Fluids of light with driven-dissipative vs. unitary quantum dynamics thermalization, quantum quenches, evaporation & co.

Size: px
Start display at page:

Download "Fluids of light with driven-dissipative vs. unitary quantum dynamics thermalization, quantum quenches, evaporation & co."

Transcription

1 Fluids of light with driven-dissipative vs. unitary quantum dynamics thermalization, quantum quenches, evaporation & co. And an excursion into synthetic dimensions Iacopo Carusotto INO-CNR BEC Center and Università di Trento, Italy Pierre-Elie Larré Tomoki Ozawa Alessio Chiocchetta (SISSA) Hannah Price Grazia Salerno Nathan Goldman (ULB Bruxelles) José Lebreuilly Marco Di Liberto Chiara Menotti Oded Zilberberg (ETH Zurich) Experimental collaboration with: D. Vocke, D. Faccio (Heriot-Watt, Edinburgh) A. Bramati, Q. Glorieux, E. Giacobino (LKB, Paris) L. Pavesi (Univ. Trento)

2 Why not hydrodynamics of light? Light field/beam composed by a huge number of photons in vacuo photons travel along straight line at c (practically) do not interact with each other in cavity, collisional thermalization slower than with walls and losses => optics typically dominated by single-particle physics In photonic structure: χ(3) nonlinearity photon-photon interactions Spatial confinement effective photon mass => collective behaviour of a quantum fluid Many experiments so far: BEC, superfluidity, quantum magnetism... In this talk: a few selected topics Quantum fluids of light with unitary dynamics (if time permits) Synthetic dimensions for photons 6 ℏ ℏ ~ m c mc 4

3 Standing on the shoulders of giants And of course many others: Coullet, Gil, Rocca, Brambilla, Lugiato...

4 Dissipative vs. conservative quantum fluids of light Planar microcavities & cavity arrays Propagating geometry y χ(3) nonlinear crystal e las mp u rp Incident beam z far field transmitted beam x real space images Pump needed to compensate losses: driven-dissipative dynamics in real time stationary state thermodyn. Equilibrium Driven-dissipative CGLE evolution { )} P0 ℏ de i i = ωo +V ext + g E + γ E + F ext dt m 1+α E ( State of in-cavity field copied to emission Quantum correl. sensitive to dissipation Monochromatic beam: Incident beam sets initial z=0 Conservative paraxial propagation Gross-Pitaevskii mean-field { } ℏ xy de i = +V ext +g E E E dz β Vext, g proportional to -(ε(r)-1) and χ(3) Mass diffraction (xy) But... what happens to quantum dynamics?

5 Dissipative QFL's: already many success Polariton BEC Kasprzak et al., Nature 443, 409 (006) Analog black hole -- Nguyen, et al., PRL 114, (015) Polariton superfluidity Amo, et al., Nat. Phys. 5, 805 (009) Topologically protected edge states Hafezi et al., Nat. Phot. 7, 1001 (013)

6 First expts with (almost) conservative QFL's Dispersive superfluid-like shock waves Chiral edge states in (photonic) Floquet topological insulator Hydrodynamic nucleation of quantized vortices Rechtsman, et al., Nature 496, 196 (013) Many more expts in Alexander Szameit's lectures Wan et al., Nat. Phys. 3, 46 (007) Bogoliubov dispersion of collective excitations D. Vocke et al., arxiv: Quantum simul. of -body physics Mukherjee et al., arxiv: D. Vocke et al. Optica (015)

7 Frictionless flow of superfluid light (I) All superfluid light experiments so far: Planar microcavity device with stationary obstacle in flowing light Measure response on the fluid density/momentum pattern Obstacle typically is defect embedded in semiconductor material Impossible to measure mechanical friction force exerted onto obstacle Propagating geometry more flexible: Obstacle can be solid dielectric slab with different refractive index Immersed in liquid nonlinear medium, so can move and deform Mechanical force measurable from magnitude of slab deformation P.-E. Larré, IC, Optomechanical Signature of a Frictionless Flow of Superfluid Light, Phys. Rev. A 91, (015).

8 Frictionless flow of superfluid light (II) Numerics for propagation GPE of monochromatic laser: i z E= 1 ( xx + yy ) E +V (r ) E +g E E β with V(r)=- β Δε(r)/(ε) with rectangular cross section and g = -β χ(3)/ (ε) For growing light power, superfluidity visible: Intensity modulation disappears Suppression of opto-mechanical force Fused silica slab as obstacle deformation almost in the μm range Experiment in progress surrounding medium in fluid state but local nonlinearity (e.g. atomic gas) P.-E. Larré, IC, Optomechanical Signature of a Frictionless Flow of Superfluid Light, Phys. Rev. A 91, (015).

9 Condensation of classical waves Monochromatic beam but spatially noisy profile Slow nonlinearity remains monochromatic Evolution during propagation classical GPE Thermalizes to condensate plus thermal cloud with Rayleigh-Jeans 1/k high-k tail Sun et al., Nature Physics 8, 470 (01) What about quantum effects? How to recover Planckian?

10 How to include quantum fluctuations beyond MF Requires going beyond monochromatic beam and explicitly including physical time Gross-Pitaevskii-like eq. for propagation of quasi-monochromatic field ( ) E 1 E E 1 E i = + +V (r ) E + g E E z β 0 x y D0 t Propagation coordinate z time Physical time extra spatial variable, dispersion D0 temporal mass Upon quantization conservative many-body evolution in z: with [ i d ψ> =H ψ> dz D 0 E^ E^ 1 ^ ^ ^ E^ E^ E^ H =N dx dy dt E^ E +V E^ E+ E β0 t t Same z commutator [ E^ (x. y, t, z), E^ + ( x ', y ', t ', z)] = ] c ℏ ω0 v 0 δ(x x ') δ( y y ' ) δ(t t ') ϵ P.-E. Larré, IC, Propagation of a quantum fluid of light in a cavityless nonlinear optical medium: General theory and response to quantum quenches, PRA 9, (015) See also old work by Lai and Haus, PRA 1989

11 Dynamical Casimir emission at quantum quench (I) Monochromatic normal incidence Slab of weakly nonlinear medium Weakly interacting Bose gas at rest Air / nonlinear medium interface sudden jump in interaction constant when moving along z Mismatch of Bogoliubov ground state in air and in nonlinear medium emission of phonon pairs at opposite k on top of fluid of light Propagation along z conservative quantum dynamics Important question: what is quantum evolution at late times? Thermalization? P.-E. Larré and IC, PRA 9, (015)

12 Dynamical Casimir emission at quantum quench (II) Observables: Far-field correlated pairs of photons at opposite angles Near-field peculiar pattern of intensity noise correl. First peak propagates at the speed of sound cs May simulate dynamical Casimir effect & fluctuations in early universe : Pump & probe expt for speed of sound cs : csxy (Heriot-Watt Vocke et al. Optica '15) cst (Trento, in progress) Quantum dynamics most interesting in strongly nonlinear media, e.g. Rydberg polaritons P.-E. Larré and IC, PRA 9, (015)

13 A potentially important technological issue... Long-distance fiber-optic set-ups telecom over distances ~104 km Can optical coherence be preserved? Several disturbing effects: (extrinsic) fluctuations of fiber temperature, length, etc. (intrinsic) Fiber material has some (typically weak) χ(3) Shot noise on photon number gives fluctuations of nrefr~ n0+χ(3) I Statistical mechanics suggests that phase fluctuations destroy 1D BEC light at the end of fiber has lost its (temporal) phase coherence Is this intuitive picture correct? How to tame phase decoherence?

14 Pre-thermalized 1D photon gas Perfectly coherent light injected into 1D optical fiber: quantum quench of interactions ~ χ(3) pairs of Bogoliubov excitations generated Resulting phase decoherence in g(1)(t-t'): Exponential decay at short t-t' < z / cs (cs = speed of Bogol. sound) Plateau at long t-t' > z / cs Low-k modes eventually tends to thermal Teff = μ / Hohenberg-Mermin-Wagner theorem prevents long-range order in 1D quasi-condensates at finite T Effect small for typical Si fibers, still potentially harmful on long distances Decoherence slower if tapering used to adiabatically inject light into fiber Related cold atom expts by J. Schmiedmayer when 1D quasi-bec suddently split in two Nature Physics 9, (013) P.-E. Larré and IC, Prethermalization in a quenched one-dimensional quantum fluid of light, arxiv:

15 A quite generic quantum simulator Quantum many-body evolution in z: d i ψ> =H ψ> dz with: [ ^ D 0 E^ E 1 ^ ^ H =N dx dy dt E E +V E^ E^ + E^ E^ E^ E^ β0 t t Physical time t plays role of extra spatial coordinate Same z commutator: [ E^ (x. y, t, z), E^ + ( x ', y ', t ', z)] = ] c ℏ ω0 v 0 δ(x x ') δ( y y ' ) δ(t t ') ϵ Rechtsman et al., Nature 01 Clever design of V(x,y,z) simulate wide variety of physical systems: Arbitrary splitting/recombination of waveguides quench of tunneling Modulation along z Floquet topological insulators In addition to photonic circuit many-body due to photon-photon interactions On top of moving fluid of light simulate general relativistic QFT P.-E. Larré, IC, PRA 9, (015)

16 Evaporative cooling of light Quantum Hamiltonian under space-z / time-t mapping: [ ^ ^ D 1 E E 0 ^ ^ ^ E ^ E^ E ^ H=N dx dy dt E E +g E β 0 t t ] In 3D bulk crystal after long propagation distances: equilibration in transverse k and frequency ω leads to Bose-Einstein distribution (in contrast to Rayleigh-Jeans of expts. so far; no UV pathologies) temperature and chemical potential fixed by incident distribution I(k,ω) Harmonic trap in xy plane + selective absorption of most energetic particles: Energy redistributed by collisions; photon gas evaporatively cooled Incident incoherent (in both space and time) field eventually gets to BEC state NOTE: fast and coherent optical nonlinearity χ(3) essential!! Novel source of coherent light A. Chiocchetta, P.-É. Larré, IC, arxiv: (016)

17 Part II: Towards higher dimensions in driven-dissipative coupled microcavity systems

18 What about higher dimensions? Generalize of semiclassical equations to 4D: Integrate current over filled bands: D quantized Hall current depends on 1st Chern number Ex ν1 j = Ωd k= Ex π ( π) T y analogous to e j =ν h y well known in IQHE 4D magneto-electric response depends on nd Chern number (non-zero in d 4) H. M. Price, O. Zilberberg, T. Ozawa, IC, N. Goldman, Four-Dimensional Quantum Hall Effect with Ultracold Atoms, PRL 115, (015)

19 How to create 4D system with atoms? Internal state Synthetic dimension w Raman processes give tunneling along w Spatial phase of Raman beams give Peierls phase in xw, yw, zw Standard synthetic-b in xy and/or yz and/or zx First experimental realization: 1+1 dimens. using 3 spin states Cyclotron + Reflection on edges Stuhl et al., arxiv: Mancini et al. ArXiv:

20 Numerical validation of 4D QH effect Numerical simulation of full wave equation Add weak E and B fields Results in good agreement with semiclassics Allowed E,B are enough to see the effect H. M. Price, O. Zilberberg, T. Ozawa, IC, N. Goldman, Four-Dimensional Quantum Hall Effect with Ultracold Atoms, PRL 115, (015)

21 How to create synthetic dimensions for photons? Different modes of ring resonators synthetic dimension w Tunneling along synthetic w: strong beam modulates resonator εij at ωfsr via optical χ(3) neighboring modes get linearly coupled phase of modulation Peierls phase along synthetic w Extends Fan's idea of synthetic gauge field via time-dependent modulation (Nat. Phys. 008) Peierls phase along x,y,z Hafezi's ancilla resonators T. Ozawa, N. Goldman, O. Zilberberg, H. M. Price, and IC, Synthetic Dimensions in Photonic Lattices: From Optical Isolation to 4D Quantum Hall Physics,, Phys. Rev. A 93, (016)

22 1+1 array: chiral edge states & optical isolation 1 (physical) + 1 (synthetic) dimensions: Hofstadter model Bulk topological invariant Chern number measured via Integer Quantum Hall effect driven-dissipative steady-state: photon current displaced intensity distrib. Chiral states on edges: Physical edges along x Synthetic edges via design of ε(ω) (e.g. inserting absorbing impurities in chosen sites) topologically protected optical isolator Absorbing row of sites T. Ozawa & IC, Anomalous and Quantum Hall Effects in Lossy Photonic Lattices, PRL 11, (014) T. Ozawa, N. Goldman, O. Zilberberg, H. M. Price, and IC, Synthetic Dimensions in Photonic Lattices: From Optical Isolation to 4D Quantum Hall Physics,, Phys. Rev. A 93, (016)

23 3+1 array: 4D Quantum Hall physics y x x x x 4D magneto-electric response Nonlinear integer QH effect Driven-dissipative steady state Lateral shift in response to external synth-e and synth-b: only present with both E & B proportional to nd Chern with B without B with E without E Subtleties in relating shift to QH current Price et al., On the measurement of Chern numbers through center-of-mass responses, arxiv: to appear on PRB as Editor's suggestion T. Ozawa, N. Goldman, O. Zilberberg, H. M. Price, and IC, Synthetic Dimensions in Photonic Lattices: From Optical Isolation to 4D Quantum Hall Physics, Phys. Rev. A 93, (016)

24 Conclusions and perspectives Dilute photon gas GP-like equation BEC in exciton-polaritons gas in semiconductor microcav. superfluid hydrodynamics effects observed synthetic gauge field for photons and topologically protected edge states observed revival of paraxial nonlinear optics in the new perspective of propagating fluids of light Optical microcavity systems are unavoidably lossy driven-dissipative, non-equilibrium dynamics extra quantum noise due to dissipation but also interesting new possibilities Bulk cavityless geometries: paraxial propagation conservative dynamics time plays role of 3rd dimension: quantum quenches, quantum thermalization, evaporative cooling experimentally challenge strong nonlinearities. Most promising: Rydberg-EIT in atomic gases Many other on-going directions: strongly correlated photon gases: 1D Tonks-Girardeau gas; D Laughlin states with synthetic B Momentum-space magnetism naturally toroidal geometry, possibility of inserting flux high-d photonics: new topological effects & device applic. More protected quantum info! Price et al, PRL 113, (014); Berceanu et al, PRA 93, (016); Ozawa et al, PRA 9, (015); PRB 93, (016)

25 If you wish to know more... I. Carusotto and C. Ciuti, Reviews of Modern Physics 85, 99 (013) Or, even better, come and visit us in Trento!! I. Carusotto, Il Nuovo Saggiatore SIF magazine (013) Save the date: May 8th-1th, 017 Save the date: May 8th-1th, 017 nd ndworkshop Workshopon onstrongly StronglyCorrelated Correlated Fluids Fluidsof oflight Lightand andmatter Matter Cargese, Cargese,Corse Corse

Quantum fluids of light

Quantum fluids of light Quantum fluids of light first successes and many exciting perspectives Iacopo Carusotto INO-CNR BEC Center and Università di Trento, Italy Onur Umucalilar (now Koc) José Lebreuilly Tomoki Ozawa Hannah

More information

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy In collaboration with: Alessio Recati

More information

Hydrodynamic solitons in polariton superfluids

Hydrodynamic solitons in polariton superfluids Hydrodynamic solitons in polariton superfluids Laboratoire Kastler Brossel (Paris) A. Amo * V.G. Sala,, R. Hivet, C. Adrados,, F. Pisanello, G. Lemenager,, J. Lefrère re, E. Giacobino, A. Bramati Laboratoire

More information

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati Quantum fluid phenomena with Microcavity Polaritons Alberto Bramati Quantum Optics Team: topics Quantum fluid phenomena in polariton gases An ideal system to study out of equilibrium quantum fluids Obstacle

More information

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Institute of Quantum Electronics,

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

BOSE-EINSTEIN CONDENSATION

BOSE-EINSTEIN CONDENSATION Research Center on BOSE-EINSTEIN CONDENSATION TRENTO, ITALY The BEC Center is a joint initiative of CNR - Istituto Nazionale di Ottica and Physics Department, University of Trento It is hosted by the Physics

More information

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Institute of Quantum Electronics, ETH Zürich, Switzerland

More information

Topology and many-body physics in synthetic lattices

Topology and many-body physics in synthetic lattices Topology and many-body physics in synthetic lattices Alessio Celi Synthetic dimensions workshop, Zurich 20-23/11/17 Synthetic Hofstadter strips as minimal quantum Hall experimental systems Alessio Celi

More information

Quantum fluids of light under synthetic gauge fields

Quantum fluids of light under synthetic gauge fields Quantum fluids of light under synthetic gauge fields Iacopo Carusotto INO-CNR BEC Center and Università di Trento, Italy In collaboration with: Onur Umucalilar ( Antwerp), Marco Cominotti ( Grenoble), Tomoki

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Stability and instability of solitons in inhomogeneous media

Stability and instability of solitons in inhomogeneous media Stability and instability of solitons in inhomogeneous media Yonatan Sivan, Tel Aviv University, Israel now at Purdue University, USA G. Fibich, Tel Aviv University, Israel M. Weinstein, Columbia University,

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Numerical experiments of Hawking radiation from acoustic black holes in atomic Bose Einstein condensates

Numerical experiments of Hawking radiation from acoustic black holes in atomic Bose Einstein condensates Numerical experiments of Hawking radiation from acoustic black holes in atomic Bose Einstein condensates Iacopo Carusotto BEC CNR INFM and Università di Trento, Italy In collaboration with: Alessio Recati

More information

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band

Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band Christof Weitenberg with: Nick Fläschner, Benno Rem, Matthias Tarnowski, Dominik Vogel, Dirk-Sören Lühmann, Klaus Sengstock Rice

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Quantised Vortices in an Exciton- Polariton Condensate

Quantised Vortices in an Exciton- Polariton Condensate 4 th International Conference on Spontaneous Coherence in Excitonic Systems Quantised Vortices in an Exciton- Polariton Condensate Konstantinos G. Lagoudakis 1, Michiel Wouters 2, Maxime Richard 1, Augustin

More information

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University 1: Bose-Einstein Condensation Department of Physics Umeå University lundh@tp.umu.se April 13, 2011 Umeå 114 000 inhabitants Average age 37.9 years Cultural capital of Europe 2014 400 km ski tracks 180

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

Driven-dissipative polariton quantum fluids in and out of equilibrium

Driven-dissipative polariton quantum fluids in and out of equilibrium Driven-dissipative polariton quantum fluids in and out of equilibrium Marzena Szymańska Designer Quantum Systems Out of Equilibrium KITP, November 2016 Acknowledgements Group: A. Zamora G. Dagvadorj In

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Michiel Wouters BEC CNR-INFM and Università di Trento,

More information

Supplementary material

Supplementary material SUPPLEMENTARY INFORMATION Supplementary material All-optical control of the quantum flow of a polariton condensate D. Sanvitto 1, S. Pigeon 2, A. Amo 3,4, D. Ballarini 5, M. De Giorgi 1, I. Carusotto 6,

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Effects of polariton squeezing on the emission of an atom embedded in a microcavity

Effects of polariton squeezing on the emission of an atom embedded in a microcavity Effects of polariton squeezing on the emission of an atom embedded in a microcavity Paolo Schwendimann and Antonio Quattropani Institute of Physics. Ecole Polytechnique Fédérale de Lausanne. CH 1015 Lausanne-EPFL,

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

Aditi Mitra New York University

Aditi Mitra New York University Entanglement dynamics following quantum quenches: pplications to d Floquet chern Insulator and 3d critical system diti Mitra New York University Supported by DOE-BES and NSF- DMR Daniel Yates, PhD student

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

been succeeded in 1997 Rb, 23 Na, 7 Li, 1 H, 85 Rb, 41 K, 4 He, 133 Cs, 174 Yb, 52 Cr, 40 Ca, 84 Sr, 164 Dy Laser cooling Trap of atoms 87

been succeeded in 1997 Rb, 23 Na, 7 Li, 1 H, 85 Rb, 41 K, 4 He, 133 Cs, 174 Yb, 52 Cr, 40 Ca, 84 Sr, 164 Dy Laser cooling Trap of atoms 87 Non-Abelian Vortices and Their Non-equilibrium Michikazu Kobayashi a University of Tokyo November 18th, 2011 at Keio University 2 nd Workshop on Quarks and Hadrons under Extreme Conditions - Lattice QCD,

More information

Low dimensional quantum gases, rotation and vortices

Low dimensional quantum gases, rotation and vortices Goal of these lectures Low dimensional quantum gases, rotation and vortices Discuss some aspect of the physics of quantum low dimensional systems Planar fluids Quantum wells and MOS structures High T c

More information

INO-CNR BEC Center

INO-CNR BEC Center Experiments @ INO-CNR BEC Center The INO-CNR team: CNR Researchers: PostDocs: Tom Bienaimé Giacomo Lamporesi, Gabriele Ferrari PhD students: Simone Serafini (INO), Eleonora Fava, Giacomo Colzi, Carmelo

More information

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

More information

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1 Laser Diodes Revised: 3/14/14 14:03 2014, Henry Zmuda Set 6a Laser Diodes 1 Semiconductor Lasers The simplest laser of all. 2014, Henry Zmuda Set 6a Laser Diodes 2 Semiconductor Lasers 1. Homojunction

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Topological pumps and topological quasicrystals

Topological pumps and topological quasicrystals Topological pumps and topological quasicrstals PRL 109, 10640 (01); PRL 109, 116404 (01); PRL 110, 076403 (013); PRL 111, 6401 (013); PRB 91, 06401 (015); PRL 115, 195303 (015), PRA 93, 04387 (016), PRB

More information

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State Measuring the electron edm using Cs and Rb atoms in optical lattices (and other experiments) Fang Fang Osama Kassis Xiao Li Dr. Karl Nelson Trevor Wenger Josh Albert Dr. Toshiya Kinoshita DSW Penn State

More information

OIST, April 16, 2014

OIST, April 16, 2014 C3QS @ OIST, April 16, 2014 Brian Muenzenmeyer Dissipative preparation of squeezed states with ultracold atomic gases GW & Mäkelä, Phys. Rev. A 85, 023604 (2012) Caballar et al., Phys. Rev. A 89, 013620

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Kuei Sun May 4, 2006 kueisun2@uiuc.edu Department of Physics, University of Illinois at Urbana- Champaign, 1110 W.

More information

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes Lecture 20: Semiconductor Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure Layer Structure metal Oxide insulator Semiconductor Semiconductor Large-gap Semiconductor

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014 The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA NSF Visiting Committee, April 28-29, 2014 Paola Cappellaro Mikhail Lukin Susanne Yelin Eugene Demler CUA Theory quantum control

More information

Les états de bord d un. isolant de Hall atomique

Les états de bord d un. isolant de Hall atomique Les états de bord d un isolant de Hall atomique séminaire Atomes Froids 2/9/22 Nathan Goldman (ULB), Jérôme Beugnon and Fabrice Gerbier Outline Quantum Hall effect : bulk Landau levels and edge states

More information

Microcavity Exciton-Polariton

Microcavity Exciton-Polariton Microcavity Exciton-Polariton Neil Na ( 那允中 ) Institute of Photonics Technologies National Tsing-Hua University 5/3/2012 Outline Microcavity Exciton-polariton QW excitons Microcavity photons Strong coupling

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

The Superfluid Phase s of Helium 3

The Superfluid Phase s of Helium 3 The Superfluid Phase s of Helium 3 DIETER VOLLHARD T Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of German y PETER WÖLFL E Universität Karlsruhe Federal Republic of Germany PREFACE

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

Matter wave interferometry beyond classical limits

Matter wave interferometry beyond classical limits Max-Planck-Institut für Quantenoptik Varenna school on Atom Interferometry, 15.07.2013-20.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):

More information

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Zala Lenarčič, Florian Lange, Achim Rosch University of Cologne theory of weakly driven quantum system role of approximate

More information

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES VORTICES in SUPERFLUIDS & SUPERCONDUCTORS CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES Quantum Vortices in Superfluids Suppose we look at a vortex in a superfluid- ie., fluid circulating

More information

Dynamical Condensation of ExcitonPolaritons

Dynamical Condensation of ExcitonPolaritons ICSCE 2008 Dynamical Condensation of ExcitonPolaritons Y. Yamamoto, H. Deng, G. Weihs, C.W. Lai, G. Roumpos and S. Utsunomiya Stanford University and National Institute of Informatics Loeffler, S. Hoefling,

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

The meaning of superfluidity for polariton condensates

The meaning of superfluidity for polariton condensates The meaning of superfluidity for polariton condensates Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Michiel Wouters EPFL, Lausanne, Switzerland Cristiano Ciuti and Simon Pigeon MPQ, Univ.

More information

Lecture 20 - Semiconductor Structures

Lecture 20 - Semiconductor Structures Lecture 0: Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure metal Layer Structure Physics 460 F 006 Lect 0 1 Outline What is a semiconductor Structure? Created

More information

Spontaneous topological defects in the formation of a Bose-Einstein condensate

Spontaneous topological defects in the formation of a Bose-Einstein condensate Spontaneous topological defects in the formation of a Bose-Einstein condensate Matthew Davis 1, Ashton Bradley 1,, Geoff Lee 1, Brian Anderson 2 1 ARC Centre of Excellence for Quantum-Atom Optics, University

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 Defects in topologically ordered states Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014 References Maissam Barkeshli & XLQ, PRX, 2, 031013 (2012) Maissam Barkeshli, Chaoming Jian, XLQ,

More information

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices Marzena Szymanska Collaborators Theory F. M. Marchetti E. Cancellieri C. Tejedor D. Whittaker Experiment D. Sanvitto,

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

Nonequilibrium dynamics of interacting systems of cold atoms

Nonequilibrium dynamics of interacting systems of cold atoms Nonequilibrium dynamics of interacting systems of cold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin,

More information

Spinor Bose gases lecture outline

Spinor Bose gases lecture outline Spinor Bose gases lecture outline 1. Basic properties 2. Magnetic order of spinor Bose-Einstein condensates 3. Imaging spin textures 4. Spin-mixing dynamics 5. Magnetic excitations We re here Coupling

More information

Controlling Light at Exceptional Points

Controlling Light at Exceptional Points Controlling Light at Exceptional Points Bo Peng Sahin Kaya Ozdemir Micro/Nano-Photonics Lab. Electrical & Systems Engineering, Washington University, St. Louis, USA In collaboration with L. Yang and C.

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems. Davide Rossini. Scuola Normale Superiore, Pisa (Italy)

Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems. Davide Rossini. Scuola Normale Superiore, Pisa (Italy) Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems Davide Rossini Scuola Normale Superiore, Pisa (Italy) Quantum simulations and many-body physics with light Orthodox

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Quantum Information Storage with Slow and Stopped Light

Quantum Information Storage with Slow and Stopped Light Quantum Information Storage with Slow and Stopped Light Joseph A. Yasi Department of Physics, University of Illinois at Urbana-Champaign (Dated: December 14, 2006) Abstract This essay describes the phenomena

More information

synthetic condensed matter systems

synthetic condensed matter systems Ramsey interference as a probe of synthetic condensed matter systems Takuya Kitagawa (Harvard) DimaAbanin i (Harvard) Mikhael Knap (TU Graz/Harvard) Eugene Demler (Harvard) Supported by NSF, DARPA OLE,

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 15. Optical Sources-LASER

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 15. Optical Sources-LASER FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 15 Optical Sources-LASER Fiber Optics, Prof. R.K. Shevgaonkar, Dept. of Electrical

More information

PHYS598 AQG Introduction to the course

PHYS598 AQG Introduction to the course PHYS598 AQG Introduction to the course First quantum gas in dilute atomic vapors 87 Rb BEC : Wieman / Cornell group (1995) Logistics A bit about the course material Logistics for the course Website: https://courses.physics.illinois.edu/phys598aqg/fa2017/

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Outline: I. Introduction: materials, transport, Hall effects II. III. IV. Composite particles FQHE, statistical transformations Quasiparticle charge

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 08 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Outline: Photonic crystals 2 1. Photonic crystals vs electronic

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001).

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001). Overview in Images 5 nm K.S. Min et al. PhD Thesis K.V. Vahala et al, Phys. Rev. Lett, 85, p.74 (000) J. D. Joannopoulos, et al, Nature, vol.386, p.143-9 (1997) T.Thio et al., Optics Letters 6, 197-1974

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion R.J. Trew, K.W. Kim, V. Sokolov, and B.D Kong Electrical and Computer Engineering North Carolina State

More information