Fast methods for integral equations

Size: px
Start display at page:

Download "Fast methods for integral equations"

Transcription

1 Fast methods for integral equations Matthieu Aussal Research engineer Centre de Mathématiques Appliquées de l École Polytechnique Route de Saclay Palaiseau CEDEX France Journée de rentrée du CMAP - 03 octobre 2018

2 Introduction Integral representation Integral equations Acceleration Gypsilab Conclusion

3 Main research topics and collaborations Spatial audio (3D audio) : VST plug in for sound engineers (F. Salmon, CNSMDP), Audio guidance for blind people (S. Ferrand, MCV ), Classroom sonorization (Mon cartable connecté). Auralization : Numerical room acoustics for archeology (R. Gueguen), Real-time room acoustic for virtual reality, Augmented reality for museum visit (PSC, MusiX) Finite and boundary element method (FEM, BEM) : Gypsilab : Matlab framework for fast prototyping (F. Alouges) Fast methods for High Performance Computing : DDM, H-Matrix, FFM, ray-tracing, etc. Applications (scattering, 3D audio, eeg, Stokes flows, etc.)

4 Past, present and future collaborations

5 Some selected softwares MyBino (freeware) : Professional VST plug in for binaural rendering. Just4rir (open-source) : Blender plug in for room acoustics by ray-tracing. Gypsilab (open-source part) : Matlab framework for fast FEM-BEM prototyping. Gypsilab (private part) : High-Performance Computing for FEM-BEM problems.

6 Introduction Integral representation Integral equations Acceleration Gypsilab Conclusion

7 A boundary problem for acoustic The full space Ω is separated in two subspaces Ω i and Ω e by a boundary Γ, smooth and oriented along normal n. For u : Ω \ Γ C, we define : u i = u Ωi u e = u Ωe, µ = [u] = u i u e, λ = [ n u] = n u i n u e. Note : Γ is a singularity of Ω Distribution theory!

8 Theorem of integral representation If u satisfies Helmholtz equation and Sommerfeld condition : ( u i + k 2 u i ) = 0 in Ω i, ( u e + k 2 u e ) = 0 in Ω e, lim r ( ru e + iku e ) = 0, r + then u satisfies an integral representation x Ω i Ω e : u(x) = Γ G(x, y) G(x, y)λ(y)dγ y µ(y)dγ y, Γ n y with G(x, y) stand for the oscillatory Green kernel : G(x, y) = eik x y 4π x y. Note : Volumic data are fully determined by surfacic unknowns.

9 Evaluation of boundary integrals Regular integration are done using a quadrature rule (y q, γ q ) 1 q Nq for the boundary Γ : Γ N q G(x, y)λ(y)dγ y γ q G(x, y q )λ φ (y q ). q=1 If necessary, singular integrations are done analytically... and it s hard! (A. Lefebvre-Lepot) Note : Regular integration can be seen as a discrete convolution on a non-uniform grid... meshless technics!

10 Numerical application Integral representation of the elementary solution E = eik x 4π x. Boundary Γ is a unit sphere, meshed with triangles and wave number is fixed at k = 5 : u(x) = Γ G(x, y) ne(y)dγ y Γ Reference E(x), computed G(x,y) n y E(y)dΓ y analytically in full space

11 Introduction Integral representation Integral equations Acceleration Gypsilab Conclusion

12 Calderon projectors Following the theorem of integral representation, if u satisfy : u(x) = Γ G(x, y) G(x, y)λ(y)dγ y µ(y)dγ y, Γ n y then u is solution of Helmholtz equation. Boundary traces are given respectively by interior and exterior Calderon projectors x Γ : ( ) ( ) ( ) +Id ui = 2 D S µ n u +Id i N 2 + D t, λ ( ) ( ) ( ) Id ue = 2 D S µ n u Id e N 2 + D t, λ Sλ(x) = Dµ(x) = Γ Γ G(x, y)λ(y)d y, ny G(x, y)µ(y)d y, D t λ(x) = Nµ(x) = Γ Γ nx G(x, y)λ(y)d y, nx ny G(x, y)µ(y)d y.

13 Integral formulation : Example with Dirichlet scattering 1. Formulate problem considering u e = u tot u inc : ( u e + k 2 u e ) = 0 in Ω e, lim r + r ( ru e + iku e ) = 0, u tot = 0 u e = u inc in Γ. 2. Choose the right projector (according to normal n) : ( ) ( ) ( ) Id ue = 2 D S µ n u Id e N 2 + D t. λ 3. Choose a jump extension : 4. Solve integral equation on Γ : u i = u e µ = 0. Sλ = u e = u inc. 5. Compute the total field on Ω e : u tot = Sλ + u inc.

14 Evaluation of boundary operators Considering a finite elements basis (φ n (y)) 1 n Ndof boundary functions : to represent λ(y) λ φ (y) = N dof n=1 λ n φ n (y) y Γ, Integral operators can be discretized using one of the following methods : Collocation : S ij = G(x i, y)φ j (y)d y, Γ Galerkin : S ij = φ i (x)g(x, y)φ j (y)d y. Γ Note : Using a discrete quadrature (y q, γ q ) 1 q Nq of the boundary Γ, both methods need the computation of a full matrix G xy. Γ

15 Numerical application Integral representation of the solution of an integral equation, satisfying Dirichlet condition. Boundary Γ is a unit sphere, meshed with triangles and wave number is fixe at k = 5 : µ = 0 Sλ = u inc λ = 0 Note : Galerkin method were used with P 1 elements. ( ) Id 2 D µ = u inc

16 Introduction Integral representation Integral equations Acceleration Gypsilab Conclusion

17 Example with a regular kernel All integral formulations need discrete convolutions with Green kernel on non-uniform grids (x i ) i [1,Nx ] and (y j ) j [1,Ny ] in R 3 : N y u i = G(x i, y j )v j. j=1 For example, considering a regular Green kernel : K(x, y) = x y 2 = x 2 2x y + y 2, Convolution by K can be rewritten for all i : N y u i = x i 2 v j 2x i y j v j + y j 2 v j j=1 Separate x and y : Complexity O(N x N y ) O(N y ) + O(Nx)! N y j=1 N y j=1

18 Example with a singular kernel Context : G(x, y) = eik x y 4π x y is locally singular ( x y < ɛ). Idea : Use "smoothing" properties issued from far distances. Method : Divide and conquer with distance criterion. Algorithm(s) : Hierarchical tree and leaves compression. Initialization : Considering a space sampling (x i ) i [1,Nx ] and (y j ) j [1,Ny ] in R 3, a Green kernel matrix is given by : G xy = G(x 1, y 1 )... G(x 1, y Ny ) G(x Nx, y 1 )... G(x Nx, y Ny ) = [G 0 ]

19 Hierarchical tree G xy = [G 0 ] Step 0

20 Hierarchical tree [ ] G1 G G xy = 2 G 3 G 4 Step 1

21 Hierarchical tree G xy = G 11 G 12 G 21 G 22 G 13 G 14 G 21 G 22 G 31 G 32 G 41 G 42 G 33 G 34 G 43 G 44 Step 2 At level n, each n-tuple is unique and define the block hierarchy.

22 Hierarchical tree Step 3 G xy = G 111 G G 221 G 222 G 113 G G 223 G G 331 G G 441 G 442 G 333 G G 444 G 444 Green leaves are far away no recursion.

23 Hierarchical tree Step 4

24 Hierarchical tree Step 5

25 Hierarchical tree Step 6

26 Hierarchical tree Step 7

27 Hierarchical tree and finally...

28 Hierarchical tree The last level is reached! Green cells far interactions Red cells close interactions

29 Leaves compression Idea : Use "smoothing" properties issued from far distances to interpolate interactions data compression! Method : Considering G ij = (G(x i, y j )) i I,j J a block of far interactions, indexed by I [1, N x ] and J [1, N y ] : Weak interpolation : G(x, y) = k I k (x, ξ k )G(ξ k, y) G IJ = A Ik B kj. Strong interpolation : G(x i, y j ) = I k (x, ξ k )G(ξ k, ξ l )I l (ξ l, y) G IJ = A Ik T kl B lj. k,l

30 Final matrix form Full Weak Strong

31 Non exhaustive list of fast solvers Method Class Interpolation Complexity Algebra Full - - N 2 (yes) H 1 -matrix weak SVD/ACA N 3/2 yes H 2 -matrix strong Lagrange N log N yes/no SCSD strong Cardinal sine N 6/5 no FMM/FFM strong Plane wave N log N no SVD/ACA : G = AB t with A and B low-rank matrices, Lagrange : G = A T B t, A and B low-rank and T small, Plane wave : G(x, y) = ik lim 16π 2 L + s S 2 e iks xm 1T M L 1 M 2 (s)e iks M2y ds Cardinal sine : G(x, y) = k + (4π) 2 n=0 α n ρ n S 2 e ikρns x e ikρns y ds

32 Numerical application Context : For all particles (x i ) i [1,N] and (y j ) j [1,N] in R 3 : u(x i ) = N j=1 U = M V. with M M N (R), U and V R N. 1 4π x i y j v(y j), Test case : (x i ) i [1,N] and (y j ) j [1,N] are uniformly distributed on the unit sphere S 2. Computer : 12 core at 2.7 GHz, 256 GO de ram, Matlab R2014a.

33 Numerical Application N Time (s) Memory peak Mo Mo Full product (single thread) N Build time (s) MV time (s) LU time (s) Mem Mo Go Go H 1 -matrix product and algebra with ɛ = 10 3 (single-thread)

34 Numerical Application N Time 1 core (s) Time 12 cores (s) Error L2 Mem Mo Mo Mo Go Go Go Fast and Furious product with ɛ = 10 3 (multi-thread) Note : Assembly, full matrix would weigh 8 exa-octets! (double precision : 8N Bytes)

35 Introduction Integral representation Integral equations Acceleration Gypsilab Conclusion

36

37 But what is Gypsilab? Gypsilab is an open-source framework for Matlab, freely available under GPL 3.0, composed of object-oriented libraries : openmsh : Multi-dimensional mesh management. opendom : Numerical integration and variational calculation, joint work with François Alouges. openfem : Finite Element method for 2D and 3D shapes, joint work with François Alouges. openhmx : H-Matrix compression and algebra. openray : Accelerated ray-tracing for HF problems, joint work with Robin Gueguen. Designed to combine industrial requirements with fast prototyping.

38 Licensed add-on for Gypsilab Open source part of Gypsilab is accompanied by licensed add-on, also composed of object-oriented libraries : libhbm : Block matrix computation and algebra. Domain Decomposition Method, H-Matrix Parallelization, multi-physic coupling, out-of core computation, etc. libffm : Fast and Furious Method. High Performance Computing for very large BEM problems.

39 Application 1 : Head-Related Tranfert Function (3D audio) Helmholtz equation Neumann boundary condition P 1 finite element 10 3 compression accuracy dof at 8 khz H-Matrix exact solver Figure Acoustic scatering by human head, mesh from SYMARE database.

40 Application 2 : Radar detection (ISAE 2016) Maxwell equation PEC boundary condition, CFIE RWG finite element 10 3 compression accuracy dof at 2.5 GHz H-Matrix exact solver Figure Electromagnetic scattering by an UAV, workshop ISAE, mesh from Onera.

41 Application 3 : Sonar detection (BeTSSI) Helmholtz equation Neumann boundary condition P 1 finite element 10 3 compression accuracy dof at 1600 Hz Prec. FFM, DDM (32 cores)

42 Application 3 : Sonar detection (BeTSSI) Helmholtz equation Neumann boundary condition P 1 finite element 10 3 compression accuracy dof at 1600 Hz Prec. FFM, DDM (32 cores)

43 Application 4 : Space launcher scattering Maxwell equation PEC boundary condition, CFIE RWG finite element 10 3 compression accuracy dof at 2 GHz Prec. FFM, DDM (32 cores) Note : Without compression, full operator would weigh 57 Po! (complex double precision : 16N Bytes)

44 Application 4 : Space launcher scattering Maxwell equation PEC boundary condition, CFIE RWG finite element 10 3 compression accuracy dof at 2 GHz Prec. FFM, DDM (32 cores) Note : Without compression, full operator would weigh 57 Po! (complex double precision : 16N Bytes)

45 Application 4 : Space launcher scattering Maxwell equation PEC boundary condition, CFIE RWG finite element 10 3 compression accuracy dof at 2 GHz Prec. FFM, DDM (32 cores) Note : Without compression, full operator would weigh 57 Po! (complex double precision : 16N Bytes)

46 Introduction Integral representation Integral equations Acceleration Gypsilab Conclusion

47 Conclusion Communications Kalman filterring with H-Matrix (P. Moireau) Electro-encephalogram with H-Matrix (A. Gramfort et al) Vibro-acoustic with FFM (Naval group) Add numericals methods (Finite volume, finite difference, etc). Mesh generation (2D, 3D, coupling) Reach world s records ( Maxwell, Stokes) Download gypsilab : Il faut se débarrasser des casse-têtes. On ne vit qu une fois. Charles Aznavour,

Gypsilab : a MATLAB toolbox for FEM-BEM coupling

Gypsilab : a MATLAB toolbox for FEM-BEM coupling Gypsilab : a MATLAB toolbox for FEM-BEM coupling François Alouges, (joint work with Matthieu Aussal) Workshop on Numerical methods for wave propagation and applications Sept. 1st 2017 Facts New numerical

More information

FEM and BEM simulations with the Gypsilab framework

FEM and BEM simulations with the Gypsilab framework FEM and BEM simulations with the Gypsilab framework François Alouges and Matthieu Aussal Abstract Gypsilab is a Matlab toolbox which aims at simplifying the development of numerical methods that apply

More information

arxiv: v2 [math.na] 3 Sep 2018

arxiv: v2 [math.na] 3 Sep 2018 arxiv:1804.00995v2 [math.na] 3 Sep 2018 FEM and BEM simulations with the Gypsilab framework François Alouges and Matthieu Aussal Abstract Gypsilab is a Matlab framework which aims at simplifying the development

More information

APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS

APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS F. Alouges, et al., Int. J. Comp. Meth. and Ep. Meas., Vol. 5, No. 3 (07) 387 394 APPLICATION OF THE SPARSE CARDINAL SINE DECOMPOSITION TO 3D STOKES FLOWS F. ALOUGES, M. AUSSAL, A. LEFEBVRE-LEPOT, F. PIGEONNEAU

More information

Fast Multipole BEM for Structural Acoustics Simulation

Fast Multipole BEM for Structural Acoustics Simulation Fast Boundary Element Methods in Industrial Applications Fast Multipole BEM for Structural Acoustics Simulation Matthias Fischer and Lothar Gaul Institut A für Mechanik, Universität Stuttgart, Germany

More information

Introduction to the Boundary Element Method

Introduction to the Boundary Element Method Introduction to the Boundary Element Method Salim Meddahi University of Oviedo, Spain University of Trento, Trento April 27 - May 15, 2015 1 Syllabus The Laplace problem Potential theory: the classical

More information

High Frequency Scattering by Convex Polygons Stephen Langdon

High Frequency Scattering by Convex Polygons Stephen Langdon Bath, October 28th 2005 1 High Frequency Scattering by Convex Polygons Stephen Langdon University of Reading, UK Joint work with: Simon Chandler-Wilde Steve Arden Funded by: Leverhulme Trust University

More information

Solving Time-Harmonic Scattering Problems by the Ultra Weak Variational Formulation

Solving Time-Harmonic Scattering Problems by the Ultra Weak Variational Formulation Introduction Solving Time-Harmonic Scattering Problems by the Ultra Weak Variational Formulation Plane waves as basis functions Peter Monk 1 Tomi Huttunen 2 1 Department of Mathematical Sciences University

More information

New Developments of Frequency Domain Acoustic Methods in LS-DYNA

New Developments of Frequency Domain Acoustic Methods in LS-DYNA 11 th International LS-DYNA Users Conference Simulation (2) New Developments of Frequency Domain Acoustic Methods in LS-DYNA Yun Huang 1, Mhamed Souli 2, Rongfeng Liu 3 1 Livermore Software Technology

More information

Final Ph.D. Progress Report. Integration of hp-adaptivity with a Two Grid Solver: Applications to Electromagnetics. David Pardo

Final Ph.D. Progress Report. Integration of hp-adaptivity with a Two Grid Solver: Applications to Electromagnetics. David Pardo Final Ph.D. Progress Report Integration of hp-adaptivity with a Two Grid Solver: Applications to Electromagnetics. David Pardo Dissertation Committee: I. Babuska, L. Demkowicz, C. Torres-Verdin, R. Van

More information

Fast numerical methods for solving linear PDEs

Fast numerical methods for solving linear PDEs Fast numerical methods for solving linear PDEs P.G. Martinsson, The University of Colorado at Boulder Acknowledgements: Some of the work presented is joint work with Vladimir Rokhlin and Mark Tygert at

More information

The Helmholtz Equation

The Helmholtz Equation The Helmholtz Equation Seminar BEM on Wave Scattering Rene Rühr ETH Zürich October 28, 2010 Outline Steklov-Poincare Operator Helmholtz Equation: From the Wave equation to Radiation condition Uniqueness

More information

A SIMPLE PRECONDITIONED DOMAIN DECOMPOSITION METHOD FOR ELECTROMAGNETIC SCATTERING PROBLEMS *

A SIMPLE PRECONDITIONED DOMAIN DECOMPOSITION METHOD FOR ELECTROMAGNETIC SCATTERING PROBLEMS * Journal of Computational Mathematics Vol.3, No., 203, 2. http://www.global-sci.org/jcm doi:0.4208/jcm.20-m3965 A SIMPLE PRECONDITIONED DOMAIN DECOMPOSITION METHOD FOR ELECTROMAGNETIC SCATTERING PROBLEMS

More information

Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method ABSTRACT:

Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method ABSTRACT: Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method Yun Hang, Mhamed Souli, Rogelio Perez Livermore Software Technology Corporation USA & University of Lille Laboratoire

More information

QBX and the DPIE for the Maxwell Equations

QBX and the DPIE for the Maxwell Equations University of Illinois @ Urbana-Champaign Fall 2017 - CS 598 APK The Goal For this project, the goals were to implement a model for the Python package pytential for tackling the Maxwell Equations for perfect

More information

A FAST DIRECT SOLVER FOR THE INTEGRAL EQUATIONS OF SCATTERING THEORY ON PLANAR CURVES WITH CORNERS

A FAST DIRECT SOLVER FOR THE INTEGRAL EQUATIONS OF SCATTERING THEORY ON PLANAR CURVES WITH CORNERS A FAST DIRECT SOLVER FOR THE INTEGRAL EQUATIONS OF SCATTERING THEORY ON PLANAR CURVES WITH CORNERS JAMES BREMER Abstract. We describe an approach to the numerical solution of the integral equations of

More information

High Frequency Scattering by Convex Polygons Stephen Langdon

High Frequency Scattering by Convex Polygons Stephen Langdon High Frequency Scattering by Convex Polygons Stephen Langdon University of Reading, UK Joint work with: Simon Chandler-Wilde, Steve Arden Funded by: Leverhulme Trust University of Maryland, September 2005

More information

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM CSE Boston - March 1, 2013 First: Joint work with Ruipeng Li Work

More information

Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundary Element Method

Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundary Element Method 10 th International LS-DYNA Users Conference Simulation Technolog (2) Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundar Element Method Yun Huang Livermore Software Technolog Corporation

More information

FastMMLib: a generic Fast Multipole Method library. Eric DARRIGRAND. IRMAR Université de Rennes 1

FastMMLib: a generic Fast Multipole Method library. Eric DARRIGRAND. IRMAR Université de Rennes 1 FastMMLib: a generic Fast Multipole Method library Eric DARRIGRAND joint work with Yvon LAFRANCHE IRMAR Université de Rennes 1 Outline Introduction to FMM Historically SVD principle A first example of

More information

Trefftz-DG solution to the Helmholtz equation involving integral equations

Trefftz-DG solution to the Helmholtz equation involving integral equations Trefftz-DG solution to the Helmholtz equation involving integral equations H. Barucq, A. Bendali, M. Fares, V. Mattesi, S. Tordeux Magique 3D Inria Bordeaux Sud Ouest LMA UMR CNRS 5142 INSA of Toulouse

More information

Open-source finite element solver for domain decomposition problems

Open-source finite element solver for domain decomposition problems 1/29 Open-source finite element solver for domain decomposition problems C. Geuzaine 1, X. Antoine 2,3, D. Colignon 1, M. El Bouajaji 3,2 and B. Thierry 4 1 - University of Liège, Belgium 2 - University

More information

BEM Methods for Acoustic and Vibroacoustic Problems in LS-DYNA

BEM Methods for Acoustic and Vibroacoustic Problems in LS-DYNA 12 th International LS-DYNA Users Conference Simulation(2) BEM Methods for Acoustic and Vibroacoustic Problems in LS-DYNA Mhamed Souli, Yun Huang, Rongfeng Liu Livermore Software Technology Corporation

More information

Fast iterative BEM for high-frequency scattering

Fast iterative BEM for high-frequency scattering Fast iterative BEM for high-frequency scattering elastodynamic problems In 3D. Marion Darbas LAMFA UMR CNRS 7352, Amiens, France S. Chaillat (POEMS, CNRS-INRIA-ENSTA) and F. Le Louër (LMAC, UTC) Conference

More information

Fast Multipole Methods: Fundamentals & Applications. Ramani Duraiswami Nail A. Gumerov

Fast Multipole Methods: Fundamentals & Applications. Ramani Duraiswami Nail A. Gumerov Fast Multipole Methods: Fundamentals & Applications Ramani Duraiswami Nail A. Gumerov Week 1. Introduction. What are multipole methods and what is this course about. Problems from physics, mathematics,

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

Hybrid Cross Approximation for the Electric Field Integral Equation

Hybrid Cross Approximation for the Electric Field Integral Equation Progress In Electromagnetics Research M, Vol. 75, 79 90, 2018 Hybrid Cross Approximation for the Electric Field Integral Equation Priscillia Daquin, Ronan Perrussel, and Jean-René Poirier * Abstract The

More information

Finite Element Analysis of Acoustic Scattering

Finite Element Analysis of Acoustic Scattering Frank Ihlenburg Finite Element Analysis of Acoustic Scattering With 88 Illustrations Springer Contents Preface vii 1 The Governing Equations of Time-Harmonic Wave Propagation, 1 1.1 Acoustic Waves 1 1.1.1

More information

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of, 269 C, Vese Practice problems [1] Write the differential equation u + u = f(x, y), (x, y) Ω u = 1 (x, y) Ω 1 n + u = x (x, y) Ω 2, Ω = {(x, y) x 2 + y 2 < 1}, Ω 1 = {(x, y) x 2 + y 2 = 1, x 0}, Ω 2 = {(x,

More information

A HIGH-ORDER ACCURATE ACCELERATED DIRECT SOLVER FOR ACOUSTIC SCATTERING FROM SURFACES

A HIGH-ORDER ACCURATE ACCELERATED DIRECT SOLVER FOR ACOUSTIC SCATTERING FROM SURFACES A HIGH-ORDER ACCURATE ACCELERATED DIRECT SOLVER FOR ACOUSTIC SCATTERING FROM SURFACES JAMES BREMER,, ADRIANNA GILLMAN, AND PER-GUNNAR MARTINSSON Abstract. We describe an accelerated direct solver for the

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 3: Finite Elements in 2-D Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods 1 / 18 Outline 1 Boundary

More information

Rapid evaluation of electrostatic interactions in multi-phase media

Rapid evaluation of electrostatic interactions in multi-phase media Rapid evaluation of electrostatic interactions in multi-phase media P.G. Martinsson, The University of Colorado at Boulder Acknowledgements: Some of the work presented is joint work with Mark Tygert and

More information

A coupled BEM and FEM for the interior transmission problem

A coupled BEM and FEM for the interior transmission problem A coupled BEM and FEM for the interior transmission problem George C. Hsiao, Liwei Xu, Fengshan Liu, Jiguang Sun Abstract The interior transmission problem (ITP) is a boundary value problem arising in

More information

Coercivity of high-frequency scattering problems

Coercivity of high-frequency scattering problems Coercivity of high-frequency scattering problems Valery Smyshlyaev Department of Mathematics, University College London Joint work with: Euan Spence (Bath), Ilia Kamotski (UCL); Comm Pure Appl Math 2015.

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Oberseminar, May 2008 Maxwell equations Or: X-ray wave fields X-rays are electromagnetic waves with wave length from 10 nm to 1 pm, i.e., 10

More information

Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota. Modelling 2014 June 2,2014

Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota. Modelling 2014 June 2,2014 Multilevel Low-Rank Preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Modelling 24 June 2,24 Dedicated to Owe Axelsson at the occasion of his 8th birthday

More information

EXAM MATHEMATICAL METHODS OF PHYSICS. TRACK ANALYSIS (Chapters I-V). Thursday, June 7th,

EXAM MATHEMATICAL METHODS OF PHYSICS. TRACK ANALYSIS (Chapters I-V). Thursday, June 7th, EXAM MATHEMATICAL METHODS OF PHYSICS TRACK ANALYSIS (Chapters I-V) Thursday, June 7th, 1-13 Students who are entitled to a lighter version of the exam may skip problems 1, 8-11 and 16 Consider the differential

More information

Finite and Boundary Element Methods in Acoustics

Finite and Boundary Element Methods in Acoustics Finite and Boundary Element Methods in Acoustics W. Kreuzer, Z. Chen, H. Waubke Austrian Academy of Sciences, Acoustics Research Institute ARI meets NuHAG Kreuzer, Chen, Waubke (ARI) FEM-BEM-FMM ARI meets

More information

A far-field based T-matrix method for three dimensional acoustic scattering

A far-field based T-matrix method for three dimensional acoustic scattering ANZIAM J. 50 (CTAC2008) pp.c121 C136, 2008 C121 A far-field based T-matrix method for three dimensional acoustic scattering M. Ganesh 1 S. C. Hawkins 2 (Received 14 August 2008; revised 4 October 2008)

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

Efficient domain decomposition methods for the time-harmonic Maxwell equations

Efficient domain decomposition methods for the time-harmonic Maxwell equations Efficient domain decomposition methods for the time-harmonic Maxwell equations Marcella Bonazzoli 1, Victorita Dolean 2, Ivan G. Graham 3, Euan A. Spence 3, Pierre-Henri Tournier 4 1 Inria Saclay (Defi

More information

Partial Differential Equations and the Finite Element Method

Partial Differential Equations and the Finite Element Method Partial Differential Equations and the Finite Element Method Pavel Solin The University of Texas at El Paso Academy of Sciences ofthe Czech Republic iwiley- INTERSCIENCE A JOHN WILEY & SONS, INC, PUBLICATION

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

Polynomial Approximation: The Fourier System

Polynomial Approximation: The Fourier System Polynomial Approximation: The Fourier System Charles B. I. Chilaka CASA Seminar 17th October, 2007 Outline 1 Introduction and problem formulation 2 The continuous Fourier expansion 3 The discrete Fourier

More information

Research Statement. Tonatiuh Sánchez-Vizuet

Research Statement. Tonatiuh Sánchez-Vizuet {tonatiuh@cims.nyu.edu} http://cims.nyu.edu/~tonatiuh/ I am especially interested in devising, rigorously analyzing and implementing methods for the numerical simulation of transient wave phenomena. During

More information

When is the error in the h BEM for solving the Helmholtz equation bounded independently of k?

When is the error in the h BEM for solving the Helmholtz equation bounded independently of k? BIT manuscript No. (will be inserted by the editor) When is the error in the h BEM for solving the Helmholtz equation bounded independently of k? I. G. Graham M. Löhndorf J. M. Melenk E. A. Spence Received:

More information

Integral Representation Formula, Boundary Integral Operators and Calderón projection

Integral Representation Formula, Boundary Integral Operators and Calderón projection Integral Representation Formula, Boundary Integral Operators and Calderón projection Seminar BEM on Wave Scattering Franziska Weber ETH Zürich October 22, 2010 Outline Integral Representation Formula Newton

More information

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain March 4-5, 2015 Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain M. Bonnasse-Gahot 1,2, H. Calandra 3, J. Diaz 1 and S. Lanteri 2

More information

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment

FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment FEM-FEM and FEM-BEM Coupling within the Dune Computational Software Environment Alastair J. Radcliffe Andreas Dedner Timo Betcke Warwick University, Coventry University College of London (UCL) U.K. Radcliffe

More information

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI Georgian Technical University Tbilisi, GEORGIA 0-0 1. Formulation of the corresponding

More information

An Adaptive Hierarchical Matrix on Point Iterative Poisson Solver

An Adaptive Hierarchical Matrix on Point Iterative Poisson Solver Malaysian Journal of Mathematical Sciences 10(3): 369 382 (2016) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal An Adaptive Hierarchical Matrix on Point

More information

Verification of Sound Absorption Characteristics Constituted Porous Structure

Verification of Sound Absorption Characteristics Constituted Porous Structure Verification of Sound Absorption Characteristics Constituted Porous Structure Toru Yoshimachi 1, Ryo Ishii 1, Kuniharu Ushijima 2, Naoki Masuda 2, Takao Yamaguchi 3, Yun Huang 4, Zhe Cui 4 1 JSOL Corporation,

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz Robust boundary element domain decomposition solvers in acoustics O. Steinbach, M. Windisch Berichte aus dem Institut für Numerische Mathematik Bericht 2009/9 Technische Universität

More information

Lecture 8: Boundary Integral Equations

Lecture 8: Boundary Integral Equations CBMS Conference on Fast Direct Solvers Dartmouth College June 23 June 27, 2014 Lecture 8: Boundary Integral Equations Gunnar Martinsson The University of Colorado at Boulder Research support by: Consider

More information

Fast and accurate methods for the discretization of singular integral operators given on surfaces

Fast and accurate methods for the discretization of singular integral operators given on surfaces Fast and accurate methods for the discretization of singular integral operators given on surfaces James Bremer University of California, Davis March 15, 2018 This is joint work with Zydrunas Gimbutas (NIST

More information

First-order overdetermined systems. for elliptic problems. John Strain Mathematics Department UC Berkeley July 2012

First-order overdetermined systems. for elliptic problems. John Strain Mathematics Department UC Berkeley July 2012 First-order overdetermined systems for elliptic problems John Strain Mathematics Department UC Berkeley July 2012 1 OVERVIEW Convert elliptic problems to first-order overdetermined form Control error via

More information

Aspects of Multigrid

Aspects of Multigrid Aspects of Multigrid Kees Oosterlee 1,2 1 Delft University of Technology, Delft. 2 CWI, Center for Mathematics and Computer Science, Amsterdam, SIAM Chapter Workshop Day, May 30th 2018 C.W.Oosterlee (CWI)

More information

On the use of multipole methods for domain integration in the BEM

On the use of multipole methods for domain integration in the BEM On the use of multipole methods for domain integration in the BEM A.A. Mammoii, M.S. Ingber & M.J. Brown Department of Mechanical Engineering, University of New Mexico, USA Abstract Often, a single application

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Discretization of Boundary Conditions Discretization of Boundary Conditions On

More information

ADI iterations for. general elliptic problems. John Strain Mathematics Department UC Berkeley July 2013

ADI iterations for. general elliptic problems. John Strain Mathematics Department UC Berkeley July 2013 ADI iterations for general elliptic problems John Strain Mathematics Department UC Berkeley July 2013 1 OVERVIEW Classical alternating direction implicit (ADI) iteration Essentially optimal in simple domains

More information

INFINITE ELEMENT METHODS FOR HELMHOLTZ EQUATION PROBLEMS ON UNBOUNDED DOMAINS

INFINITE ELEMENT METHODS FOR HELMHOLTZ EQUATION PROBLEMS ON UNBOUNDED DOMAINS INFINITE ELEMENT METHODS FOR HELMHOLTZ EQUATION PROBLEMS ON UNBOUNDED DOMAINS Michael Newman Department of Aerospace Engineering Texas A&M University 34 TAMU 744D H.R. Bright Building College Station,

More information

Math 671: Tensor Train decomposition methods

Math 671: Tensor Train decomposition methods Math 671: Eduardo Corona 1 1 University of Michigan at Ann Arbor December 8, 2016 Table of Contents 1 Preliminaries and goal 2 Unfolding matrices for tensorized arrays The Tensor Train decomposition 3

More information

BETI for acoustic and electromagnetic scattering

BETI for acoustic and electromagnetic scattering BETI for acoustic and electromagnetic scattering O. Steinbach, M. Windisch Institut für Numerische Mathematik Technische Universität Graz Oberwolfach 18. Februar 2010 FWF-Project: Data-sparse Boundary

More information

1 Comparison of Kansa s method versus Method of Fundamental Solution (MFS) and Dual Reciprocity Method of Fundamental Solution (MFS- DRM)

1 Comparison of Kansa s method versus Method of Fundamental Solution (MFS) and Dual Reciprocity Method of Fundamental Solution (MFS- DRM) 1 Comparison of Kansa s method versus Method of Fundamental Solution (MFS) and Dual Reciprocity Method of Fundamental Solution (MFS- DRM) 1.1 Introduction In this work, performances of two most widely

More information

Frequency Domain Integral Equations for Acoustic and Electromagnetic Scattering Problems

Frequency Domain Integral Equations for Acoustic and Electromagnetic Scattering Problems Frequency Domain Integral Equations for Acoustic and Electromagnetic Scattering Problems Christophe Geuzaine, U of Liege Fernando Reitich, U of Minnesota Catalin Turc, UNC Charlotte Outline Integral equations

More information

Error analysis and fast solvers for high-frequency scattering problems

Error analysis and fast solvers for high-frequency scattering problems Error analysis and fast solvers for high-frequency scattering problems I.G. Graham (University of Bath) Woudschoten October 2014 High freq. problem for the Helmholtz equation Given an object Ω R d, with

More information

Partial Differential Equations. Examples of PDEs

Partial Differential Equations. Examples of PDEs Partial Differential Equations Almost all the elementary and numerous advanced parts of theoretical physics are formulated in terms of differential equations (DE). Newton s Laws Maxwell equations Schrodinger

More information

Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method

Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method Center for Turbulence Research Annual Research Briefs 2006 313 Improved near-wall accuracy for solutions of the Helmholtz equation using the boundary element method By Y. Khalighi AND D. J. Bodony 1. Motivation

More information

A simple FEM solver and its data parallelism

A simple FEM solver and its data parallelism A simple FEM solver and its data parallelism Gundolf Haase Institute for Mathematics and Scientific Computing University of Graz, Austria Chile, Jan. 2015 Partial differential equation Considered Problem

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

On the Spectrum of Volume Integral Operators in Acoustic Scattering

On the Spectrum of Volume Integral Operators in Acoustic Scattering 11 On the Spectrum of Volume Integral Operators in Acoustic Scattering M. Costabel IRMAR, Université de Rennes 1, France; martin.costabel@univ-rennes1.fr 11.1 Volume Integral Equations in Acoustic Scattering

More information

RBF-FD Approximation to Solve Poisson Equation in 3D

RBF-FD Approximation to Solve Poisson Equation in 3D RBF-FD Approximation to Solve Poisson Equation in 3D Jagadeeswaran.R March 14, 2014 1 / 28 Overview Problem Setup Generalized finite difference method. Uses numerical differentiations generated by Gaussian

More information

An introduction to the use of integral equation. for Harmonic Maxwell equation. J.C. NÉDÉLEC CMAP, École Polytechnique

An introduction to the use of integral equation. for Harmonic Maxwell equation. J.C. NÉDÉLEC CMAP, École Polytechnique An introduction to the use of integral equation for Harmonic Maxwell equation J.C. NÉDÉLEC CMAP, École Polytechnique 1. Introduction Sommaire 2. The plane waves solutions 3. Fundamental Solution and Radiation

More information

Exponential Recursion for Multi-Scale Problems in Electromagnetics

Exponential Recursion for Multi-Scale Problems in Electromagnetics Exponential Recursion for Multi-Scale Problems in Electromagnetics Matthew F. Causley Department of Mathematics Kettering University Computational Aspects of Time Dependent Electromagnetic Wave Problems

More information

Cubic spline Numerov type approach for solution of Helmholtz equation

Cubic spline Numerov type approach for solution of Helmholtz equation Journal of Linear and Topological Algebra Vol. 03, No. 01, 2014, 47-54 Cubic spline Numerov type approach for solution of Helmholtz equation J. Rashidinia a, H. S. Shekarabi a and M. Aghamohamadi a a Department

More information

A direct solver for elliptic PDEs in three dimensions based on hierarchical merging of Poincaré-Steklov operators

A direct solver for elliptic PDEs in three dimensions based on hierarchical merging of Poincaré-Steklov operators (1) A direct solver for elliptic PDEs in three dimensions based on hierarchical merging of Poincaré-Steklov operators S. Hao 1, P.G. Martinsson 2 Abstract: A numerical method for variable coefficient elliptic

More information

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes Dylan Copeland 1, Ulrich Langer 2, and David Pusch 3 1 Institute of Computational Mathematics,

More information

Technische Universität Graz

Technische Universität Graz Technische Universität Graz A note on the stable coupling of finite and boundary elements O. Steinbach Berichte aus dem Institut für Numerische Mathematik Bericht 2009/4 Technische Universität Graz A

More information

Efficient boundary element analysis of periodic sound scatterers

Efficient boundary element analysis of periodic sound scatterers Boundary Element and Meshless Methods in Acoustics and Vibrations: Paper ICA2016-418 Efficient boundary element analysis of periodic sound scatterers M. Karimi, P. Croaker, N. Kessissoglou 1 School of

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 HIGH FREQUENCY ACOUSTIC SIMULATIONS VIA FMM ACCELERATED BEM PACS: 43.20.Fn Gumerov, Nail A.; Duraiswami, Ramani; Fantalgo LLC, 7496

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

ON THE INFLUENCE OF THE WAVENUMBER ON COMPRESSION IN A WAVELET BOUNDARY ELEMENT METHOD FOR THE HELMHOLTZ EQUATION

ON THE INFLUENCE OF THE WAVENUMBER ON COMPRESSION IN A WAVELET BOUNDARY ELEMENT METHOD FOR THE HELMHOLTZ EQUATION INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 4, Number 1, Pages 48 62 c 2007 Institute for Scientific Computing and Information ON THE INFLUENCE OF THE WAVENUMBER ON COMPRESSION IN A

More information

GeoPDEs. An Octave/Matlab software for research on IGA. R. Vázquez. IMATI Enrico Magenes, Pavia Consiglio Nazionale della Ricerca

GeoPDEs. An Octave/Matlab software for research on IGA. R. Vázquez. IMATI Enrico Magenes, Pavia Consiglio Nazionale della Ricerca GeoPDEs An Octave/Matlab software for research on IGA R. Vázquez IMATI Enrico Magenes, Pavia Consiglio Nazionale della Ricerca Joint work with C. de Falco and A. Reali Supported by the ERC Starting Grant:

More information

1 Discretizing BVP with Finite Element Methods.

1 Discretizing BVP with Finite Element Methods. 1 Discretizing BVP with Finite Element Methods In this section, we will discuss a process for solving boundary value problems numerically, the Finite Element Method (FEM) We note that such method is a

More information

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems Electromagnetic wave propagation ELEC 041-Modeling and design of electromagnetic systems EM wave propagation In general, open problems with a computation domain extending (in theory) to infinity not bounded

More information

Chapter 5 Fast Multipole Methods

Chapter 5 Fast Multipole Methods Computational Electromagnetics; Chapter 1 1 Chapter 5 Fast Multipole Methods 5.1 Near-field and far-field expansions Like the panel clustering, the Fast Multipole Method (FMM) is a technique for the fast

More information

Extended Foldy Lax Approximation on Multiple Scattering

Extended Foldy Lax Approximation on Multiple Scattering Mathematical Modelling and Analysis Publisher: Taylor&Francis and VGTU Volume 9 Number, February 04, 85 98 http://www.tandfonline.com/tmma http://dx.doi.org/0.3846/3969.04.893454 Print ISSN: 39-69 c Vilnius

More information

Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems

Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems Stan Tomov Innovative Computing Laboratory Computer Science Department The University of Tennessee Wednesday April 4,

More information

Numerical Approximation Methods for Elliptic Boundary Value Problems

Numerical Approximation Methods for Elliptic Boundary Value Problems Numerical Approximation Methods for Elliptic Boundary Value Problems Olaf Steinbach Numerical Approximation Methods for Elliptic Boundary Value Problems Finite and Boundary Elements Olaf Steinbach Institute

More information

An Embedded Boundary Integral Solver for the Stokes Equations 1

An Embedded Boundary Integral Solver for the Stokes Equations 1 An Embedded Boundary Integral Solver for the Stokes Equations George Biros, Lexing Ying, and Denis Zorin Courant Institute of Mathematical Sciences, New York University, New York 2 Email: {biros,lexing,dzorin}@cs.nyu.edu

More information

TMA4220: Programming project - part 1

TMA4220: Programming project - part 1 TMA4220: Programming project - part 1 TMA4220 - Numerical solution of partial differential equations using the finite element method The programming project will be split into two parts. This is the first

More information

Hybrid (DG) Methods for the Helmholtz Equation

Hybrid (DG) Methods for the Helmholtz Equation Hybrid (DG) Methods for the Helmholtz Equation Joachim Schöberl Computational Mathematics in Engineering Institute for Analysis and Scientific Computing Vienna University of Technology Contributions by

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information

Domain Decomposition Method for Electromagnetic Scattering Problems: Application to EUV Lithography

Domain Decomposition Method for Electromagnetic Scattering Problems: Application to EUV Lithography Domain Decomposition Method for Electromagnetic Scattering Problems: Application to EUV Lithography Lin Zschiedrich, Sven Burger, Achim Schädle, Frank Schmidt Zuse Institute Berlin, JCMwave GmbH NUSOD,

More information

On a class of pseudodifferential operators with mixed homogeneities

On a class of pseudodifferential operators with mixed homogeneities On a class of pseudodifferential operators with mixed homogeneities Po-Lam Yung University of Oxford July 25, 2014 Introduction Joint work with E. Stein (and an outgrowth of work of Nagel-Ricci-Stein-Wainger,

More information

Introduction to Multigrid Methods

Introduction to Multigrid Methods Introduction to Multigrid Methods Chapter 9: Multigrid Methodology and Applications Gustaf Söderlind Numerical Analysis, Lund University Textbooks: A Multigrid Tutorial, by William L Briggs. SIAM 1988

More information