Stationary Time Series

Size: px
Start display at page:

Download "Stationary Time Series"

Transcription

1 3-Jul-3 Time Series Analysis Assoc. Prof. Dr. Sevap Kesel July 03 Saionary Time Series Sricly saionary process: If he oin dis. of is he same as he oin dis. of ( X,... X n) ( X h,... X nh) Weakly Saionary :{ X } is weakly saionary if i. ) E( X ) is independen of. x ( Cov( X, X ) ( r, s) E[( X ( r))( X ( s))] ii. r s x does no depend on. r x s x

2 3-Jul-3 Auocorrelaion Auocovariance Funcion (ACVF) ( h) Cov( X, X ) x h Auocorrelaion Funcion Properies:. ACF is an even funcion of he lag. ACF lies beween -, ( h) ( h) (0) ( h) ( h) ( h) Sample Auocovariance Funcion: Le X,X,..,X n be observaions of a series. Given he sample mean is X and n The sample auocovariance funcion h ˆ( h) ( X X )( X h n and he sample auocorrelaion funcion ˆ( h) ˆ( h) ˆ(0) he following is rue: Lemma: If he series is random, hen for large n, he sample ACF is approximaely normally disribued wih mean zero and variance (/n). ˆ( h) ~ N(0, ) n X )

3 3-Jul-3 Correlogram Correlogram is an aid o inerpre a se of ACF where, sample auocorrelaionsare ploed agains lag h. Remarks: For daa conaining rend will exhibi slow decay as h increases. For daa wih a periodic componen will exhibi similar behavior wih he same periodiciy. ˆ ~ N(0, ) k 3. Random Series: n 3.. If a ime series compleely random, for large n, 3.. For a random ime series If 95% of ˆ( h) he values lie wihin ime series is random. n ˆ( h) 0 Correlogram Shor-erm correlaion: Fairly large value of ˆ() is followed by or more coefficiens which is significanly smaller han zero, end o ge successively smaller. ˆ( h) ges o zero for large h. Alernaing series: Correlogram also ends o alernae. Non-saionary series: If he series conains a rend, ˆ( h) values will no come down o zero excep very large h. Trend should be removed firs. Seasonal flucuaions: Correlogram exhibi an oscillaion a he same frequency. If follows a sinusoidal paern, hen so does ˆ( h) 3

4 3-Jul Auocorrelaion Auocorrelaion Funcion for reacion im Auocorrelaion LBQ T Corr Lag LBQ T Corr Lag LBQ T Corr Lag Auocorrelaion Funcion for sales Examples o correlograms for differen series Auocorrelaion LBQ T Corr Lag LBQ T Corr Lag LBQ T Corr Lag LBQ T Corr Lag Auocorrelaion Funcion for raffic faa

5 3-Jul-3 Tesing Serial Correlaion DW -ρ When here is no serial correlaion, ρ=0 and DW saisic akes a value close o. Posiive serial correlaion produces a DW<, while negaive serial correlaion produces a DW>. DW n ( ) n 5

6 3-Jul-3 Example Tesing Serial Correlaion Pormaneau Tes: An imporan source of informaion in deecing he presence and form of serial correlaion is he correlogram. Qualiaive examinaion of he correlogram is an imporan diagnosic ool bu i does no consiue a formal saisical es. The Box-Pierce and is relaed es he Lung-Box es are boh pormaneu ess which allow us o es he hypohesis ha he firs h poins in he correlogram are random wih a rue value of zero. Box-Pierce es is defined as h Q n ˆ i i A beer sample saisics is Lung-Box saisics is h * Q n( n ) ˆ i i i ( ni) Q and Q* are disribued Chi-square wih degrees of freedom of h. 6

7 3-Jul-3 MA(q) Model Linear Process: X Whie Noise Process (WN): {X } is a sequence of i.i.d random variables wih zero mean and finie variance σ. The series is saionary wih γ(+h,)= σ for h=0. Whie Noise process is a purely random process where all auocorrelaion funcions for every h are close o zero. X i0 i, i 0... k k X The plo of index numbers having Whie Noise model 4 7

8 3-Jul-3 Random Walk Random Walk Model: Le {S, =,..,n} be a process wih S =Σ where is WN. Then, E[S ]=0, Var[S ]=.σ and γ(+h,)=.σ Since γ(+h,)=.σ depends on, he series is no saionary. However, is saionary. X 5 6 8

9 3-Jul-3 Backward shif operaor Backward Shif Operaor, B, is anoher form of expressing he series BX X B( BX ) BX X B X B X X B 0 MA(q) Model Le { }~WN(0,σ ) MA(q) is X q 0 q For q= MA() E[ ]=0 V[ ]= σ (+θ ) X ( h, ) x x ( h) 0 ( ) 0 h 0 h h h 0 h h 8 9

10 3-Jul-3 9 AR(p) Model and is auocorrelaion Le { }~WN(0,σ ) AR(p) is For p= AR() E[ ]=0 V[ ]= σ /(-Φ ) X X X X... p p X X h ( h x ) h ( h ) x 0 0

11 3-Jul-3 AR() Model From he oupu, he behavior of ACF for AR() is ails off; he behavior of PACF for AR() is cus off afer lag.

12 3-Jul-3 ARMA(p,q) Model Le { }~WN(0,σ ) ARMA(p,q) is X X X... X.. p p q q ( B)( X ) ( B) where B B B B ( )... ( B) B.. B q q p p ARMA(,) X ( X ) ( B)( X ) ( B) where ( B) B ( B) B 3 Parial Auocorrelaion PACF For an AR(p) process PACF, Φ hh is he correlaion beween X and X -h conrolling he effec of X -h- AR(): Φ = Φ=ρ() AR(): Φ = Φ=ρ() hh () () () 0 h 4

13 3-Jul-3 PACF AR(p) (); h h, () () ; (), hh h, h,,.., h hh ( h) h h h, h, ( ) ( ), h 3,4,... Yule Walker Equaions ( h) ( h ) ( h ) ( h p) ( h) ( h ) ( h ) p p ( h p) h 0 h 0 5 h ( ) for h 0 hh ( h) Parial Auocorrelaion for MA() process ( ) ( ) ( ) Asympoic disribuion of Parial Auocorrelaions For a causal AR(p) process, he asympoic disribuion n ˆ d N(0,) kk 6 3

14 X 3-Jul-3 Properies of he ACF and PACF for various ARMA Models Model ACF PACF AR() Exponenial or =0 for h> kk oscillaory decay AR() Exponenial or sine kk =0 for h> wave decay AR(p) Exponenial or sine kk =0 for h>p wave decay MA() h 0 =0 for h> Dominaed by damped exponenial MA() =0 for h> h 0 Dominaed by damped exponenial or sine wave MA(q) =0 for h>q h 0 Dominaed by linear combinaion of damped exponenial and/or sine waves ARMA(,) Tails off. Exponenial Tails off. Dominaed by exponenial decay from lag decay from lag ARMA(p,q) Tails off afer (q-p) Tails off afer (p-q) lags. Dominaed by lags. Exponenial damped exponenials and or sine waves and/or sine wave decay afer (p-q) lags afer (q-p) lags 7 Example: Yield Daa Yield Morgages-Yield on Gov. Loan Monhly) ACF year monhs h 7 9 lag Parial Auocorrelaion Funcion for lag h=,,3,..,0 h kk h kk PACF,00 0,80 0,60 0,40 0,0 0,00-0,0-0,

15 3-Jul-3 Table 6: Oupu of he daa se Dependen Variable: YIELD_DATA Mehod: Leas Squares Dae: 0//08 Time: 00:4 Variable Coefficien Sd. Error -Saisic Prob. C AR() R-squared Mean dependen var Adused R-squared S.D. dependen var S.E. of regression Akaike info crierion Sum squared resid Schwarz crierion Log likelihood F-saisic Durbin-Wason sa Prob(F-saisic) Yˆ Y 9 Saionary Condiions: Causaliy The esimaed values of parameers have cerain condiions. X X where X ( X ) afer subsiuions X ( B B...) X ( ) ( B) B In general, AR(p) is causal if he roos of Φ(B) lie in uni circle p p (.. p ) 0 X B B B B X ( ) ( B) B B 30 5

16 3-Jul-3 Inveribiliy The esimaed values of parameers have cerain condiions. X B ( B) X ( ) X ( B) B B In general, MA(q) is inverible if he roos of θ(b) lie in uni circle X... q q X B B.. B q q q q (.. q ) 0 X B B B B X ( ) ( B) B B 3 Exercise Dependen Variable: SERIES0 Variable Coefficien Sd. Error -Saisic Prob. AR() MA() MA() R-squared Mean dependen var Adused R-squared S.D. dependen var S.E. of regression.7754 Akaike info crierion Sum squared resid Schwarz crierion Log likelihood Durbin-Wason sa.9979 Invered AR Roos.85 Invered MA Roos

17 3-Jul-3 Dependen Variable: SERIES0 Variable Coefficien Sd. Error -Saisic Prob. AR() AR() MA() R-squared Mean dependen var Adused R-squared S.D. dependen var S.E. of regression.8997 Akaike info crierion Sum squared resid 3.76 Schwarz crierion Log likelihood Durbin-Wason sa Invered AR Roos.85. Invered MA Roos

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

- The whole joint distribution is independent of the date at which it is measured and depends only on the lag.

- The whole joint distribution is independent of the date at which it is measured and depends only on the lag. Saionary Processes Sricly saionary - The whole join disribuion is indeenden of he dae a which i is measured and deends only on he lag. - E y ) is a finie consan. ( - V y ) is a finie consan. ( ( y, y s

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

Nonstationarity-Integrated Models. Time Series Analysis Dr. Sevtap Kestel 1

Nonstationarity-Integrated Models. Time Series Analysis Dr. Sevtap Kestel 1 Nonsaionariy-Inegraed Models Time Series Analysis Dr. Sevap Kesel 1 Diagnosic Checking Residual Analysis: Whie noise. P-P or Q-Q plos of he residuals follow a normal disribuion, he series is called a Gaussian

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

Econ Autocorrelation. Sanjaya DeSilva

Econ Autocorrelation. Sanjaya DeSilva Econ 39 - Auocorrelaion Sanjaya DeSilva Ocober 3, 008 1 Definiion Auocorrelaion (or serial correlaion) occurs when he error erm of one observaion is correlaed wih he error erm of any oher observaion. This

More information

Section 4 NABE ASTEF 232

Section 4 NABE ASTEF 232 Secion 4 NABE ASTEF 3 APPLIED ECONOMETRICS: TIME-SERIES ANALYSIS 33 Inroducion and Review The Naure of Economic Modeling Judgemen calls unavoidable Economerics an ar Componens of Applied Economerics Specificaion

More information

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1 Modeling and Forecasing Volailiy Auoregressive Condiional Heeroskedasiciy Models Anhony Tay Slide 1 smpl @all line(m) sii dl_sii S TII D L _ S TII 4,000. 3,000.1.0,000 -.1 1,000 -. 0 86 88 90 9 94 96 98

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1 Chaper 5 Heerocedasic Models Inroducion o ime series (2008) 1 Chaper 5. Conens. 5.1. The ARCH model. 5.2. The GARCH model. 5.3. The exponenial GARCH model. 5.4. The CHARMA model. 5.5. Random coefficien

More information

Box-Jenkins Modelling of Nigerian Stock Prices Data

Box-Jenkins Modelling of Nigerian Stock Prices Data Greener Journal of Science Engineering and Technological Research ISSN: 76-7835 Vol. (), pp. 03-038, Sepember 0. Research Aricle Box-Jenkins Modelling of Nigerian Sock Prices Daa Ee Harrison Euk*, Barholomew

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

STAD57 Time Series Analysis. Lecture 17

STAD57 Time Series Analysis. Lecture 17 STAD57 Time Series Analysis Lecure 17 1 Exponenially Weighed Moving Average Model Consider ARIMA(0,1,1), or IMA(1,1), model 1 s order differences follow MA(1) X X W W Y X X W W 1 1 1 1 Very common model

More information

STAD57 Time Series Analysis. Lecture 17

STAD57 Time Series Analysis. Lecture 17 STAD57 Time Series Analysis Lecure 17 1 Exponenially Weighed Moving Average Model Consider ARIMA(0,1,1), or IMA(1,1), model 1 s order differences follow MA(1) X X W W Y X X W W 1 1 1 1 Very common model

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Regression with Time Series Data

Regression with Time Series Data Regression wih Time Series Daa y = β 0 + β 1 x 1 +...+ β k x k + u Serial Correlaion and Heeroskedasiciy Time Series - Serial Correlaion and Heeroskedasiciy 1 Serially Correlaed Errors: Consequences Wih

More information

Arima Fit to Nigerian Unemployment Data

Arima Fit to Nigerian Unemployment Data 2012, TexRoad Publicaion ISSN 2090-4304 Journal of Basic and Applied Scienific Research www.exroad.com Arima Fi o Nigerian Unemploymen Daa Ee Harrison ETUK 1, Barholomew UCHENDU 2, Uyodhu VICTOR-EDEMA

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Distribution of Least Squares

Distribution of Least Squares Disribuion of Leas Squares In classic regression, if he errors are iid normal, and independen of he regressors, hen he leas squares esimaes have an exac normal disribuion, no jus asympoic his is no rue

More information

Cointegration and Implications for Forecasting

Cointegration and Implications for Forecasting Coinegraion and Implicaions for Forecasing Two examples (A) Y Y 1 1 1 2 (B) Y 0.3 0.9 1 1 2 Example B: Coinegraion Y and coinegraed wih coinegraing vecor [1, 0.9] because Y 0.9 0.3 is a saionary process

More information

STAD57 Time Series Analysis. Lecture 5

STAD57 Time Series Analysis. Lecture 5 STAD57 Time Series Analysis Lecure 5 1 Exploraory Daa Analysis Check if given TS is saionary: µ is consan σ 2 is consan γ(s,) is funcion of h= s If no, ry o make i saionary using some of he mehods below:

More information

ST4064. Time Series Analysis. Lecture notes

ST4064. Time Series Analysis. Lecture notes ST4064 Time Series Analysis ST4064 Time Series Analysis Lecure noes ST4064 Time Series Analysis Ouline I II Inroducion o ime series analysis Saionariy and ARMA modelling. Saionariy a. Definiions b. Sric

More information

Wisconsin Unemployment Rate Forecast Revisited

Wisconsin Unemployment Rate Forecast Revisited Wisconsin Unemploymen Rae Forecas Revisied Forecas in Lecure Wisconsin unemploymen November 06 was 4.% Forecass Poin Forecas 50% Inerval 80% Inerval Forecas Forecas December 06 4.0% (4.0%, 4.0%) (3.95%,

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size.

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size. Mehodology. Uni Roo Tess A ime series is inegraed when i has a mean revering propery and a finie variance. I is only emporarily ou of equilibrium and is called saionary in I(0). However a ime series ha

More information

Applied Time Series Notes White noise: e t mean 0, variance 5 2 uncorrelated Moving Average

Applied Time Series Notes White noise: e t mean 0, variance 5 2 uncorrelated Moving Average Applied Time Series Noes Whie noise: e mean 0, variance 5 uncorrelaed Moving Average Order 1: (Y. ) œ e ) 1e -1 all Order q: (Y. ) œ e ) e â ) e all 1-1 q -q ( 14 ) Infinie order: (Y. ) œ e ) 1e -1 ) e

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests Ouline Ouline Hypohesis Tes wihin he Maximum Likelihood Framework There are hree main frequenis approaches o inference wihin he Maximum Likelihood framework: he Wald es, he Likelihood Raio es and he Lagrange

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

Lecture 15. Dummy variables, continued

Lecture 15. Dummy variables, continued Lecure 15. Dummy variables, coninued Seasonal effecs in ime series Consider relaion beween elecriciy consumpion Y and elecriciy price X. The daa are quarerly ime series. Firs model ln α 1 + α2 Y = ln X

More information

2 Univariate Stationary Processes

2 Univariate Stationary Processes Univariae Saionary Processes As menioned in he inroducion, he publicaion of he exbook by GEORGE E.P. BOX and GWILYM M. JENKINS in 97 opened a new road o he analysis of economic ime series. This chaper

More information

Forecasting optimally

Forecasting optimally I) ile: Forecas Evaluaion II) Conens: Evaluaing forecass, properies of opimal forecass, esing properies of opimal forecass, saisical comparison of forecas accuracy III) Documenaion: - Diebold, Francis

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance Lecure 5 Time series: ECM Bernardina Algieri Deparmen Economics, Saisics and Finance Conens Time Series Modelling Coinegraion Error Correcion Model Two Seps, Engle-Granger procedure Error Correcion Model

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

CHAPTER 17: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS

CHAPTER 17: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS Basic Economerics, Gujarai and Porer CHAPTER 7: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS 7. (a) False. Economeric models are dynamic if hey porray he ime pah of he dependen

More information

Chapter 16. Regression with Time Series Data

Chapter 16. Regression with Time Series Data Chaper 16 Regression wih Time Series Daa The analysis of ime series daa is of vial ineres o many groups, such as macroeconomiss sudying he behavior of naional and inernaional economies, finance economiss

More information

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model:

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model: Dynamic Economeric Models: A. Auoregressive Model: Y = + 0 X 1 Y -1 + 2 Y -2 + k Y -k + e (Wih lagged dependen variable(s) on he RHS) B. Disribued-lag Model: Y = + 0 X + 1 X -1 + 2 X -2 + + k X -k + e

More information

5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models

5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models 5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models General form of nonlinear or linear regression models: y = h(x,β) + ε, ε iid N(0,σ ). Assume ha he x and ε sochasically independen. his assumpion

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Testing the Random Walk Model. i.i.d. ( ) r

Testing the Random Walk Model. i.i.d. ( ) r he random walk heory saes: esing he Random Walk Model µ ε () np = + np + Momen Condiions where where ε ~ i.i.d he idea here is o es direcly he resricions imposed by momen condiions. lnp lnp µ ( lnp lnp

More information

Lesson 2, page 1. Outline of lesson 2

Lesson 2, page 1. Outline of lesson 2 Lesson 2, page Ouline of lesson 2 Inroduce he Auocorrelaion Coefficien Undersand and define saionariy Discuss ransformaion Discuss rend and rend removal C:\Kyrre\sudier\drgrad\Kurs\series\lecure 02 03022.doc,

More information

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting Chaper 15 Time Series: Descripive Analyses, Models, and Forecasing Descripive Analysis: Index Numbers Index Number a number ha measures he change in a variable over ime relaive o he value of he variable

More information

Quarterly ice cream sales are high each summer, and the series tends to repeat itself each year, so that the seasonal period is 4.

Quarterly ice cream sales are high each summer, and the series tends to repeat itself each year, so that the seasonal period is 4. Seasonal models Many business and economic ime series conain a seasonal componen ha repeas iself afer a regular period of ime. The smalles ime period for his repeiion is called he seasonal period, and

More information

Dynamic Models, Autocorrelation and Forecasting

Dynamic Models, Autocorrelation and Forecasting ECON 4551 Economerics II Memorial Universiy of Newfoundland Dynamic Models, Auocorrelaion and Forecasing Adaped from Vera Tabakova s noes 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing

More information

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum.

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum. January 01 Final Exam Quesions: Mark W. Wason (Poins/Minues are given in Parenheses) (15) 1. Suppose ha y follows he saionary AR(1) process y = y 1 +, where = 0.5 and ~ iid(0,1). Le x = (y + y 1 )/. (11)

More information

White noise processes

White noise processes Whie noise processes A d-dimensional ime series X = {, Z} is said o be whie noise wih mean 0 and covariance marix Σ, if WN(0, Σ), E = 0, E( ) = Σ, E( X( + u) ) = 0 for u 0. Example: iid N (0, 1) 3 2 1

More information

BOX-JENKINS MODEL NOTATION. The Box-Jenkins ARMA(p,q) model is denoted by the equation. pwhile the moving average (MA) part of the model is θ1at

BOX-JENKINS MODEL NOTATION. The Box-Jenkins ARMA(p,q) model is denoted by the equation. pwhile the moving average (MA) part of the model is θ1at BOX-JENKINS MODEL NOAION he Box-Jenkins ARMA(,q) model is denoed b he equaion + + L+ + a θ a L θ a 0 q q. () he auoregressive (AR) ar of he model is + L+ while he moving average (MA) ar of he model is

More information

Innova Junior College H2 Mathematics JC2 Preliminary Examinations Paper 2 Solutions 0 (*)

Innova Junior College H2 Mathematics JC2 Preliminary Examinations Paper 2 Solutions 0 (*) Soluion 3 x 4x3 x 3 x 0 4x3 x 4x3 x 4x3 x 4x3 x x 3x 3 4x3 x Innova Junior College H Mahemaics JC Preliminary Examinaions Paper Soluions 3x 3 4x 3x 0 4x 3 4x 3 0 (*) 0 0 + + + - 3 3 4 3 3 3 3 Hence x or

More information

The Effect of Nonzero Autocorrelation Coefficients on the Distributions of Durbin-Watson Test Estimator: Three Autoregressive Models

The Effect of Nonzero Autocorrelation Coefficients on the Distributions of Durbin-Watson Test Estimator: Three Autoregressive Models EJ Exper Journal of Economi c s ( 4 ), 85-9 9 4 Th e Au h or. Publi sh ed by Sp rin In v esify. ISS N 3 5 9-7 7 4 Econ omics.e xp erjou rn a ls.com The Effec of Nonzero Auocorrelaion Coefficiens on he

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

Γ(h)=0 h 0. Γ(h)=cov(X 0,X 0-h ). A stationary process is called white noise if its autocovariance

Γ(h)=0 h 0. Γ(h)=cov(X 0,X 0-h ). A stationary process is called white noise if its autocovariance A family, Z,of random vecors : Ω R k defined on a probabiliy space Ω, A,P) is called a saionary process if he mean vecors E E =E M = M k E and he auocovariance marices are independen of. k cov, -h )=E

More information

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen

Sample Autocorrelations for Financial Time Series Models. Richard A. Davis Colorado State University Thomas Mikosch University of Copenhagen Sample Auocorrelaions for Financial Time Series Models Richard A. Davis Colorado Sae Universiy Thomas Mikosch Universiy of Copenhagen Ouline Characerisics of some financial ime series IBM reurns NZ-USA

More information

Let. x y. denote a bivariate time series with zero mean.

Let. x y. denote a bivariate time series with zero mean. Linear Filer Le x y : T denoe a bivariae ime erie wih zero mean. Suppoe ha he ime erie {y : T} i conruced a follow: y a x The ime erie {y : T} i aid o be conruced from {x : T} by mean of a Linear Filer.

More information

Y 0.4Y 0.45Y Y to a proper ARMA specification.

Y 0.4Y 0.45Y Y to a proper ARMA specification. HG Jan 04 ECON 50 Exercises II - 0 Feb 04 (wih answers Exercise. Read secion 8 in lecure noes 3 (LN3 on he common facor problem in ARMA-processes. Consider he following process Y 0.4Y 0.45Y 0.5 ( where

More information

1. Joint stationarity and long run effects in a simple ADL(1,1) Suppose Xt, Y, also is stationary?

1. Joint stationarity and long run effects in a simple ADL(1,1) Suppose Xt, Y, also is stationary? HG Third lecure - 9. Jan. 04. Join saionariy and long run effecs in a simple ADL(,) Suppose X, Y are wo saionary ime series. Does i follow ha he sum, X Y, also is saionary? The answer is NO in general.

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Chapter 3, Part IV: The Box-Jenkins Approach to Model Building

Chapter 3, Part IV: The Box-Jenkins Approach to Model Building Chaper 3, Par IV: The Box-Jenkins Approach o Model Building The ARMA models have been found o be quie useful for describing saionary nonseasonal ime series. A parial explanaion for his fac is provided

More information

Modeling Rainfall in Dhaka Division of Bangladesh Using Time Series Analysis.

Modeling Rainfall in Dhaka Division of Bangladesh Using Time Series Analysis. Journal of Mahemaical Modelling and Applicaion 01, Vol. 1, No.5, 67-73 ISSN: 178-43 67 Modeling Rainfall in Dhaka Division of Bangladesh Using Time Series Analysis. Md. Mahsin Insiue of Saisical Research

More information

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j = 1: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME Moving Averages Recall ha a whie noise process is a series { } = having variance σ. The whie noise process has specral densiy f (λ) = of

More information

Nonlinearity Test on Time Series Data

Nonlinearity Test on Time Series Data PROCEEDING OF 3 RD INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION AND EDUCATION OF MATHEMATICS AND SCIENCE YOGYAKARTA, 16 17 MAY 016 Nonlineariy Tes on Time Series Daa Case Sudy: The Number of Foreign

More information

How to Deal with Structural Breaks in Practical Cointegration Analysis

How to Deal with Structural Breaks in Practical Cointegration Analysis How o Deal wih Srucural Breaks in Pracical Coinegraion Analysis Roselyne Joyeux * School of Economic and Financial Sudies Macquarie Universiy December 00 ABSTRACT In his noe we consider he reamen of srucural

More information

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing M Business Forecasing Mehods Exponenial moohing Mehods ecurer : Dr Iris Yeung Room No : P79 Tel No : 788 8 Types of Exponenial moohing Mehods imple Exponenial moohing Double Exponenial moohing Brown s

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

Stability. Coefficients may change over time. Evolution of the economy Policy changes

Stability. Coefficients may change over time. Evolution of the economy Policy changes Sabiliy Coefficiens may change over ime Evoluion of he economy Policy changes Time Varying Parameers y = α + x β + Coefficiens depend on he ime period If he coefficiens vary randomly and are unpredicable,

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Wednesday, November 7 Handout: Heteroskedasticity

Wednesday, November 7 Handout: Heteroskedasticity Amhers College Deparmen of Economics Economics 360 Fall 202 Wednesday, November 7 Handou: Heeroskedasiciy Preview Review o Regression Model o Sandard Ordinary Leas Squares (OLS) Premises o Esimaion Procedures

More information

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates)

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates) ECON 48 / WH Hong Time Series Daa Analysis. The Naure of Time Series Daa Example of ime series daa (inflaion and unemploymen raes) ECON 48 / WH Hong Time Series Daa Analysis The naure of ime series daa

More information

Computer Simulates the Effect of Internal Restriction on Residuals in Linear Regression Model with First-order Autoregressive Procedures

Computer Simulates the Effect of Internal Restriction on Residuals in Linear Regression Model with First-order Autoregressive Procedures MPRA Munich Personal RePEc Archive Compuer Simulaes he Effec of Inernal Resricion on Residuals in Linear Regression Model wih Firs-order Auoregressive Procedures Mei-Yu Lee Deparmen of Applied Finance,

More information

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen

Richard A. Davis Colorado State University Bojan Basrak Eurandom Thomas Mikosch University of Groningen Mulivariae Regular Variaion wih Applicaion o Financial Time Series Models Richard A. Davis Colorado Sae Universiy Bojan Basrak Eurandom Thomas Mikosch Universiy of Groningen Ouline + Characerisics of some

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

STAD57 Time Series Analysis. Lecture 14

STAD57 Time Series Analysis. Lecture 14 STAD57 Time Series Analysis Lecure 14 1 Maximum Likelihood AR(p) Esimaion Insead of Yule-Walker (MM) for AR(p) model, can use Maximum Likelihood (ML) esimaion Likelihood is join densiy of daa {x 1,,x n

More information

Modeling Economic Time Series with Stochastic Linear Difference Equations

Modeling Economic Time Series with Stochastic Linear Difference Equations A. Thiemer, SLDG.mcd, 6..6 FH-Kiel Universiy of Applied Sciences Prof. Dr. Andreas Thiemer e-mail: andreas.hiemer@fh-kiel.de Modeling Economic Time Series wih Sochasic Linear Difference Equaions Summary:

More information

Derived Short-Run and Long-Run Softwood Lumber Demand and Supply

Derived Short-Run and Long-Run Softwood Lumber Demand and Supply Derived Shor-Run and Long-Run Sofwood Lumber Demand and Supply Nianfu Song and Sun Joseph Chang School of Renewable Naural Resources Louisiana Sae Universiy Ouline Shor-run run and long-run implied by

More information

Elements of Stochastic Processes Lecture II Hamid R. Rabiee

Elements of Stochastic Processes Lecture II Hamid R. Rabiee Sochasic Processes Elemens of Sochasic Processes Lecure II Hamid R. Rabiee Overview Reading Assignmen Chaper 9 of exbook Furher Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A Firs Course

More information

INVESTIGATING THE WEAK FORM EFFICIENCY OF AN EMERGING MARKET USING PARAMETRIC TESTS: EVIDENCE FROM KARACHI STOCK MARKET OF PAKISTAN

INVESTIGATING THE WEAK FORM EFFICIENCY OF AN EMERGING MARKET USING PARAMETRIC TESTS: EVIDENCE FROM KARACHI STOCK MARKET OF PAKISTAN Elecronic Journal of Applied Saisical Analysis EJASA, Elecron. J. App. Sa. Anal. Vol. 3, Issue 1 (21), 52 64 ISSN 27-5948, DOI 1.1285/i275948v3n1p52 28 Universià del Saleno SIBA hp://siba-ese.unile.i/index.php/ejasa/index

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

Solutions to Odd Number Exercises in Chapter 6

Solutions to Odd Number Exercises in Chapter 6 1 Soluions o Odd Number Exercises in 6.1 R y eˆ 1.7151 y 6.3 From eˆ ( T K) ˆ R 1 1 SST SST SST (1 R ) 55.36(1.7911) we have, ˆ 6.414 T K ( ) 6.5 y ye ye y e 1 1 Consider he erms e and xe b b x e y e b

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

School and Workshop on Market Microstructure: Design, Efficiency and Statistical Regularities March 2011

School and Workshop on Market Microstructure: Design, Efficiency and Statistical Regularities March 2011 2229-12 School and Workshop on Marke Microsrucure: Design, Efficiency and Saisical Regulariies 21-25 March 2011 Some mahemaical properies of order book models Frederic ABERGEL Ecole Cenrale Paris Grande

More information

Forecast of Adult Literacy in Sudan

Forecast of Adult Literacy in Sudan Journal for Sudies in Managemen and Planning Available a hp://inernaionaljournalofresearch.org/index.php/jsmap e-issn: 2395-463 Volume 1 Issue 2 March 215 Forecas of Adul Lieracy in Sudan Dr. Elfarazdag

More information

Recent Developments in the Unit Root Problem for Moving Averages

Recent Developments in the Unit Root Problem for Moving Averages Recen Developmens in he Uni Roo Problem for Moving Averages Richard A. Davis Colorado Sae Universiy Mei-Ching Chen Chaoyang Insiue of echnology homas Miosch Universiy of Groningen Non-inverible MA() Model

More information

Regular Variation and Financial Time Series Models

Regular Variation and Financial Time Series Models Regular Variaion and Financial Time Series Models Richard A. Davis Colorado Sae Universiy www.sa.colosae.edu/~rdavis Thomas Mikosch Universiy of Copenhagen Bojan Basrak Eurandom Ouline Characerisics of

More information

Chickens vs. Eggs: Replicating Thurman and Fisher (1988) by Arianto A. Patunru Department of Economics, University of Indonesia 2004

Chickens vs. Eggs: Replicating Thurman and Fisher (1988) by Arianto A. Patunru Department of Economics, University of Indonesia 2004 Chicens vs. Eggs: Relicaing Thurman and Fisher (988) by Ariano A. Paunru Dearmen of Economics, Universiy of Indonesia 2004. Inroducion This exercise lays ou he rocedure for esing Granger Causaliy as discussed

More information

I. Return Calculations (20 pts, 4 points each)

I. Return Calculations (20 pts, 4 points each) Universiy of Washingon Spring 015 Deparmen of Economics Eric Zivo Econ 44 Miderm Exam Soluions This is a closed book and closed noe exam. However, you are allowed one page of noes (8.5 by 11 or A4 double-sided)

More information

Summer Term Albert-Ludwigs-Universität Freiburg Empirische Forschung und Okonometrie. Time Series Analysis

Summer Term Albert-Ludwigs-Universität Freiburg Empirische Forschung und Okonometrie. Time Series Analysis Summer Term 2009 Alber-Ludwigs-Universiä Freiburg Empirische Forschung und Okonomerie Time Series Analysis Classical Time Series Models Time Series Analysis Dr. Sevap Kesel 2 Componens Hourly earnings:

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler

Institute for Mathematical Methods in Economics. University of Technology Vienna. Singapore, May Manfred Deistler MULTIVARIATE TIME SERIES ANALYSIS AND FORECASTING Manfred Deisler E O S Economerics and Sysems Theory Insiue for Mahemaical Mehods in Economics Universiy of Technology Vienna Singapore, May 2004 Inroducion

More information

DYNAMIC ECONOMETRIC MODELS vol NICHOLAS COPERNICUS UNIVERSITY - TORUŃ Józef Stawicki and Joanna Górka Nicholas Copernicus University

DYNAMIC ECONOMETRIC MODELS vol NICHOLAS COPERNICUS UNIVERSITY - TORUŃ Józef Stawicki and Joanna Górka Nicholas Copernicus University DYNAMIC ECONOMETRIC MODELS vol.. - NICHOLAS COPERNICUS UNIVERSITY - TORUŃ 996 Józef Sawicki and Joanna Górka Nicholas Copernicus Universiy ARMA represenaion for a sum of auoregressive processes In he ime

More information

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions Business School, Brunel Universiy MSc. EC5501/5509 Modelling Financial Decisions and Markes/Inroducion o Quaniaive Mehods Prof. Menelaos Karanasos (Room SS269, el. 01895265284) Lecure Noes 6 1. Diagnosic

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

(a) Set up the least squares estimation procedure for this problem, which will consist in minimizing the sum of squared residuals. 2 t.

(a) Set up the least squares estimation procedure for this problem, which will consist in minimizing the sum of squared residuals. 2 t. Insrucions: The goal of he problem se is o undersand wha you are doing raher han jus geing he correc resul. Please show your work clearly and nealy. No credi will be given o lae homework, regardless of

More information

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H. ACE 56 Fall 5 Lecure 8: The Simple Linear Regression Model: R, Reporing he Resuls and Predicion by Professor Sco H. Irwin Required Readings: Griffihs, Hill and Judge. "Explaining Variaion in he Dependen

More information

Exponential Smoothing

Exponential Smoothing Exponenial moohing Inroducion A simple mehod for forecasing. Does no require long series. Enables o decompose he series ino a rend and seasonal effecs. Paricularly useful mehod when here is a need o forecas

More information

Lecture 3: Exponential Smoothing

Lecture 3: Exponential Smoothing NATCOR: Forecasing & Predicive Analyics Lecure 3: Exponenial Smoohing John Boylan Lancaser Cenre for Forecasing Deparmen of Managemen Science Mehods and Models Forecasing Mehod A (numerical) procedure

More information

A Hybrid Model for Improving. Malaysian Gold Forecast Accuracy

A Hybrid Model for Improving. Malaysian Gold Forecast Accuracy In. Journal of Mah. Analysis, Vol. 8, 2014, no. 28, 1377-1387 HIKARI Ld, www.m-hikari.com hp://dx.doi.org/10.12988/ijma.2014.45139 A Hybrid Model for Improving Malaysian Gold Forecas Accuracy Maizah Hura

More information

Module 4: Time Response of discrete time systems Lecture Note 2

Module 4: Time Response of discrete time systems Lecture Note 2 Module 4: Time Response of discree ime sysems Lecure Noe 2 1 Prooype second order sysem The sudy of a second order sysem is imporan because many higher order sysem can be approimaed by a second order model

More information