. App. Sa. Anal., Vol. 5, Issue 1, 15 9 e-issn 070-5948, DOI 10.185/i0705948v5n1p15 01 Universià del Saleno hp://siba-ese.unile.i/index.php/ejasa/index

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H. ACE 56 Fall 5 Lecure 8: The Simple Linear Regression Model: R, Reporing he Resuls and Predicion by Professor Sco H. Irwin Required Readings: Griffihs, Hill and Judge. "Explaining Variaion in he Dependen

More information

Additional material for Chapter 7 Regression diagnostic IV: model specification errors

Additional material for Chapter 7 Regression diagnostic IV: model specification errors Table 7.14 OLS resuls of he regression of PCE on income. Dependen Variable: PCE Mehod: Leas Squares Dae: 07/31/10 Time: 10:00 Sample: 1960 2009 Included observaions: 50 Variable Coefficien Sd. Error -Saisic

More information

The Effect of Nonzero Autocorrelation Coefficients on the Distributions of Durbin-Watson Test Estimator: Three Autoregressive Models

The Effect of Nonzero Autocorrelation Coefficients on the Distributions of Durbin-Watson Test Estimator: Three Autoregressive Models EJ Exper Journal of Economi c s ( 4 ), 85-9 9 4 Th e Au h or. Publi sh ed by Sp rin In v esify. ISS N 3 5 9-7 7 4 Econ omics.e xp erjou rn a ls.com The Effec of Nonzero Auocorrelaion Coefficiens on he

More information

CHAPTER 17: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS

CHAPTER 17: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS Basic Economerics, Gujarai and Porer CHAPTER 7: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS 7. (a) False. Economeric models are dynamic if hey porray he ime pah of he dependen

More information

Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformation

Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformation WORKING PAPER 01: Robus criical values for uni roo ess for series wih condiional heeroscedasiciy errors: An applicaion of he simple NoVaS ransformaion Panagiois Manalos ECONOMETRICS AND STATISTICS ISSN

More information

Exponential Smoothing

Exponential Smoothing Exponenial moohing Inroducion A simple mehod for forecasing. Does no require long series. Enables o decompose he series ino a rend and seasonal effecs. Paricularly useful mehod when here is a need o forecas

More information

INVESTIGATING THE WEAK FORM EFFICIENCY OF AN EMERGING MARKET USING PARAMETRIC TESTS: EVIDENCE FROM KARACHI STOCK MARKET OF PAKISTAN

INVESTIGATING THE WEAK FORM EFFICIENCY OF AN EMERGING MARKET USING PARAMETRIC TESTS: EVIDENCE FROM KARACHI STOCK MARKET OF PAKISTAN Elecronic Journal of Applied Saisical Analysis EJASA, Elecron. J. App. Sa. Anal. Vol. 3, Issue 1 (21), 52 64 ISSN 27-5948, DOI 1.1285/i275948v3n1p52 28 Universià del Saleno SIBA hp://siba-ese.unile.i/index.php/ejasa/index

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

6. COMPUTATION OF CENTILES AND Z-SCORES FOR VELOCITIES BASED ON WEIGHT, LENGTH AND HEAD CIRCUMFERENCE

6. COMPUTATION OF CENTILES AND Z-SCORES FOR VELOCITIES BASED ON WEIGHT, LENGTH AND HEAD CIRCUMFERENCE 6. COMPUTATION OF CENTILES AND Z-SCORES FOR VELOCITIES BASED ON WEIGHT, LENGTH AND HEAD CIRCUMFERENCE The same mehod used o calculae ceniles and -scores for he aained growh sandards based on weigh is used

More information

Ensamble methods: Bagging and Boosting

Ensamble methods: Bagging and Boosting Lecure 21 Ensamble mehods: Bagging and Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Ensemble mehods Mixure of expers Muliple base models (classifiers, regressors), each covers a differen par

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims Problem Se 5 Graduae Macro II, Spring 2017 The Universiy of Nore Dame Professor Sims Insrucions: You may consul wih oher members of he class, bu please make sure o urn in your own work. Where applicable,

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

Section 4.4 Logarithmic Properties

Section 4.4 Logarithmic Properties Secion. Logarihmic Properies 59 Secion. Logarihmic Properies In he previous secion, we derived wo imporan properies of arihms, which allowed us o solve some asic eponenial and arihmic equaions. Properies

More information

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu)

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu) CH Sean Han QF, NTHU, Taiwan BFS2010 (Join work wih T.-Y. Chen and W.-H. Liu) Risk Managemen in Pracice: Value a Risk (VaR) / Condiional Value a Risk (CVaR) Volailiy Esimaion: Correced Fourier Transform

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

You must fully interpret your results. There is a relationship doesn t cut it. Use the text and, especially, the SPSS Manual for guidance.

You must fully interpret your results. There is a relationship doesn t cut it. Use the text and, especially, the SPSS Manual for guidance. POLI 30D SPRING 2015 LAST ASSIGNMENT TRUMPETS PLEASE!!!!! Due Thursday, December 10 (or sooner), by 7PM hrough TurnIIn I had his all se up in my mind. You would use regression analysis o follow up on your

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

Chickens vs. Eggs: Replicating Thurman and Fisher (1988) by Arianto A. Patunru Department of Economics, University of Indonesia 2004

Chickens vs. Eggs: Replicating Thurman and Fisher (1988) by Arianto A. Patunru Department of Economics, University of Indonesia 2004 Chicens vs. Eggs: Relicaing Thurman and Fisher (988) by Ariano A. Paunru Dearmen of Economics, Universiy of Indonesia 2004. Inroducion This exercise lays ou he rocedure for esing Granger Causaliy as discussed

More information

Ensamble methods: Boosting

Ensamble methods: Boosting Lecure 21 Ensamble mehods: Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Schedule Final exam: April 18: 1:00-2:15pm, in-class Term projecs April 23 & April 25: a 1:00-2:30pm in CS seminar room

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

GDP Advance Estimate, 2016Q4

GDP Advance Estimate, 2016Q4 GDP Advance Esimae, 26Q4 Friday, Jan 27 Real gross domesic produc (GDP) increased a an annual rae of.9 percen in he fourh quarer of 26. The deceleraion in real GDP in he fourh quarer refleced a downurn

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Chapter 16. Regression with Time Series Data

Chapter 16. Regression with Time Series Data Chaper 16 Regression wih Time Series Daa The analysis of ime series daa is of vial ineres o many groups, such as macroeconomiss sudying he behavior of naional and inernaional economies, finance economiss

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Section 4.4 Logarithmic Properties

Section 4.4 Logarithmic Properties Secion. Logarihmic Properies 5 Secion. Logarihmic Properies In he previous secion, we derived wo imporan properies of arihms, which allowed us o solve some asic eponenial and arihmic equaions. Properies

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Nonstationarity-Integrated Models. Time Series Analysis Dr. Sevtap Kestel 1

Nonstationarity-Integrated Models. Time Series Analysis Dr. Sevtap Kestel 1 Nonsaionariy-Inegraed Models Time Series Analysis Dr. Sevap Kesel 1 Diagnosic Checking Residual Analysis: Whie noise. P-P or Q-Q plos of he residuals follow a normal disribuion, he series is called a Gaussian

More information

Section 4 NABE ASTEF 232

Section 4 NABE ASTEF 232 Secion 4 NABE ASTEF 3 APPLIED ECONOMETRICS: TIME-SERIES ANALYSIS 33 Inroducion and Review The Naure of Economic Modeling Judgemen calls unavoidable Economerics an ar Componens of Applied Economerics Specificaion

More information

I. Return Calculations (20 pts, 4 points each)

I. Return Calculations (20 pts, 4 points each) Universiy of Washingon Spring 015 Deparmen of Economics Eric Zivo Econ 44 Miderm Exam Soluions This is a closed book and closed noe exam. However, you are allowed one page of noes (8.5 by 11 or A4 double-sided)

More information

13.3 Term structure models

13.3 Term structure models 13.3 Term srucure models 13.3.1 Expecaions hypohesis model - Simples "model" a) shor rae b) expecaions o ge oher prices Resul: y () = 1 h +1 δ = φ( δ)+ε +1 f () = E (y +1) (1) =δ + φ( δ) f (3) = E (y +)

More information

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing M Business Forecasing Mehods Exponenial moohing Mehods ecurer : Dr Iris Yeung Room No : P79 Tel No : 788 8 Types of Exponenial moohing Mehods imple Exponenial moohing Double Exponenial moohing Brown s

More information

Hypothesis Testing in the Classical Normal Linear Regression Model. 1. Components of Hypothesis Tests

Hypothesis Testing in the Classical Normal Linear Regression Model. 1. Components of Hypothesis Tests ECONOMICS 35* -- NOTE 8 M.G. Abbo ECON 35* -- NOTE 8 Hypohesis Tesing in he Classical Normal Linear Regression Model. Componens of Hypohesis Tess. A esable hypohesis, which consiss of wo pars: Par : a

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Forecasting. Summary. Sample StatFolio: tsforecast.sgp. STATGRAPHICS Centurion Rev. 9/16/2013

Forecasting. Summary. Sample StatFolio: tsforecast.sgp. STATGRAPHICS Centurion Rev. 9/16/2013 STATGRAPHICS Cenurion Rev. 9/16/2013 Forecasing Summary... 1 Daa Inpu... 3 Analysis Opions... 5 Forecasing Models... 9 Analysis Summary... 21 Time Sequence Plo... 23 Forecas Table... 24 Forecas Plo...

More information

ENGI 9420 Engineering Analysis Assignment 2 Solutions

ENGI 9420 Engineering Analysis Assignment 2 Solutions ENGI 940 Engineering Analysis Assignmen Soluions 0 Fall [Second order ODEs, Laplace ransforms; Secions.0-.09]. Use Laplace ransforms o solve he iniial value problem [0] dy y, y( 0) 4 d + [This was Quesion

More information