Series Parallel Analysis of AC Circuits

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Series Parallel Analysis of AC Circuits"

Transcription

1 HAE 9 eries arallel Analysis of A ircuits hapter Outline 9. A eries ircuits 9.2 A arallel ircuits 9.3 A eries arallel ircuits 9.4 Analysis of Multiple-ource A ircuits Using uperposition 9. A EIE IUI In D analysis of series-parallel circuits, what type of numbers was utilized? If the signal source is A instead of D and the circuit contains inductors and/or capacitors, what type of numbers would you epect to be utilized? Why? Good news: the circuit analysis techniques are the same. What is the phase shift of the voltage with respect to the current for an inductor? Why? What is the phase shift of the voltage with respect to the current for a capacitor? Why? What is the phase shift of the voltage with respect to the current for a resistor? Why? What would you epect the phase shift to be for A signals in series, parallel, and series parallel circuits with resistances, inductors, and capacitors? Why? ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age trangeway, etersen, Gassert, and Lokken

2 How is series parallel circuit analysis with A sources approached? eview the circuit laws, concepts, and results for D circuit analysis by stating in words each relation that follows:. I = I 2 = I 3 =. = I (9.) 2. Vn Vrise Vrise2 Vrise3 Vdrop Vdrop2 Vdrop3 n 0 (9.2) How are the signs for voltage rises and voltage drops assigned (Figure 9. below)? Is the key to the sign of the voltage rise (or drop) the current direction or the direction that KVL is applied? n n 4. (9.3) V V (9.4) Which of these laws and concepts are applicable to A series circuits? Answer the following questions: Does constant current throughout a series circuit change for any signal? Does KVL change for any signal? Why or why not? Are 3 and 4 above valid? Why or why not? If the same D circuit analysis techniques are valid for A, and resistances are used in D circuit analysis, then what must be used in A circuit analysis? Why? tate in words the circuit laws, concepts, and results for A series circuits: I I I I (9.5) V n V rise V rise2 V rise3 V drop V drop2 V drop3 n 0 (9.6) ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 2 trangeway, etersen, Gassert, and Lokken

3 How is a voltage polarity assigned with A signals considering the polarity is alternating? n n Z Z Z Z Z Z (9.7) 4. V Z V Z (9.8) Eample 9.. (Eplain each step.) For the circuit shown in Figure 9.2 below, determine (a) Z, (b) I, (c) V and V L by the VD, and (d) V by Ohm s law. (e) Verify KVL. : v (t) = 0 sin(827t) V = 35 = 20 F L = 00 mh : a. Z b. I trategy: Determine Z, Z L, and Z Z Z Z Z L c. V and V L by VD d. V by Ohm s law e. Verify KVL Label a circuit diagram with voltage polarities and current directions. V I Z Z Z V V, V V Z Z L L V I Z V V V V 0 L olution: Z 35 ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 3 trangeway, etersen, Gassert, and Lokken

4 Z j j j (827)(20 ) Z jl j(827)(0.) j82.7 L a. Z Z Z Z 35 j60.46 j j j 22.2 L ote: All voltages and currents are epressed as peak values in this eample. ee Figure 9.3 below. b. V 0 0 I A Z 35 j22.24 c. V Z 35 V V Z 35 j22.24 Determine V L in a similar manner. Answer: V L V d. V I Z ( )( j60.46) V e. (efer to Figure 9.3) V V V V 0 erform KVL. L Is KVL satisfied? ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 4 trangeway, etersen, Gassert, and Lokken

5 9.2 A AALLEL IUI tate the important laws, concepts, and results that were found for D parallel circuits in words:. V = V = V 2 = V 3 = = V (9.9) 2. n 2 3 n I I I I I 0 (9.0) How is the sign of the current assigned to if it is entering the node? Leaving the node? 3. 2 in general (9.) for two parallel resistors (9.2) 4. I I in general (9.3) I I, I I for two parallel resistors (9.4) 5. I G V (9.5) 6. G = G + G G (9.6) Which of these laws and concepts are applicable to A series circuits? Answer the following questions: Does constant voltage across a parallel circuit change for any signal? Does KL change for any signal? Why or why not? Are 3-6 above valid? Why or why not? If the same D circuit analysis techniques are valid for A, and resistances are used in D circuit analysis, then what must be used in A circuit analysis? Why? ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 5 trangeway, etersen, Gassert, and Lokken

6 tate in words the circuit laws, concepts, and results for A parallel circuits: V V V V V (9.7) n 2 3 n I I I I I 0 (9.8) 3. Z Z Z Z 2 (general or special case?) (9.9) Z Z Z 2 ZZ 2 Z Z 2 (general or special case?) (9.20) 4. IZ Z I (general or special case?) (9.2) I I Z, I I Z 2 2 Z Z 2 Z Z 2 (general or special case?) (9.22) Eample 9.2. (Eplain each step.) For the circuit shown in Figure 9.4 below, determine (a) Z, (b) V, (c) I by the D, and (d) I by Ohm s law. (e) Verify KL. : = 0 X = 8 I 820 A : a. Z b. V c. I by the D d. I by Ohm s law e. Verify KL : Determine Z and Z Z Z Z Z Z Label a circuit diagram with voltage polarities and current directions. V I Z I I Z IZ or I Z Z Z (which equation is easier? note the previous step) ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 6 trangeway, etersen, Gassert, and Lokken

7 I V Z Apply KL to the top node. olution: Z 0 Z jx j8 a. Z ZZ (0)( j8) Z Z 0 j8 b. ee Figure 9.5 below for voltage polarity and current direction assignments. V I Z (8 20 )( ) V c. I IZ Z (8 20 )( ) A d. I V A Z j8 e. KL at node: I I I 0 erform KL: Is KL satisfied? ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 7 trangeway, etersen, Gassert, and Lokken

8 What is the inverse of resistance (G = /)? What is the inverse of reactance? B X (9.23) Identify: B L X L B (9.24) X If susceptance is the inverse of reactance, what is the inverse of impedance? Y Z (9.25) Is Y a comple number? Why or why not? How does admittance ( Y ) relate to conductance (G) and susceptance (B)? Eplain each step: (9.26) Z jx Why is the plus sign used with inductive reactance? Why is the minus sign used with capacitive reactance? (9.27) Y G jb onductance is the part of admittance and susceptance is the part of admittance. I I Y ( I V) Z V V (9.28) Why is the sign minus used with inductive susceptance? Why is the plus sign used with capacitive susceptance? What is the unit of admittance? abbreviation? 5. I Y V Z () (9.29) 6. 2 n n Y Y Y Y Y (9.30) Eample (Eplain each step.) For the circuit shown previously in Figure 9.4 (repeated below), determine (a) Y from G and B, and (b) Y from Z. Given: = 0 X = 8 Z j (from Eample 9.2.) ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 8 trangeway, etersen, Gassert, and Lokken

9 Desired: a. Y from G and B b. Y from Z trategy: a. G, B X, Y G jb b. Y Z olution: a. G 0. 0 B X 8 Y G jb 0. j j b. Y Z j j Why do the results from parts (a) and (b) match? Observation about the impedance admittance relationship: start with Z of the circuit in Figure 9.4 (repeated above). Eplain each step: Z j jx onsider: G (9.3) B (9.32) X ompare these results with those of Eample 9.2.2: G (9.33) B (9.34) X 8 hese answers do not match! Why not? Which approach is correct? ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 9 trangeway, etersen, Gassert, and Lokken

10 Eample (fill in) Determine the (a) total equivalent admittance and (b) parallel equivalent circuit for the series circuit shown in Figure 9.6a (below). : = 0 X = 3 (inductive) : a. Y b. and X : a. Y, epress in rectangular form Z olution: (fill in) b. G, and X B p Answers: a. Y j j b. 26.9, X 20.7 Eample (fill in) Determine the resistance and reactance values of the series equivalent circuit for the parallel circuit shown in Figure 9.7a (below). Given: Desired: trategy: olution: Answer: = ; X = ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 0 trangeway, etersen, Gassert, and Lokken

11 Eample (fill in) Determine the component values for the parallel equivalent circuit of the series circuit shown in Figure 9.8a (below) if = 20 krads/s. Given: Desired: trategy: olution: Eample Answer: 2.5, 2.00 F (fill in) For the circuit in Figure 9.9 (below), determine (a) the total equivalent admittance, and (b) the values for the components of the series equivalent circuit. he frequency is khz. Given: Desired: trategy: a. Y Y Y Y L G jb jb L j j L b. Z jx, X Y olution: Answers: a. Y ( j3.00) m (8.33 j3.0) m b. Z 05.4 j F Why are there only two reactive components in the series equivalent circuit? ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age trangeway, etersen, Gassert, and Lokken

12 Generalization of eries arallel onversions to Handbook Equations (Eplain each step.) ase : eries-to-arallel onversion see Fig. 9.0: Z jx, Y G jb (9.35) Y ( jx ) (9.36) Y ( jx ) jx ( jx ) ( jx ) X 2 2 (9.37) X Y j X X (9.38) G, 2 2 X 2 2 X (9.39) jx jb, 2 2 X X 2 2 X (9.40) X ase 2: arallel-to-eries onversion see Fig. 9.: Z ( jx ), Z jx (9.4) ( jx ) Z ( jx ) (9.42) Z jx jx jx jx jx ( jx ) ( jx ) X 2 ( ) ( ) ( ) 2 2 (9.43) X j X X X Z (9.44) j X X X X X (9.45) X 2 jx j 2 2 X, X X X (9.46) ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 2 trangeway, etersen, Gassert, and Lokken

13 9.3 A eries arallel ircuits KVL, total equivalent impedance, the VD, and the fact that the current is the same are generally applied to what type of circuit? KL, total equivalent impedance and admittance, the D, and the fact that the voltage is the same are generally applied to what type of circuit? he following general guidelines for D series parallel circuit analysis are etended to A:. he general approach to analyzing an A series parallel circuit is to identify the groups of that are in series and those that are in parallel and to apply the appropriate series and parallel circuit laws to the impedances in that group. 2. here are usually multiple approaches to analyzing an A series parallel circuit. think about your strategy formulate an efficient approach 3. A single-source series parallel circuit is fundamentally a series circuit or fundamentally a parallel circuit. he source is the key. If a single impedance is in series with the source on either side (or both sides) of the source, then the circuit is fundamentally a circuit. If the current path from the source divides on both sides of the source, then the circuit is fundamentally a circuit. 4. A group of series impedances, usually a leg in a parallel circuit, is called a. 5. In the VD and the D, the total voltage or current becomes the total voltage or the current for that group of impedances, not necessarily the entire circuit. Eample 9.3. (Eplain each step.) Determine the total equivalent admittance of the circuit in Figure 9.2 (below). Given: circuit in Figure 9.2 Desired: trategy: Y, Z j8 7, Y 2 j4 Y Z olution: Y 0.5 j j4 (identify group ) Z j j j0.25 Y Z 8.6 j j ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 3 trangeway, etersen, Gassert, and Lokken

14 Eample (Eplain each step.) Determine (a) I and (b) V o for the circuit shown in Figure 9.3 (below). Given: circuit in Figure 9.3 Desired: a. I b. V o trategy: Z [5 ( j3)], Z j6 Z 4 (identify Z ) V I Z V o I Z V o I Z olution: Z (5)( j3) j3 Z I j V A Z V o I Z ( )( ) V I V o A A Z 3 90 Eample edraw the circuit in Figure 9.4 (below), clearly showing series and parallel groups of components. olution: (ry to redraw the circuit first, then check it with the answer in Figure 9.5 on the net page.) ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 4 trangeway, etersen, Gassert, and Lokken

15 Eample (fill in steps) Determine (a) I and (b) V ab for the circuit shown in Figure 9.6 (below). Given: circuit in Figure 9.6 Desired: a. I b. V ab trategy: edraw and label the circuit (net to Fig. 9.6) olution: (use separate paper) Answers: a. I A b. V V ab ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 5 trangeway, etersen, Gassert, and Lokken

16 9.4 AALYI OF MULILE-OUE A IUI UIG UEOIIO onsider A series parallel circuits that contain several sources as well as several impedances. What condition on the sources must hold true if superposition with phasors is to be used? Why? (Hint: reactances) In superposition the circuit is analyzed one source at a time. he other sources are. How does one deactivate an A voltage source? Why does it guarantee 0 V? How is an A current source deactivated? Why does it guarantee 0 A? Write the general superposition procedure his last step is actually the superposition step: the phasor voltages and currents are superposed. ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 6 trangeway, etersen, Gassert, and Lokken

17 Eample 9.4. Determine the current I a and i a (t) in Figure 9.8 (below). eak values for sources are shown. Given: circuit in Figure 9.8 Desired: trategy: I a and i a (t) I a uses the peak value of i a (t). superposition olution: Deactivate the 5 V source; redraw the circuit (see Figure 9.9 below). Eplain each step: substrategy: Z j3 5 j6 (4 j2) 0 30 I Z D I a Z 5 j3 j6 4 j2 5 j I A ( )(6 90 ) I a A ( j6) (4 j2) Fill in the rest of the solution steps on separate paper: Deactivate the 0 V source; redraw the circuit; determine the substrategy; determine I and I. a a Answers: I A, I A, i a (t) =.93 sin(t ) A a a ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 7 trangeway, etersen, Gassert, and Lokken

18 A sources he properties of ideal A sources are An ideal A voltage source has a constant and can deliver any An ideal A current source delivers a constant at any Eplain a practical A voltage source model shown in Figure 9.2b (below). How was the following equation obtained? V V V V I Z (9.47) t Zint t int What does the previous equation predict about the terminal voltage of a practical A source? Eplain a practical A current source model shown in Figure 9.22b (below). How was the following equation obtained? Vt I t I I Z I int Z int (9.48) What does the previous equation predict about the terminal current of a practical A source? Which quantity was not calculated in this chapter that was determined in previous chapters (conspicuous by its absence)? ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 8 trangeway, etersen, Gassert, and Lokken

19 Learning Objectives Discussion: an you perform each learning objective for this chapter? (Eamine each one.) As a result of successfully completing this chapter, you should be able to:. Utilize phasors in A series parallel circuit voltage and current calculations. 2. Describe the fundamental properties of series and parallel circuits and subcircuits. 3. alculate all voltages and currents in single-source A series, parallel, and series parallel circuits. 4. erform series parallel circuit conversions. 5. Describe why and how superposition is used in multiple-source A series, parallel, and series parallel circuits. 6. alculate all voltages and currents in multiple-source A series, parallel, and series parallel circuits. 7. Eplain what an A current source is and how to analyze A series parallel circuits that contain a current source. ontemporary Electric ircuits, 2 nd ed., rentice-hall, 2008 lass otes h. 9 age 9 trangeway, etersen, Gassert, and Lokken

AC Circuit Analysis and Measurement Lab Assignment 8

AC Circuit Analysis and Measurement Lab Assignment 8 Electric Circuit Lab Assignments elcirc_lab87.fm - 1 AC Circuit Analysis and Measurement Lab Assignment 8 Introduction When analyzing an electric circuit that contains reactive components, inductors and

More information

1.7 Delta-Star Transformation

1.7 Delta-Star Transformation S Electronic ircuits D ircuits 8.7 Delta-Star Transformation Fig..(a) shows three resistors R, R and R connected in a closed delta to three terminals, and, their numerical subscripts,, and, being opposite

More information

EE221 - Practice for the Midterm Exam

EE221 - Practice for the Midterm Exam EE1 - Practice for the Midterm Exam 1. Consider this circuit and corresponding plot of the inductor current: Determine the values of L, R 1 and R : L = H, R 1 = Ω and R = Ω. Hint: Use the plot to determine

More information

I. Impedance of an R-L circuit.

I. Impedance of an R-L circuit. I. Impedance of an R-L circuit. [For inductor in an AC Circuit, see Chapter 31, pg. 1024] Consider the R-L circuit shown in Figure: 1. A current i(t) = I cos(ωt) is driven across the circuit using an AC

More information

Notes on Electric Circuits (Dr. Ramakant Srivastava)

Notes on Electric Circuits (Dr. Ramakant Srivastava) Notes on Electric ircuits (Dr. Ramakant Srivastava) Passive Sign onvention (PS) Passive sign convention deals with the designation of the polarity of the voltage and the direction of the current arrow

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]

More information

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits ourse Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this

More information

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance: RLC Series Circuit In this exercise you will investigate the effects of changing inductance, capacitance, resistance, and frequency on an RLC series AC circuit. We can define effective resistances for

More information

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1 Physics 1 ecture 1 esonance and power in A circuits Physics 1 ecture 1, Slide 1 I max X X = w I max X w e max I max X X = 1/w I max I max I max X e max = I max Z I max I max (X -X ) f X -X Physics 1 ecture

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

0-2 Operations with Complex Numbers

0-2 Operations with Complex Numbers Simplify. 1. i 10 2. i 2 + i 8 3. i 3 + i 20 4. i 100 5. i 77 esolutions Manual - Powered by Cognero Page 1 6. i 4 + i 12 7. i 5 + i 9 8. i 18 Simplify. 9. (3 + 2i) + ( 4 + 6i) 10. (7 4i) + (2 3i) 11.

More information

EIT Review 1. FE/EIT Review. Circuits. John A. Camara, Electrical Engineering Reference Manual, 6 th edition, Professional Publications, Inc, 2002.

EIT Review 1. FE/EIT Review. Circuits. John A. Camara, Electrical Engineering Reference Manual, 6 th edition, Professional Publications, Inc, 2002. FE/EIT eview Circuits Instructor: uss Tatro eferences John A. Camara, Electrical Engineering eference Manual, 6 th edition, Professional Publications, Inc, 00. John A. Camara, Practice Problems for the

More information

Chapter 2 Circuit Elements

Chapter 2 Circuit Elements hapter ircuit Elements hapter ircuit Elements.... Introduction.... ircuit Element onstruction....3 esistor....4 Inductor... 4.5 apacitor... 6.6 Element Basics... 8.6. Element eciprocals... 8.6. eactance...

More information

Lecture #3. Review: Power

Lecture #3. Review: Power Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is

More information

Sinusoidal Steady- State Circuit Analysis

Sinusoidal Steady- State Circuit Analysis Sinusoidal Steady- State Circuit Analysis 9. INTRODUCTION This chapter will concentrate on the steady-state response of circuits driven by sinusoidal sources. The response will also be sinusoidal. For

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE E-BOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.

More information

Physics 2112 Unit 20. Outline: Driven AC Circuits Phase of V and I Conceputally Mathematically With phasors

Physics 2112 Unit 20. Outline: Driven AC Circuits Phase of V and I Conceputally Mathematically With phasors Physics 2112 Unit 20 Outline: Driven A ircuits Phase of V and I onceputally Mathematically With phasors Electricity & Magnetism ecture 20, Slide 1 Your omments it just got real this stuff is confusing

More information

Review of DC Electric Circuit. DC Electric Circuits Examples (source:

Review of DC Electric Circuit. DC Electric Circuits Examples (source: Review of DC Electric Circuit DC Electric Circuits Examples (source: http://hyperphysics.phyastr.gsu.edu/hbase/electric/dcex.html) 1 Review - DC Electric Circuit Multisim Circuit Simulation DC Circuit

More information

12 Chapter Driven RLC Circuits

12 Chapter Driven RLC Circuits hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1-signal function generator 2- Oscilloscope, A.V.O meter 3- Resisters & inductor &capacitor THEORY the following form for

More information

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current People of mediocre ability sometimes achieve outstanding success because they don't know when to quit. Most men succeed because

More information

First Order RC and RL Transient Circuits

First Order RC and RL Transient Circuits First Order R and RL Transient ircuits Objectives To introduce the transients phenomena. To analyze step and natural responses of first order R circuits. To analyze step and natural responses of first

More information

BASIC NETWORK ANALYSIS

BASIC NETWORK ANALYSIS SECTION 1 BASIC NETWORK ANALYSIS A. Wayne Galli, Ph.D. Project Engineer Newport News Shipbuilding Series-Parallel dc Network Analysis......................... 1.1 Branch-Current Analysis of a dc Network......................

More information

Fundamental of Electrical circuits

Fundamental of Electrical circuits Fundamental of Electrical circuits 1 Course Description: Electrical units and definitions: Voltage, current, power, energy, circuit elements: resistors, capacitors, inductors, independent and dependent

More information

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 32A AC Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Describe

More information

ECE145A/218A Course Notes

ECE145A/218A Course Notes ECE145A/218A Course Notes Last note set: Introduction to transmission lines 1. Transmission lines are a linear system - superposition can be used 2. Wave equation permits forward and reverse wave propagation

More information

rms high f ( Irms rms low f low f high f f L

rms high f ( Irms rms low f low f high f f L Physics 4 Homework lutions - Walker hapter 4 onceptual Exercises. The inductive reactance is given by ω π f At very high frequencies (i.e. as f frequencies well above onance) ( gets very large. ). This

More information

Physics-272 Lecture 20. AC Power Resonant Circuits Phasors (2-dim vectors, amplitude and phase)

Physics-272 Lecture 20. AC Power Resonant Circuits Phasors (2-dim vectors, amplitude and phase) Physics-7 ecture 0 A Power esonant ircuits Phasors (-dim vectors, amplitude and phase) What is reactance? You can think of it as a frequency-dependent resistance. 1 ω For high ω, χ ~0 - apacitor looks

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

More information

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011 Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits Nov. 7 & 9, 2011 Material from Textbook by Alexander & Sadiku and Electrical Engineering: Principles & Applications,

More information

Learnabout Electronics - AC Theory

Learnabout Electronics - AC Theory Learnabout Electronics - AC Theory Facts & Formulae for AC Theory www.learnabout-electronics.org Contents AC Wave Values... 2 Capacitance... 2 Charge on a Capacitor... 2 Total Capacitance... 2 Inductance...

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Notes for course EE1.1 Circuit Analysis TOPIC 4 NODAL ANALYSIS

Notes for course EE1.1 Circuit Analysis TOPIC 4 NODAL ANALYSIS Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 4 NODAL ANALYSIS OBJECTIVES 1) To develop Nodal Analysis of Circuits without Voltage Sources 2) To develop Nodal Analysis of Circuits with Voltage

More information

Unit 21 Capacitance in AC Circuits

Unit 21 Capacitance in AC Circuits Unit 21 Capacitance in AC Circuits Objectives: Explain why current appears to flow through a capacitor in an AC circuit. Discuss capacitive reactance. Discuss the relationship of voltage and current in

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Sinusoidal Steady-State Analysis Almost all electrical systems, whether signal or power, operate with alternating currents and voltages. We have seen that when any circuit is disturbed (switched on or

More information

Alternating Current. Chapter 31. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman

Alternating Current. Chapter 31. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Chapter 31 Alternating Current PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 8_8_2008 Topics for Chapter 31

More information

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2) Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.

More information

Electric Circuits I Final Examination

Electric Circuits I Final Examination EECS:300 Electric Circuits I ffs_elci.fm - Electric Circuits I Final Examination Problems Points. 4. 3. Total 38 Was the exam fair? yes no //3 EECS:300 Electric Circuits I ffs_elci.fm - Problem 4 points

More information

LCR Series Circuits. AC Theory. Introduction to LCR Series Circuits. Module. What you'll learn in Module 9. Module 9 Introduction

LCR Series Circuits. AC Theory. Introduction to LCR Series Circuits. Module. What you'll learn in Module 9. Module 9 Introduction Module 9 AC Theory LCR Series Circuits Introduction to LCR Series Circuits What you'll learn in Module 9. Module 9 Introduction Introduction to LCR Series Circuits. Section 9.1 LCR Series Circuits. Amazing

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 0: Sinusoidal Steady-State Analysis Sinusoidal Sources If a circuit is driven by a sinusoidal source, after 5 tie constants, the circuit reaches a steady-state (reeber the RC lab with t = τ). Consequently,

More information

RC & RL TRANSIENT RESPONSE

RC & RL TRANSIENT RESPONSE INTRODUTION R & RL TRANSIENT RESPONSE The student will analyze series R and RL circuits. A step input will excite these respective circuits, producing a transient voltage response across various circuit

More information

First-order transient

First-order transient EIE209 Basic Electronics First-order transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between

More information

Phasor Diagram. Figure 1: Phasor Diagram. A φ. Leading Direction. θ B. Lagging Direction. Imag. Axis Complex Plane. Real Axis

Phasor Diagram. Figure 1: Phasor Diagram. A φ. Leading Direction. θ B. Lagging Direction. Imag. Axis Complex Plane. Real Axis 1 16.202: PHASORS Consider sinusoidal source i(t) = Acos(ωt + φ) Using Eulers Notation: Acos(ωt + φ) = Re[Ae j(ωt+φ) ] Phasor Representation of i(t): = Ae jφ = A φ f v(t) = Bsin(ωt + ψ) First convert the

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 18 Two-Port Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 18.1 The Terminal Equations

More information

Lecture 9 Time Domain vs. Frequency Domain

Lecture 9 Time Domain vs. Frequency Domain . Topics covered Lecture 9 Time Domain vs. Frequency Domain (a) AC power in the time domain (b) AC power in the frequency domain (c) Reactive power (d) Maximum power transfer in AC circuits (e) Frequency

More information

3.1 Superposition theorem

3.1 Superposition theorem Many electric circuits are complex, but it is an engineer s goal to reduce their complexity to analyze them easily. In the previous chapters, we have mastered the ability to solve networks containing independent

More information

Basic Electrical Circuits Analysis ECE 221

Basic Electrical Circuits Analysis ECE 221 Basic Electrical Circuits Analysis ECE 221 PhD. Khodr Saaifan http://trsys.faculty.jacobs-university.de k.saaifan@jacobs-university.de 1 2 Reference: Electric Circuits, 8th Edition James W. Nilsson, and

More information

Power Systems - Basic Concepts and Applications - Part I

Power Systems - Basic Concepts and Applications - Part I PDHonline Course E104 (1 PDH) Power ystems Basic Concepts and Applications Part I Instructor: hihmin Hsu PhD PE 01 PDH Online PDH Center 57 Meadow Estates Drive Fairfax A 006658 Phone & Fax: 709880088

More information

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and Lecture 6: Impedance (frequency dependent resistance in the s- world), Admittance (frequency dependent conductance in the s- world), and Consequences Thereof. Professor Ray, what s an impedance? Answers:

More information

Chapter 5. Department of Mechanical Engineering

Chapter 5. Department of Mechanical Engineering Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation

More information

Electrical Engineering Fundamentals for Non-Electrical Engineers

Electrical Engineering Fundamentals for Non-Electrical Engineers Electrical Engineering Fundamentals for Non-Electrical Engineers by Brad Meyer, PE Contents Introduction... 3 Definitions... 3 Power Sources... 4 Series vs. Parallel... 9 Current Behavior at a Node...

More information

E2.2 Analogue Electronics

E2.2 Analogue Electronics E2.2 Analogue Electronics Instructor : Christos Papavassiliou Office, email : EE 915, c.papavas@imperial.ac.uk Lectures : Monday 2pm, room 408 (weeks 2-11) Thursday 3pm, room 509 (weeks 4-11) Problem,

More information

Chapter 1W Basic Electromagnetic Concepts

Chapter 1W Basic Electromagnetic Concepts Chapter 1W Basic Electromagnetic Concepts 1W Basic Electromagnetic Concepts 1W.1 Examples and Problems on Electric Circuits 1W.2 Examples on Magnetic Concepts This chapter includes additional examples

More information

R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai

R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai Chapter 07 Series-Parallel Circuits The Series-Parallel Network Complex circuits May be separated both series and/or parallel elements Combinations which are neither series nor parallel To analyze a circuit

More information

CIRCUIT ANALYSIS II. (AC Circuits)

CIRCUIT ANALYSIS II. (AC Circuits) Will Moore MT & MT CIRCUIT ANALYSIS II (AC Circuits) Syllabus Complex impedance, power factor, frequency response of AC networks including Bode diagrams, second-order and resonant circuits, damping and

More information

Electrical Circuit & Network

Electrical Circuit & Network Electrical Circuit & Network January 1 2017 Website: www.electricaledu.com Electrical Engg.(MCQ) Question and Answer for the students of SSC(JE), PSC(JE), BSNL(JE), WBSEDCL, WBSETCL, WBPDCL, CPWD and State

More information

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

More information

12. Introduction and Chapter Objectives

12. Introduction and Chapter Objectives Real Analog - Circuits 1 Chapter 1: Steady-State Sinusoidal Power 1. Introduction and Chapter Objectives In this chapter we will address the issue of power transmission via sinusoidal or AC) signals. This

More information

In Chapter 15, you learned how to analyze a few simple ac circuits in the time

In Chapter 15, you learned how to analyze a few simple ac circuits in the time In Chapter 15, you learned how to analyze a few simple ac circuits in the time domain using voltages and currents expressed as functions of time. However, this is not a very practical approach. A more

More information

RC & RL Transient Response

RC & RL Transient Response EE 2006 University of Minnesota Duluth ab 8 1. Introduction R & R Transient Response The student will analyze series R and R circuits. A step input will excite these respective circuits, producing a transient

More information

EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3

EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3 EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3 Instructions: Closed book, closed notes; Computers and cell phones are not allowed You may use the equation sheet provided but

More information

Lecture 24. Impedance of AC Circuits.

Lecture 24. Impedance of AC Circuits. Lecture 4. Impedance of AC Circuits. Don t forget to complete course evaluations: https://sakai.rutgers.edu/portal/site/sirs Post-test. You are required to attend one of the lectures on Thursday, Dec.

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 40) eminder: Exam this Wednesday 6/3 ecture 0-4 4 questions. Electricity and Magnetism nduced voltages and induction Self-nductance Circuits Energy in magnetic fields AC circuits and

More information

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1 Module 4 Single-phase A ircuits ersion EE IIT, Kharagpur esson 4 Solution of urrent in -- Series ircuits ersion EE IIT, Kharagpur In the last lesson, two points were described:. How to represent a sinusoidal

More information

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors Unit 2: Modeling in the Frequency Domain Part 4: Modeling Electrical Systems Engineering 582: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 20,

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

Chapter 3. Loop and Cut-set Analysis

Chapter 3. Loop and Cut-set Analysis Chapter 3. Loop and Cut-set Analysis By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical Engineering, K.N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/electriccircuits2.htm References:

More information

Network Graphs and Tellegen s Theorem

Network Graphs and Tellegen s Theorem Networ Graphs and Tellegen s Theorem The concepts of a graph Cut sets and Kirchhoff s current laws Loops and Kirchhoff s voltage laws Tellegen s Theorem The concepts of a graph The analysis of a complex

More information

AC Circuit. a) Learn the usage of frequently used AC instrument equipment (AC voltmeter, AC ammeter, power meter).

AC Circuit. a) Learn the usage of frequently used AC instrument equipment (AC voltmeter, AC ammeter, power meter). Experiment 5:Measure the Equivalent arameters in the AC Circuit 1. urpose a) Learn the usage of frequently used AC instrument equipment (AC voltmeter, AC ammeter, power meter). b) Know the basic operational

More information

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1 hapter 31: RL ircuits PHY049: hapter 31 1 L Oscillations onservation of energy Topics Damped oscillations in RL circuits Energy loss A current RMS quantities Forced oscillations Resistance, reactance,

More information

The Basic Elements and Phasors

The Basic Elements and Phasors 4 The Basic Elements and Phasors 4. INTRODUCTION The response of the basic R, L, and C elements to a sinusoidal voltage and current will be examined in this chapter, with special note of how frequency

More information

Review: Inductance. Oscillating Currents. Oscillations (cont d) LC Circuit Oscillations

Review: Inductance. Oscillating Currents. Oscillations (cont d) LC Circuit Oscillations Oscillating urrents h.30: Induced E Fields: Faraday s aw h.30: ircuits h.3: Oscillations and A ircuits eview: Inductance If the current through a coil of wire changes, there is an induced ef proportional

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

ELG4125: Power Transmission Lines Steady State Operation

ELG4125: Power Transmission Lines Steady State Operation ELG4125: Power Transmission Lines Steady State Operation Two-Port Networks and ABCD Models A transmission line can be represented by a two-port network, that is a network that can be isolated from the

More information

L L, R, C. Kirchhoff s rules applied to AC circuits. C Examples: Resonant circuits: series and parallel LRC. Filters: narrowband,

L L, R, C. Kirchhoff s rules applied to AC circuits. C Examples: Resonant circuits: series and parallel LRC. Filters: narrowband, Today in Physics 1: A circuits Solving circuit problems one frequency at a time. omplex impedance of,,. Kirchhoff s rules applied to A circuits. it V in Examples: esonant circuits: i series and parallel.

More information

8.1 Alternating Voltage and Alternating Current ( A. C. )

8.1 Alternating Voltage and Alternating Current ( A. C. ) 8 - ALTENATING UENT Page 8. Alternating Voltage and Alternating urrent ( A.. ) The following figure shows N turns of a coil of conducting wire PQS rotating with a uniform angular speed ω with respect to

More information

Phasors: Impedance and Circuit Anlysis. Phasors

Phasors: Impedance and Circuit Anlysis. Phasors Phasors: Impedance and Circuit Anlysis Lecture 6, 0/07/05 OUTLINE Phasor ReCap Capacitor/Inductor Example Arithmetic with Complex Numbers Complex Impedance Circuit Analysis with Complex Impedance Phasor

More information

Lecture 9. The Smith Chart and Basic Impedance-Matching Concepts

Lecture 9. The Smith Chart and Basic Impedance-Matching Concepts ecture 9 The Smith Chart and Basic Impedance-Matching Concepts The Smith Chart: Γ plot in the Complex Plane Smith s chart is a graphical representation in the complex Γ plane of the input impedance, the

More information

Electricity and Light Pre Lab Questions

Electricity and Light Pre Lab Questions Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.

More information

FE Review 2/2/2011. Electric Charge. Electric Energy ELECTRONICS # 1 FUNDAMENTALS

FE Review 2/2/2011. Electric Charge. Electric Energy ELECTRONICS # 1 FUNDAMENTALS FE eview ELECONICS # FUNDAMENALS Electric Charge 2 In an electric circuit there is a conservation of charge. he net electric charge is constant. here are positive and negative charges. Like charges repel

More information

TRANSMISSION LINES AND MATCHING

TRANSMISSION LINES AND MATCHING TRANSMISSION LINES AND MATCHING for High-Frequency Circuit Design Elective by Michael Tse September 2003 Contents Basic models The Telegrapher s equations and solutions Transmission line equations The

More information

Unit-3. Question Bank

Unit-3. Question Bank Unit- Question Bank Q.1 A delta connected load draw a current of 15A at lagging P.F. of.85 from 400, -hase, 50Hz suly. Find & of each hase. Given P = = 400 0 I = 15A Ans. 4.98, 5.7mH So I P = 15 =8.66A

More information

Discussion Question 6A

Discussion Question 6A Discussion Question 6 P212, Week 6 Two Methods for Circuit nalysis Method 1: Progressive collapsing of circuit elements In last week s discussion, we learned how to analyse circuits involving batteries

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

The RLC circuits have a wide range of applications, including oscillators and frequency filters

The RLC circuits have a wide range of applications, including oscillators and frequency filters 9. The RL ircuit The RL circuits have a wide range of applications, including oscillators and frequency filters This chapter considers the responses of RL circuits The result is a second-order differential

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms

ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms Dr. Gregory J. Mazzaro Spring 2016 ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms THE CITADEL, THE MILITARY COLLEGE OF SOUTH CAROLINA 171 Moultrie Street,

More information

LR Circuits. . The voltage drop through both resistors will equal. Hence 10 1 A

LR Circuits. . The voltage drop through both resistors will equal. Hence 10 1 A The diagram shows a classic R circuit, containing both resistors and inductors. The switch shown is initially connected to neither terminal, and is then thrown to position a at time t = 0. R Circuits E

More information

AC Circuits. The Capacitor

AC Circuits. The Capacitor The Capacitor Two conductors in close proximity (and electrically isolated from one another) form a capacitor. An electric field is produced by charge differences between the conductors. The capacitance

More information

NETWORK ANALYSIS WITH APPLICATIONS

NETWORK ANALYSIS WITH APPLICATIONS NETWORK ANALYSIS WITH APPLICATIONS Third Edition William D. Stanley Old Dominion University Prentice Hall Upper Saddle River, New Jersey I Columbus, Ohio CONTENTS 1 BASIC CIRCUIT LAWS 1 1-1 General Plan

More information

Consider Figure What is the horizontal axis grid increment?

Consider Figure What is the horizontal axis grid increment? Chapter Outline CHAPER 14 hree-phase Circuits and Power 14.1 What Is hree-phase? Why Is hree-phase Used? 14.2 hree-phase Circuits: Configurations, Conversions, Analysis 14.2.1 Delta Configuration Analysis

More information

Chapter 6 Objectives

Chapter 6 Objectives hapter 6 Engr8 ircuit Analysis Dr urtis Nelson hapter 6 Objectives Understand relationships between voltage, current, power, and energy in inductors and capacitors; Know that current must be continuous

More information

Gabriel Kron's biography here.

Gabriel Kron's biography here. Gabriel Kron, Electric Circuit Model of the Schrödinger Equation, 1945 - Component of :... Page 1 of 12 {This website: Please note: The following article is complete; it has been put into ASCII due to

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulic-turbine to ac electric power Synchronous generators are the primary

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Set 2: Transmission lines Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Outline Transmission

More information

CHAPTER 45 COMPLEX NUMBERS

CHAPTER 45 COMPLEX NUMBERS CHAPTER 45 COMPLEX NUMBERS EXERCISE 87 Page 50. Solve the quadratic equation: x + 5 0 Since x + 5 0 then x 5 x 5 ( )(5) 5 j 5 from which, x ± j5. Solve the quadratic equation: x x + 0 Since x x + 0 then

More information

vba vbn vcb van vcn vac Figure 1. Three-phase line and phase voltages

vba vbn vcb van vcn vac Figure 1. Three-phase line and phase voltages . Chapter 5 Power Engineering Features Used Í, abs( ), real( ), imag( ), conj( ),

More information