On a class of pseudodifferential operators with mixed homogeneities

Size: px
Start display at page:

Download "On a class of pseudodifferential operators with mixed homogeneities"

Transcription

1 On a class of pseudodifferential operators with mixed homogeneities Po-Lam Yung University of Oxford July 25, 2014

2 Introduction Joint work with E. Stein (and an outgrowth of work of Nagel-Ricci-Stein-Wainger, to appear) Motivating question: what happens when one compose two operators of two different homogeneities? e.g. On R N one can associate two different dilations: for x = (x, x N ) R N, λ > 0, one can define λ x := (λx, λx N ) λ x := (λx, λ 2 x N ) (isotropic) (non-isotropic) Associated to these are two norms, each homogeneous with respect to one of these dilations: x = x + x N x = x + x N 1/2

3 There are also the dual norms, on the cotangent space of R N, given by ξ = ξ + ξ N ξ = ξ + ξ N 1/2 One could look at multipliers e(ξ), with α ξ β ξ N e(ξ) ξ α β, and their associated multiplier operators T e f (ξ) = e(ξ) f (ξ). (These are just standard isotropic singular integral operators.) One could also look at multipliers h(ξ), with α ξ β ξ N h(ξ) ξ α 2 β, and their associated multiplier operators T h f (ξ) = h(ξ) f (ξ). (These are just non-isotropic singular integral operators, arising e.g. when one solves the heat equation.)

4 Some motivating Questions What happens when one compose T e with T h? What kind of operator do we get? What are the nature of the singularities of the multiplier, or the kernel, of T e T h? What mapping properties does T e T h satisfy? When is it (say) weak-type (1,1)? The question of composition is quite easy, since we are dealing with convolution operators on an abelian group R N. The question of mapping properties was already studied in a paper of Phong and Stein in We are interested in these questions, because they serve as toy model problems for what one needs to do in more general settings.

5 e.g. In several complex variables, in solving the -Neumann problem on a smooth strongly pseudoconvex domain in C n+1, one faces the problem of inverting the Calderon operator +. Roughly speaking, this amounts to composing an operator with isotropic homogeneity, with an operator with non-isotropic homogeneity: b (at least when n > 1; c.f. Greiner-Stein 1977). Similar compositions arise in the study of the Hodge Laplacian on k-forms on the Heisenberg group H n (Müller-Peloso-Ricci 2012)

6 The role of flag kernels The flag kernels are integral kernels that are singular along certain subspaces on R N (e.g. Nagel-Ricci-Stein 2001, Nagel-Ricci-Stein-Wainger 2011, to appear). These are special cases of product kernels, which were studied by many authors (e.g. R. Fefferman-Stein 1982, Journe 1985, Nagel-Stein 2004). e.g. On the Heisenberg group H n, a flag kernel could be singular along the t-axis, and satisfies K(z, t) z 2n ( z 2 + t ) 1 along with some corresponding differential inequalities and cancellation conditions.

7 Simple examples of flag kernels include both singular integral kernels with isotropic homogeneities, and those with non-isotropic homogeneities. More sophisticated examples of flag kernels on H n are given by the joint spectral multipliers m(l 0, it ), where m is a Marcinkiewicz multiplier, and L 0 is the sub-laplacian (Müller-Ricci-Stein 1995, 1996). The singular integral operators with flag kernels map L p to L p, for 1 < p <, and form an algebra under composition. Thus if we want to compose a singular integral with isotropic homogeneity, with one that has non-isotropic homogeneity, we could have composed them in the class of all flag kernels. But then we get as a result a flag kernel, which is singular along some subspaces (whereas our original kernels are both singular only at one point).

8 It turns out one should consider the intersection of those flag kernels that are singular along the t-axis, with those that are singular along the z-axis, as in Nagel-Ricci-Stein-Wainger (to appear). This gives rise to operators with mixed homogeneities: K(z, t) ( z + t ) 2n ( z 2 + t ) 1 along with differential inequalities and cancellation conditions. Our first result will be a pseudodifferential realization of the above operators of with mixed homogeneities. The goal is to write them as pseudodifferential operators: ˆ T a f (x) = a(x, ξ)ˆf (ξ)e 2πix ξ dξ H n for some suitable symbols a(x, ξ).

9 Nagel-Stein (1979) and Beals-Greiner (1988) has realized those singular integrals with purely non-isotropic homogeneities as pseudodifferential operators. We will do so for singular integrals with mixed homogeneities; in doing so, we will also consider operators of all orders (not just order 0 ones, as singular integrals would be). Our results will actually hold in a more general setting, outside several complex variables; it will hold as long as a smooth distribution of tangent subspaces (of constant rank) is given on R N. We will also see some geometric invariance of our class of operators as we proceed. A very step-2 theory!

10 Our set-up Suppose on R N, we are given a (global) frame of tangent vectors, namely X 1,..., X N, with X i = N j=1 Aj i (x). x j We assume that all A j i (x) are C functions, and that J x A j i (x) L (R N ) for all multiindices J. We also assume that det(a j i (x)) is uniformly bounded from below on R N. Let D be the distribution of tangent subspaces on R N given by the span of {X 1,..., X N 1 }. Our constructions below seem to depend on the choice of the frame X 1,..., X N, but ultimately the class of operators we introduce will only depend on D. No curvature assumption on D is necessary!

11 An example: the contact distribution on H 1 (Picture courtesy of Assaf Naor)

12 Geometry of the distribution We write θ 1,..., θ N for the frame of cotangent vectors dual to X 1,..., X N. We will need a variable seminorm ρ x (ξ) on the cotangent bundle of R N, defined as follows. Given ξ = N i=1 ξ idx i, and a point x R N, we write ξ = N (M x ξ) i θ i. i=1 Then ρ x (ξ) := N 1 i=1 (M x ξ) i. We also write ξ = N i=1 ξ i for the Euclidean norm of ξ.

13 The variable seminorm ρ x (ξ) induces a quasi-metric d(x, y) on R N. If x, y R N with x y < 1, we write { } 1 d(x, y) := sup : (x y) ξ = 1. ρ x (ξ) + ξ 1/2 We also write x y for the Euclidean distance between x and y.

14 Our class of symbols with mixed homogeneities The symbols we consider will be assigned two different orders, namely m and n, which we think of as the isotropic and non-isotropic orders of the symbol respectively. In the case of the constant distribution, it is quite easy to define the class of symbols we are interested in: given m, n R, if a 0 (x, ξ) C (T R N ) is such that where a 0 (x, ξ) (1 + ξ ) m (1 + ξ ) n J x α ξ β ξ N a 0 (x, ξ) J,α,β (1 + ξ ) m β (1 + ξ ) n α ξ = ξ + ξ N 1/2 if ξ = N ξ i dx i, i=1 then we say a 0 S m,n (D 0 ). (Note that in this situation, 1 + ξ 1 + ρ x (ξ) + ξ 1/2.)

15 More generally, suppose D is a distribution as before (in particular, we fix the frame X 1,..., X N, and its dual frame θ 1,..., θ N ). Given x R N and ξ = N ξ i dx i = i=1 N (M x ξ) i θ i, i=1 write N M x ξ = (M x ξ) i dx i. i=1 Then we say a S m,n (D), if and only if a(x, ξ) = a 0 (x, M x ξ) for some a 0 S m,n (D 0 ).

16 e.g. Suppose we are on R 3. Pick coordinates x = (x 1, x 2, t), and dual coordinates ξ = (ξ 1, ξ 2, τ). Define X 1 = and x 1 + 2x 2 t, X 2 = x 2 2x 1 t, X 3 = t, D := span{x 1, X 2 }. Then identifying R 3 with the Heisenberg group H 1, D is sometimes called the contact distribution. We then have a S m,n (D), if and only if a(x 1, x 2, t, ξ 1, ξ 2, τ) = a 0 (x 1, x 2, t, ξ 1 + 2x 2 τ, ξ 2 2x 1 τ, τ) for some a 0 S m,n (D 0 ). The condition a S m,n (D) can also be phrased in terms of suitable differential inequalities.

17 e.g. Still consider the contact distribution D on H 1. Recall coordinates x = (x 1, x 2, t) on H 1, and dual coordinates ξ = (ξ 1, ξ 2, τ). Let and D 1 = D τ = τ 2x 2 + 2x 1, ξ 1 ξ 2 x 1 + 2τ, D 2 = ξ 2 x 2 2τ, D 3 = ξ 1 t. Then a S m,n (D), if and only if a(x, ξ) C (H 1 R 3 ) satisfies a(x, ξ) (1 + ξ ) m (1 + ρ x (ξ) + ξ 1/2 ) n, α ξ Dβ ξ D Ja(x, ξ) (1 + ξ ) m β (1 + ρ x (ξ) + ξ 1/2 ) n α, where D J is composition of any number of the D 1, D 2, D 3.

18 Back to the general set up. We call elements of S m,n (D) a symbol of order (m, n). Our class of symbols S m,n is quite big. S m,0 contains every standard (isotropic) symbol of order m: a(x, ξ) (1 + ξ ) m α ξ J x a(x, ξ) α,j (1 + ξ ) m α Also, S 0,n contains the following class of symbols, which we think of as non-isotropic symbols of order n: a(x, ξ) (1 + ρ x (ξ) + ξ 1/2 ) n α ξ Dβ ξ DJ a(x, ξ) α,β,j (1 + ρ x (ξ) + ξ 1/2 ) n α 2β Many of the results below for S m,n has an (easier) counter-part for these non-isotropic symbols.

19 Our class of pseudodifferential operators with mixed homogeneities To each symbol a S m,n (D), we associate a pseudodifferential operator ˆ T a f (x) = a(x, ξ) f (ξ)e 2πix ξ dξ. R N We denote the set of all such operators Ψ m,n (D). We remark that Ψ m,n (D) depends only on the distribution D, and not on the choice of the vector fields X 1,..., X N (nor on the choice of a coordinate system on R N ). (Geometric invariance!) One sees that Ψ m,n (D) is the correct class of operators to study, via the following kernel estimates:

20 Theorem (Stein-Y. 2013) If T Ψ m,n (D) with m > 1 and n > (N 1), then one can write ˆ Tf (x) = f (y)k(x, y)dy, R N where the kernel K(x, y) satisfies K(x, y) x y (N 1+n) d(x, y) 2(1+m), (X ) γ x,y δ x,y K(x, y) x y (N 1+n+ γ ) d(x, y) 2(1+m+ δ ). Here X refers to any of the good vector fields X 1,..., X N 1 that are tangent to D, and the subscripts x, y indicates that the derivatives can act on either the x or y variables. c.f. two-flag kernels of Nagel-Ricci-Stein-Wainger

21 Main theorems Theorem (Stein-Y. 2013) If T 1 Ψ m,n (D) and T 2 Ψ m,n (D), then T 1 T 2 Ψ m+m,n+n (D). Furthermore, if T 1 is the adjoint of T 1 with respect to the standard L 2 inner product on R N, then we also have T 1 Ψ m,n (D). In particular, the class of operators Ψ 0,0 form an algebra under composition, and is closed under taking adjoints. Proof unified by introducing some suitable compound symbols.

22 Theorem (Stein-Y. 2013) If T Ψ 0,0 (D), then T maps L p (R N ) into itself for all 1 < p <. Operators in Ψ 0,0 are operators of type (1/2, 1/2). As such they are bounded on L 2. But operators in Ψ 0,0 may not be of weak-type (1,1); this forbids one to run the Calderon-Zygmund paradigm in proving L p boundedness use Littlewood-Paley projections instead, and need to introduce some new strong maximal functions. Nonetheless, there are two very special ideals of operators inside Ψ 0,0, namely Ψ ε, 2ε and Ψ ε,ε for ε > 0. (The fact that these are ideals of the algebra Ψ 0,0 follows from the earlier theorem). They satisfy:

23 Theorem (Stein-Y. 2013) If T Ψ ε, 2ε or Ψ ε,ε for some ε > 0, then (a) T is of weak-type (1,1), and (b) T maps the Hölder space Λ α (R N ) into itself for all α > 0. An analogous theorem holds for some non-isotropic Hölder spaces Γ α (R N ). Proof of (a) by kernel estimates Proof of (b) by Littlewood-Paley characterization of the Hölder spaces Λ α.

24 Theorem (Stein-Y. 2013) Suppose T Ψ m,n with m > 1, n > (N 1), m + n 0, and 2m + n 0. For p 1, define an exponent p by 1 p := 1 { } m + n p γ, 2m + n γ := min, N N + 1 if 1/p > γ. Then: (i) T : L p L p (ii) if m+n N for 1 < p p < ; and 2m+n N+1, then T is weak-type (1, 1 ). These estimates for S m,n are better than those obtained by composing between the optimal results for S 0,n and S m,0.

25 For example, take the example of the 1-dimensional Heisenberg group H 1 (so N = 3). If T 1 is a standard (or isotropic) pseudodifferential operator of order 1/2 (so T 1 Ψ 1/2,0 ), and T 2 is a non-isotropic pseudodifferential operator of order 1 (so T 2 Ψ 0, 1 ), then the best we could say about the operators individually are just T 2 : L 4/3 L 2, T 1 : L 2 L 3. But according to the previous theorem, which is better. T 1 T 2 : L 4/3 L 4, Proof of (i) by interpolation between Ψ 0,0 and Ψ 1, (N 1). Proof of (ii) by kernel estimates.

26 Some applications One can localize the above theory of operators of class Ψ m,n to compact manifolds without boundary. Let M = Ω be the boundary of a strongly pseudoconvex domain Ω in C n+1, n 1. Then the Szegö projection S is an operator in Ψ ε, 2ε for all ε > 0; c.f. Phong-Stein (1977). Furthermore, the Dirichlet-to- -Neumann operator +, which one needs to invert in solving the -Neumann problem on Ω, has a parametrix in Ψ 1, 2 ; c.f. Greiner-Stein (1977), Chang-Nagel-Stein (1992).

27 Epilogue On R, we know that if Tf := f y 1+α, 0 < α < 1, then whenever Tf L q C f L p, 1 q = 1 α, 1 < p < q <. p There are many known proofs; below we sketch one that is perhaps less commonly known, and that is reminiscent of our proof of the smoothing properties for our class Ψ m,n above.

28 The idea is to use complex interpolation: For s C with 0 Re s 1, let k s be the tempered distribution k s (y) = (1 + s) 1 2 y y 1+s, so that when 0 < Re s 1, we have k s (y) = s y 1+s. Let T s f = f k s for f S. Then when Re s = 1, we have T s : L 1 L, since it is then a convolution against a bounded function. Also when Re s = 0, we have T s : L r L r for all 1 < r <, since k s is then a Calderon-Zygmund kernel (one can check that k s L for such s, since k s, being a derivative, satisfies a cancellation condition). Interpolation then shows that T α : L p L q, when 1 q = 1 α, 1 < p < q <. p

A new class of pseudodifferential operators with mixed homogenities

A new class of pseudodifferential operators with mixed homogenities A new class of pseudodifferential operators with mixed homogenities Po-Lam Yung University of Oxford Jan 20, 2014 Introduction Given a smooth distribution of hyperplanes on R N (or more generally on a

More information

Algebras of singular integral operators with kernels controlled by multiple norms

Algebras of singular integral operators with kernels controlled by multiple norms Algebras of singular integral operators with kernels controlled by multiple norms Alexander Nagel Conference in Harmonic Analysis in Honor of Michael Christ This is a report on joint work with Fulvio Ricci,

More information

Topics in Harmonic Analysis Lecture 6: Pseudodifferential calculus and almost orthogonality

Topics in Harmonic Analysis Lecture 6: Pseudodifferential calculus and almost orthogonality Topics in Harmonic Analysis Lecture 6: Pseudodifferential calculus and almost orthogonality Po-Lam Yung The Chinese University of Hong Kong Introduction While multiplier operators are very useful in studying

More information

Chapter One. The Calderón-Zygmund Theory I: Ellipticity

Chapter One. The Calderón-Zygmund Theory I: Ellipticity Chapter One The Calderón-Zygmund Theory I: Ellipticity Our story begins with a classical situation: convolution with homogeneous, Calderón- Zygmund ( kernels on R n. Let S n 1 R n denote the unit sphere

More information

A BRIEF INTRODUCTION TO SEVERAL COMPLEX VARIABLES

A BRIEF INTRODUCTION TO SEVERAL COMPLEX VARIABLES A BRIEF INTRODUCTION TO SEVERAL COMPLEX VARIABLES PO-LAM YUNG Contents 1. The Cauchy-Riemann complex 1 2. Geometry of the domain: Pseudoconvexity 3 3. Solvability of the Cauchy-Riemann operator 5 4. The

More information

Topics in Harmonic Analysis Lecture 1: The Fourier transform

Topics in Harmonic Analysis Lecture 1: The Fourier transform Topics in Harmonic Analysis Lecture 1: The Fourier transform Po-Lam Yung The Chinese University of Hong Kong Outline Fourier series on T: L 2 theory Convolutions The Dirichlet and Fejer kernels Pointwise

More information

On the spectrum of the Hodge Laplacian and the John ellipsoid

On the spectrum of the Hodge Laplacian and the John ellipsoid Banff, July 203 On the spectrum of the Hodge Laplacian and the John ellipsoid Alessandro Savo, Sapienza Università di Roma We give upper and lower bounds for the first eigenvalue of the Hodge Laplacian

More information

Contents Introduction and Review Boundary Behavior The Heisenberg Group Analysis on the Heisenberg Group

Contents Introduction and Review Boundary Behavior The Heisenberg Group Analysis on the Heisenberg Group Contents 1 Introduction and Review... 1 1.1 Harmonic Analysis on the Disc... 1 1.1.1 The Boundary Behavior of Holomorphic Functions... 4 Exercises... 15 2 Boundary Behavior... 19 2.1 The Modern Era...

More information

The oblique derivative problem for general elliptic systems in Lipschitz domains

The oblique derivative problem for general elliptic systems in Lipschitz domains M. MITREA The oblique derivative problem for general elliptic systems in Lipschitz domains Let M be a smooth, oriented, connected, compact, boundaryless manifold of real dimension m, and let T M and T

More information

Singular Integrals. 1 Calderon-Zygmund decomposition

Singular Integrals. 1 Calderon-Zygmund decomposition Singular Integrals Analysis III Calderon-Zygmund decomposition Let f be an integrable function f dx 0, f = g + b with g Cα almost everywhere, with b

More information

The Calderon-Vaillancourt Theorem

The Calderon-Vaillancourt Theorem The Calderon-Vaillancourt Theorem What follows is a completely self contained proof of the Calderon-Vaillancourt Theorem on the L 2 boundedness of pseudo-differential operators. 1 The result Definition

More information

A SHORT PROOF OF THE COIFMAN-MEYER MULTILINEAR THEOREM

A SHORT PROOF OF THE COIFMAN-MEYER MULTILINEAR THEOREM A SHORT PROOF OF THE COIFMAN-MEYER MULTILINEAR THEOREM CAMIL MUSCALU, JILL PIPHER, TERENCE TAO, AND CHRISTOPH THIELE Abstract. We give a short proof of the well known Coifman-Meyer theorem on multilinear

More information

Some recent works on multi-parameter Hardy space theory and discrete Littlewood-Paley Analysis

Some recent works on multi-parameter Hardy space theory and discrete Littlewood-Paley Analysis Some recent works on multi-parameter Hardy space theory and discrete Littlewood-Paley Analysis Yongsheng Han and Guozhen Lu Dedicated to Professor Guangchang Dong on the occasion of his 80th birthday Abstract

More information

Classical Fourier Analysis

Classical Fourier Analysis Loukas Grafakos Classical Fourier Analysis Second Edition 4y Springer 1 IP Spaces and Interpolation 1 1.1 V and Weak IP 1 1.1.1 The Distribution Function 2 1.1.2 Convergence in Measure 5 1.1.3 A First

More information

Short note on compact operators - Monday 24 th March, Sylvester Eriksson-Bique

Short note on compact operators - Monday 24 th March, Sylvester Eriksson-Bique Short note on compact operators - Monday 24 th March, 2014 Sylvester Eriksson-Bique 1 Introduction In this note I will give a short outline about the structure theory of compact operators. I restrict attention

More information

RESULTS ON FOURIER MULTIPLIERS

RESULTS ON FOURIER MULTIPLIERS RESULTS ON FOURIER MULTIPLIERS ERIC THOMA Abstract. The problem of giving necessary and sufficient conditions for Fourier multipliers to be bounded on L p spaces does not have a satisfactory answer for

More information

ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS

ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS LOUKAS GRAFAKOS Abstract. It is shown that maximal truncations of nonconvolution L -bounded singular integral operators with kernels satisfying Hörmander s condition

More information

Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities

Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities Laurent Saloff-Coste Abstract Most smoothing procedures are via averaging. Pseudo-Poincaré inequalities give a basic L p -norm control

More information

Index theory on manifolds with corners: Generalized Gauss-Bonnet formulas

Index theory on manifolds with corners: Generalized Gauss-Bonnet formulas Index theory on singular manifolds I p. 1/4 Index theory on singular manifolds I Index theory on manifolds with corners: Generalized Gauss-Bonnet formulas Paul Loya Index theory on singular manifolds I

More information

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock WEYL S LEMMA, ONE OF MANY Daniel W Stroock Abstract This note is a brief, and somewhat biased, account of the evolution of what people working in PDE s call Weyl s Lemma about the regularity of solutions

More information

A survey on l 2 decoupling

A survey on l 2 decoupling A survey on l 2 decoupling Po-Lam Yung 1 The Chinese University of Hong Kong January 31, 2018 1 Research partially supported by HKRGC grant 14313716, and by CUHK direct grants 4053220, 4441563 Introduction

More information

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell Eigenvalues and eigenfunctions of the Laplacian Andrew Hassell 1 2 The setting In this talk I will consider the Laplace operator,, on various geometric spaces M. Here, M will be either a bounded Euclidean

More information

Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids

Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids joint work with Hengguang Li Yu Qiao School of Mathematics and Information Science Shaanxi Normal University Xi an,

More information

STRONGLY SINGULAR INTEGRALS ALONG CURVES. 1. Introduction. It is standard and well known that the Hilbert transform along curves: f(x γ(t)) dt

STRONGLY SINGULAR INTEGRALS ALONG CURVES. 1. Introduction. It is standard and well known that the Hilbert transform along curves: f(x γ(t)) dt STRONGLY SINGULAR INTEGRALS ALONG CURVES NORBERTO LAGHI NEIL LYALL Abstract. In this article we obtain L 2 bounds for strongly singular integrals along curves in R d ; our results both generalise and extend

More information

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky

Homogeneous para-kähler Einstein manifolds. Dmitri V. Alekseevsky Homogeneous para-kähler Einstein manifolds Dmitri V. Alekseevsky Hamburg,14-18 July 2008 1 The talk is based on a joint work with C.Medori and A.Tomassini (Parma) See ArXiv 0806.2272, where also a survey

More information

Weighted norm inequalities for singular integral operators

Weighted norm inequalities for singular integral operators Weighted norm inequalities for singular integral operators C. Pérez Journal of the London mathematical society 49 (994), 296 308. Departmento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid,

More information

M ath. Res. Lett. 17 (2010), no. 04, c International Press 2010 A NOTE ON TWISTED DISCRETE SINGULAR RADON. Lillian B.

M ath. Res. Lett. 17 (2010), no. 04, c International Press 2010 A NOTE ON TWISTED DISCRETE SINGULAR RADON. Lillian B. M ath. Res. Lett. 17 (2010), no. 04, 701 720 c International Press 2010 A NOTE ON TWISTED DISCRETE SINGULAR RADON TRANSFORMS Lillian B. Pierce Abstract. In this paper we consider three types of discrete

More information

Elliptic Regularity. Throughout we assume all vector bundles are smooth bundles with metrics over a Riemannian manifold X n.

Elliptic Regularity. Throughout we assume all vector bundles are smooth bundles with metrics over a Riemannian manifold X n. Elliptic Regularity Throughout we assume all vector bundles are smooth bundles with metrics over a Riemannian manifold X n. 1 Review of Hodge Theory In this note I outline the proof of the following Fundamental

More information

FRAMES AND TIME-FREQUENCY ANALYSIS

FRAMES AND TIME-FREQUENCY ANALYSIS FRAMES AND TIME-FREQUENCY ANALYSIS LECTURE 5: MODULATION SPACES AND APPLICATIONS Christopher Heil Georgia Tech heil@math.gatech.edu http://www.math.gatech.edu/ heil READING For background on Banach spaces,

More information

Overview of normed linear spaces

Overview of normed linear spaces 20 Chapter 2 Overview of normed linear spaces Starting from this chapter, we begin examining linear spaces with at least one extra structure (topology or geometry). We assume linearity; this is a natural

More information

Carleson Measures for Besov-Sobolev Spaces and Non-Homogeneous Harmonic Analysis

Carleson Measures for Besov-Sobolev Spaces and Non-Homogeneous Harmonic Analysis Carleson Measures for Besov-Sobolev Spaces and Non-Homogeneous Harmonic Analysis Brett D. Wick Georgia Institute of Technology School of Mathematics & Humboldt Fellow Institut für Mathematik Universität

More information

JUHA KINNUNEN. Harmonic Analysis

JUHA KINNUNEN. Harmonic Analysis JUHA KINNUNEN Harmonic Analysis Department of Mathematics and Systems Analysis, Aalto University 27 Contents Calderón-Zygmund decomposition. Dyadic subcubes of a cube.........................2 Dyadic cubes

More information

Qualifying Examination HARVARD UNIVERSITY Department of Mathematics Tuesday, January 19, 2016 (Day 1)

Qualifying Examination HARVARD UNIVERSITY Department of Mathematics Tuesday, January 19, 2016 (Day 1) Qualifying Examination HARVARD UNIVERSITY Department of Mathematics Tuesday, January 19, 2016 (Day 1) PROBLEM 1 (DG) Let S denote the surface in R 3 where the coordinates (x, y, z) obey x 2 + y 2 = 1 +

More information

Analytic families of multilinear operators

Analytic families of multilinear operators Analytic families of multilinear operators Mieczysław Mastyło Adam Mickiewicz University in Poznań Nonlinar Functional Analysis Valencia 17-20 October 2017 Based on a joint work with Loukas Grafakos M.

More information

TOOLS FROM HARMONIC ANALYSIS

TOOLS FROM HARMONIC ANALYSIS TOOLS FROM HARMONIC ANALYSIS BRADLY STADIE Abstract. The Fourier transform can be thought of as a map that decomposes a function into oscillatory functions. In this paper, we will apply this decomposition

More information

MORE NOTES FOR MATH 823, FALL 2007

MORE NOTES FOR MATH 823, FALL 2007 MORE NOTES FOR MATH 83, FALL 007 Prop 1.1 Prop 1. Lemma 1.3 1. The Siegel upper half space 1.1. The Siegel upper half space and its Bergman kernel. The Siegel upper half space is the domain { U n+1 z C

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

Nonlinear aspects of Calderón-Zygmund theory

Nonlinear aspects of Calderón-Zygmund theory Ancona, June 7 2011 Overture: The standard CZ theory Consider the model case u = f in R n Overture: The standard CZ theory Consider the model case u = f in R n Then f L q implies D 2 u L q 1 < q < with

More information

Math 302 Outcome Statements Winter 2013

Math 302 Outcome Statements Winter 2013 Math 302 Outcome Statements Winter 2013 1 Rectangular Space Coordinates; Vectors in the Three-Dimensional Space (a) Cartesian coordinates of a point (b) sphere (c) symmetry about a point, a line, and a

More information

A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE. 1.

A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE. 1. A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE THOMAS CHEN AND NATAŠA PAVLOVIĆ Abstract. We prove a Beale-Kato-Majda criterion

More information

Dissipative quasi-geostrophic equations with L p data

Dissipative quasi-geostrophic equations with L p data Electronic Journal of Differential Equations, Vol. (), No. 56, pp. 3. ISSN: 7-669. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) Dissipative quasi-geostrophic

More information

MET Workshop: Exercises

MET Workshop: Exercises MET Workshop: Exercises Alex Blumenthal and Anthony Quas May 7, 206 Notation. R d is endowed with the standard inner product (, ) and Euclidean norm. M d d (R) denotes the space of n n real matrices. When

More information

Maxwell s equations in Carnot groups

Maxwell s equations in Carnot groups Maxwell s equations in Carnot groups B. Franchi (U. Bologna) INDAM Meeting on Geometric Control and sub-riemannian Geometry Cortona, May 21-25, 2012 in honor of Andrey Agrachev s 60th birthday Researches

More information

Sharp Gårding inequality on compact Lie groups.

Sharp Gårding inequality on compact Lie groups. 15-19.10.2012, ESI, Wien, Phase space methods for pseudo-differential operators Ville Turunen, Aalto University, Finland (ville.turunen@aalto.fi) M. Ruzhansky, V. Turunen: Sharp Gårding inequality on compact

More information

Microlocal Analysis : a short introduction

Microlocal Analysis : a short introduction Microlocal Analysis : a short introduction Plamen Stefanov Purdue University Mini Course, Fields Institute, 2012 Plamen Stefanov (Purdue University ) Microlocal Analysis : a short introduction 1 / 25 Introduction

More information

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type Duality of multiparameter Hardy spaces H p on spaces of homogeneous type Yongsheng Han, Ji Li, and Guozhen Lu Department of Mathematics Vanderbilt University Nashville, TN Internet Analysis Seminar 2012

More information

HARMONIC ANALYSIS TERENCE TAO

HARMONIC ANALYSIS TERENCE TAO HARMONIC ANALYSIS TERENCE TAO Analysis in general tends to revolve around the study of general classes of functions (often real-valued or complex-valued) and operators (which take one or more functions

More information

A review: The Laplacian and the d Alembertian. j=1

A review: The Laplacian and the d Alembertian. j=1 Chapter One A review: The Laplacian and the d Alembertian 1.1 THE LAPLACIAN One of the main goals of this course is to understand well the solution of wave equation both in Euclidean space and on manifolds

More information

Strichartz Estimates for the Schrödinger Equation in Exterior Domains

Strichartz Estimates for the Schrödinger Equation in Exterior Domains Strichartz Estimates for the Schrödinger Equation in University of New Mexico May 14, 2010 Joint work with: Hart Smith (University of Washington) Christopher Sogge (Johns Hopkins University) The Schrödinger

More information

MICROLOCAL ANALYSIS METHODS

MICROLOCAL ANALYSIS METHODS MICROLOCAL ANALYSIS METHODS PLAMEN STEFANOV One of the fundamental ideas of classical analysis is a thorough study of functions near a point, i.e., locally. Microlocal analysis, loosely speaking, is analysis

More information

4 Riesz Kernels. Since the functions k i (ξ) = ξ i. are bounded functions it is clear that R

4 Riesz Kernels. Since the functions k i (ξ) = ξ i. are bounded functions it is clear that R 4 Riesz Kernels. A natural generalization of the Hilbert transform to higher dimension is mutiplication of the Fourier Transform by homogeneous functions of degree 0, the simplest ones being R i f(ξ) =

More information

GEOMETRIC QUANTIZATION

GEOMETRIC QUANTIZATION GEOMETRIC QUANTIZATION 1. The basic idea The setting of the Hamiltonian version of classical (Newtonian) mechanics is the phase space (position and momentum), which is a symplectic manifold. The typical

More information

Fourier Transform & Sobolev Spaces

Fourier Transform & Sobolev Spaces Fourier Transform & Sobolev Spaces Michael Reiter, Arthur Schuster Summer Term 2008 Abstract We introduce the concept of weak derivative that allows us to define new interesting Hilbert spaces the Sobolev

More information

Diffraction by Edges. András Vasy (with Richard Melrose and Jared Wunsch)

Diffraction by Edges. András Vasy (with Richard Melrose and Jared Wunsch) Diffraction by Edges András Vasy (with Richard Melrose and Jared Wunsch) Cambridge, July 2006 Consider the wave equation Pu = 0, Pu = D 2 t u gu, on manifolds with corners M; here g 0 the Laplacian, D

More information

Vectors. January 13, 2013

Vectors. January 13, 2013 Vectors January 13, 2013 The simplest tensors are scalars, which are the measurable quantities of a theory, left invariant by symmetry transformations. By far the most common non-scalars are the vectors,

More information

Singularities of affine fibrations in the regularity theory of Fourier integral operators

Singularities of affine fibrations in the regularity theory of Fourier integral operators Russian Math. Surveys, 55 (2000), 93-161. Singularities of affine fibrations in the regularity theory of Fourier integral operators Michael Ruzhansky In the paper the regularity properties of Fourier integral

More information

On Fréchet algebras with the dominating norm property

On Fréchet algebras with the dominating norm property On Fréchet algebras with the dominating norm property Tomasz Ciaś Faculty of Mathematics and Computer Science Adam Mickiewicz University in Poznań Poland Banach Algebras and Applications Oulu, July 3 11,

More information

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism 8. Smoothness and the Zariski tangent space We want to give an algebraic notion of the tangent space. In differential geometry, tangent vectors are equivalence classes of maps of intervals in R into the

More information

Elements of linear algebra

Elements of linear algebra Elements of linear algebra Elements of linear algebra A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the linear combination c 1 v

More information

1. Plurisubharmonic functions and currents The first part of the homework studies some properties of PSH functions.

1. Plurisubharmonic functions and currents The first part of the homework studies some properties of PSH functions. MATH 263: PROBLEM SET 2: PSH FUNCTIONS, HORMANDER S ESTIMATES AND VANISHING THEOREMS 1. Plurisubharmonic functions and currents The first part of the homework studies some properties of PSH functions.

More information

Partial Density Functions and Hele-Shaw Flow

Partial Density Functions and Hele-Shaw Flow Partial Density Functions and Hele-Shaw Flow Jackson Van Dyke University of California, Berkeley jayteeveedee@berkeley.edu August 14, 2017 Jackson Van Dyke (UCB) Partial Density Functions August 14, 2017

More information

Harmonic Analysis Homework 5

Harmonic Analysis Homework 5 Harmonic Analysis Homework 5 Bruno Poggi Department of Mathematics, University of Minnesota November 4, 6 Notation Throughout, B, r is the ball of radius r with center in the understood metric space usually

More information

arxiv: v1 [math.ap] 18 May 2017

arxiv: v1 [math.ap] 18 May 2017 Littlewood-Paley-Stein functions for Schrödinger operators arxiv:175.6794v1 [math.ap] 18 May 217 El Maati Ouhabaz Dedicated to the memory of Abdelghani Bellouquid (2/2/1966 8/31/215) Abstract We study

More information

DISCRETE LITTLEWOOD-PALEY-STEIN THEORY AND MULTI-PARAMETER HARDY SPACES ASSOCIATED WITH FLAG SINGULAR INTEGRALS

DISCRETE LITTLEWOOD-PALEY-STEIN THEORY AND MULTI-PARAMETER HARDY SPACES ASSOCIATED WITH FLAG SINGULAR INTEGRALS DSCRETE LTTLEWOOD-PALEY-STEN THEORY AND MULT-PARAMETER HARDY SPACES ASSOCATED WTH LAG SNGULAR NTEGRALS Yongsheng Han Department of Mathematics Auburn University Auburn, AL 36849, U.S.A E-mail: hanyong@mail.auburn.edu

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

1. Geometry of the unit tangent bundle

1. Geometry of the unit tangent bundle 1 1. Geometry of the unit tangent bundle The main reference for this section is [8]. In the following, we consider (M, g) an n-dimensional smooth manifold endowed with a Riemannian metric g. 1.1. Notations

More information

Chapter 7: Bounded Operators in Hilbert Spaces

Chapter 7: Bounded Operators in Hilbert Spaces Chapter 7: Bounded Operators in Hilbert Spaces I-Liang Chern Department of Applied Mathematics National Chiao Tung University and Department of Mathematics National Taiwan University Fall, 2013 1 / 84

More information

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem 56 Chapter 7 Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem Recall that C(X) is not a normed linear space when X is not compact. On the other hand we could use semi

More information

Singular integrals on NA groups

Singular integrals on NA groups Singular integrals on NA groups joint work with Alessio Martini and Alessandro Ottazzi Maria Vallarino Dipartimento di Scienze Matematiche Politecnico di Torino LMS Midlands Regional Meeting and Workshop

More information

CORRIGENDUM: THE SYMPLECTIC SUM FORMULA FOR GROMOV-WITTEN INVARIANTS

CORRIGENDUM: THE SYMPLECTIC SUM FORMULA FOR GROMOV-WITTEN INVARIANTS CORRIGENDUM: THE SYMPLECTIC SUM FORMULA FOR GROMOV-WITTEN INVARIANTS ELENY-NICOLETA IONEL AND THOMAS H. PARKER Abstract. We correct an error and an oversight in [IP]. The sign of the curvature in (8.7)

More information

THE MULTIPLICATIVE ERGODIC THEOREM OF OSELEDETS

THE MULTIPLICATIVE ERGODIC THEOREM OF OSELEDETS THE MULTIPLICATIVE ERGODIC THEOREM OF OSELEDETS. STATEMENT Let (X, µ, A) be a probability space, and let T : X X be an ergodic measure-preserving transformation. Given a measurable map A : X GL(d, R),

More information

Classical Fourier Analysis

Classical Fourier Analysis Loukas Grafakos Classical Fourier Analysis Third Edition ~Springer 1 V' Spaces and Interpolation 1 1.1 V' and Weak V'............................................ 1 1.1.l The Distribution Function.............................

More information

Lecture 7. Econ August 18

Lecture 7. Econ August 18 Lecture 7 Econ 2001 2015 August 18 Lecture 7 Outline First, the theorem of the maximum, an amazing result about continuity in optimization problems. Then, we start linear algebra, mostly looking at familiar

More information

Decouplings and applications

Decouplings and applications April 27, 2018 Let Ξ be a collection of frequency points ξ on some curved, compact manifold S of diameter 1 in R n (e.g. the unit sphere S n 1 ) Let B R = B(c, R) be a ball with radius R 1. Let also a

More information

Reproducing formulas associated with symbols

Reproducing formulas associated with symbols Reproducing formulas associated with symbols Filippo De Mari Ernesto De Vito Università di Genova, Italy Modern Methods of Time-Frequency Analysis II Workshop on Applied Coorbit space theory September

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

Geometry and the Kato square root problem

Geometry and the Kato square root problem Geometry and the Kato square root problem Lashi Bandara Centre for Mathematics and its Applications Australian National University 7 June 2013 Geometric Analysis Seminar University of Wollongong Lashi

More information

List of Symbols, Notations and Data

List of Symbols, Notations and Data List of Symbols, Notations and Data, : Binomial distribution with trials and success probability ; 1,2, and 0, 1, : Uniform distribution on the interval,,, : Normal distribution with mean and variance,,,

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Geometry and the Kato square root problem

Geometry and the Kato square root problem Geometry and the Kato square root problem Lashi Bandara Centre for Mathematics and its Applications Australian National University 7 June 2013 Geometric Analysis Seminar University of Wollongong Lashi

More information

Combinatorics in Banach space theory Lecture 12

Combinatorics in Banach space theory Lecture 12 Combinatorics in Banach space theory Lecture The next lemma considerably strengthens the assertion of Lemma.6(b). Lemma.9. For every Banach space X and any n N, either all the numbers n b n (X), c n (X)

More information

MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3. (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers.

MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3. (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers. MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3 (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers. (a) Define d : V V + {0} by d(x, y) = 1 ξ j η j 2 j 1 + ξ j η j. Show that

More information

SCHWARTZ SPACES ASSOCIATED WITH SOME NON-DIFFERENTIAL CONVOLUTION OPERATORS ON HOMOGENEOUS GROUPS

SCHWARTZ SPACES ASSOCIATED WITH SOME NON-DIFFERENTIAL CONVOLUTION OPERATORS ON HOMOGENEOUS GROUPS C O L L O Q U I U M M A T H E M A T I C U M VOL. LXIII 1992 FASC. 2 SCHWARTZ SPACES ASSOCIATED WITH SOME NON-DIFFERENTIAL CONVOLUTION OPERATORS ON HOMOGENEOUS GROUPS BY JACEK D Z I U B A Ń S K I (WROC

More information

Average theorem, Restriction theorem and Strichartz estimates

Average theorem, Restriction theorem and Strichartz estimates Average theorem, Restriction theorem and trichartz estimates 2 August 27 Abstract We provide the details of the proof of the average theorem and the restriction theorem. Emphasis has been placed on the

More information

Rough metrics, the Kato square root problem, and the continuity of a flow tangent to the Ricci flow

Rough metrics, the Kato square root problem, and the continuity of a flow tangent to the Ricci flow Rough metrics, the Kato square root problem, and the continuity of a flow tangent to the Ricci flow Lashi Bandara Mathematical Sciences Chalmers University of Technology and University of Gothenburg 22

More information

Regularizations of Singular Integral Operators (joint work with C. Liaw)

Regularizations of Singular Integral Operators (joint work with C. Liaw) 1 Outline Regularizations of Singular Integral Operators (joint work with C. Liaw) Sergei Treil Department of Mathematics Brown University April 4, 2014 2 Outline 1 Examples of Calderón Zygmund operators

More information

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD () Instanton (definition) (2) ADHM construction (3) Compactification. Instantons.. Notation. Throughout this talk, we will use the following notation:

More information

Work of Lars Hörmander. Michael Taylor

Work of Lars Hörmander. Michael Taylor Work of Lars Hörmander Michael Taylor Lars Hörmander was one of the giants of twentieth century mathematics. He made a big splash with his Ph.D. thesis, much of which was published in a 1955 Acta Mathematica

More information

Loos Symmetric Cones. Jimmie Lawson Louisiana State University. July, 2018

Loos Symmetric Cones. Jimmie Lawson Louisiana State University. July, 2018 Louisiana State University July, 2018 Dedication I would like to dedicate this talk to Joachim Hilgert, whose 60th birthday we celebrate at this conference and with whom I researched and wrote a big blue

More information

An inverse source problem in optical molecular imaging

An inverse source problem in optical molecular imaging An inverse source problem in optical molecular imaging Plamen Stefanov 1 Gunther Uhlmann 2 1 2 University of Washington Formulation Direct Problem Singular Operators Inverse Problem Proof Conclusion Figure:

More information

8 Singular Integral Operators and L p -Regularity Theory

8 Singular Integral Operators and L p -Regularity Theory 8 Singular Integral Operators and L p -Regularity Theory 8. Motivation See hand-written notes! 8.2 Mikhlin Multiplier Theorem Recall that the Fourier transformation F and the inverse Fourier transformation

More information

HARMONIC ANALYSIS. Date:

HARMONIC ANALYSIS. Date: HARMONIC ANALYSIS Contents. Introduction 2. Hardy-Littlewood maximal function 3. Approximation by convolution 4. Muckenhaupt weights 4.. Calderón-Zygmund decomposition 5. Fourier transform 6. BMO (bounded

More information

New Proof of Hörmander multiplier Theorem on compact manifolds without boundary

New Proof of Hörmander multiplier Theorem on compact manifolds without boundary New Proof of Hörmander multiplier Theorem on compact manifolds without boundary Xiangjin Xu Department of athematics Johns Hopkins University Baltimore, D, 21218, USA xxu@math.jhu.edu Abstract On compact

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

Isodiametric problem in Carnot groups

Isodiametric problem in Carnot groups Conference Geometric Measure Theory Université Paris Diderot, 12th-14th September 2012 Isodiametric inequality in R n Isodiametric inequality: where ω n = L n (B(0, 1)). L n (A) 2 n ω n (diam A) n Isodiametric

More information

2. Intersection Multiplicities

2. Intersection Multiplicities 2. Intersection Multiplicities 11 2. Intersection Multiplicities Let us start our study of curves by introducing the concept of intersection multiplicity, which will be central throughout these notes.

More information

Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus.

Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. Xuan Thinh Duong (Macquarie University, Australia) Joint work with Ji Li, Zhongshan

More information

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT Jordan Journal of Mathematics and Statistics (JJMS 9(1, 2016, pp 17-30 BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT WANG HONGBIN Abstract. In this paper, we obtain the boundedness

More information

Takao Akahori. z i In this paper, if f is a homogeneous polynomial, the correspondence between the Kodaira-Spencer class and C[z 1,...

Takao Akahori. z i In this paper, if f is a homogeneous polynomial, the correspondence between the Kodaira-Spencer class and C[z 1,... J. Korean Math. Soc. 40 (2003), No. 4, pp. 667 680 HOMOGENEOUS POLYNOMIAL HYPERSURFACE ISOLATED SINGULARITIES Takao Akahori Abstract. The mirror conjecture means originally the deep relation between complex

More information

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1 Assistant: Saskia Voss Sheet 1 1. Conformal change of Riemannian metrics [3 points] Let (M, g) be a Riemannian manifold. A conformal change is a nonnegative function λ : M (0, ). Such a function defines

More information