New Proof of Hörmander multiplier Theorem on compact manifolds without boundary

Size: px
Start display at page:

Download "New Proof of Hörmander multiplier Theorem on compact manifolds without boundary"

Transcription

1 New Proof of Hörmander multiplier Theorem on compact manifolds without boundary Xiangjin Xu Department of athematics Johns Hopkins University Baltimore, D, 21218, USA Abstract On compact manifolds (, g) without boundary of dimension n 2, the gradient estimates for unit band spectral projection operators χ λ is proved for any second order elliptic differential operators L by maximum principle. A new proof of Hörmander ultiplier Theorem on the eigenfunction expansion of the operator L is given in this setting by using the gradient estimates and the Calderón-Zygmund argument. Keywords: gradient estimate, spectral projection operator, Hörmander ultiplier Theorem, Calderón-Zygmund decomposition athematics Subject Classification 2000: 58J40, 35P20, 35J25, 1

2 1 Introduction Let (, g) be a compact boundaryless manifolds (, g) of dimension n 2, and suppose that L is a second order elliptic differential operator which is positive and self-adjoint with respect to the C density dx associated to the Reimannian metric g. The purpose of this paper is to give a simple proof of sharp gradient estimates for the eigenfunctions of L and then to use these estimates to give a new proof of Hörmander multiplier theorem for the eigenfunction expansions on the compact boundaryless manifold (, g). Thus, we shall consider the eigenvalue problem (L + λ 2 )u(x) = 0, x, (1) Recall that the spectrum of L is discrete and tends to infinity. Let 0 λ 2 1 λ 2 2 λ 2 3 denote the eigenvalues, so that {λ j } is the spectrum of the first order operator P = L. Let {e j (x)} L 2 () be an associated real orthogonormal basis, define the unit band spectral projection operators, χ λ f = λ j [λ,λ+1) e j (f), where e j (f)(x) = e j (x) f(y)e j (y)dy. In [5] and [6], Sogge proved the following L estimates on χ λ, χ λ f Cλ (n 1)/2 f 2, λ 1, for a uniform constant C, which is equivalent to λ j [λ,λ+1) e j (x) 2 Cλ n 1, x, Here based on the above L estimates on χ λ f, by maximum principle, we show the following gradient estimates for χ λ f 2

3 Theorem 1.1 Fix a compact boundaryless Riemannian manifold (, g), there is a uniform constant C so that which is equivalent to χ λ f Cλ (n+1)/2 f 2, λ 1, λ j [λ,λ+1) e j (x) 2 Cλ n+1, x. We shall show the gradient estimates following the ideas of the interior gradient estimates for Poisson s equation in [1], where for Poisson s equation u = f, there are gradient estimates for the interior point x 0 as u(x 0 ) C d sup B u + Cd sup f, B by using maximum principle in a cube B centered at x 0 with length d. Our other main result is Hörmander ultiplier Theorem for the eigenfunction expansions on compact manifolds without boundary. Given a bounded function m(λ) L (R), one can define the multiplier operator, m(p ), by m(p )f = m(λ j )e j (f) (2) j=1 such an operator is always bounded on L 2 (). However, if one considers on any other space L p (), it is known that some smoothness assumptions on the function m(λ) are needed to ensure the boundedness of m(p ) : L p () L p (). (3) When m(λ) is C and, moreover, in the symbol class S 0, i.e., ( d dλ )α m(λ) C α (1 + λ ) α, α = 0, 1, 2, 3

4 It has been known for some time that (3) holds for all 1 < p < on compact manifolds (see [10]). One assumes the following regularity assumption: Suppose that m L (R), let L 2 s(r) denote the usual Sobolev space and fix β C 0 ((1/2, 2)) satisfying β(2 j t) = 1, t > 0, for s > n/2, there is sup λ>0 λ 1+s β( /λ)m( ) 2 L = sup β( )m(λ ) 2 2 s L <. (4) 2 s λ>0 One can see this is the sharp assumption to ensure the boundedness of m(p ) on L p () for all 1 < p <, since for a special class of multiplier operators, Riesz means S δ λf = λ j λ(1 λ 2 j/λ 2 ) δ e j (f), such an assumption is sharp (see in [6]). any authors have studied this problem under different setting. Hörmander [2] first proved the boundedness of m(p ) for R n under the assumption (4), using the Calderón-Zygmund decomposition and the estimates on the integral kernel of the multiplier operator. Stein and Weiss [9] studied the boundedness of m(p ) for multiple Fourier series, which can be regarded as the case on the flat torus T n. By studying the paramatrix of the wave kernel of m(p ), Seeger and Sogge [4] and Sogge [6] proved the following Hömander multiplier Theorem for the eigenfunction expansions on compact manifolds without boundary: Theorem 1.2 Let m L (R) satisfy (4), then there are constants C p such that m(p )f L p () C p f L p (), 1 < p <. (5) Here we shall give a new proof for above theorem by using the L estimates and the gradient estimates on χ λ f, without using the paramatrix of the wave kernel of m(p ) as done in [4] and [6]. Since the complex conjugate of m satisfies the same hypotheses (4), we need only to prove Theorem 1.2 for exponents 1 < p 2. This 4

5 will allow us to exploit orthogonality, and since m(p ) is bounded on L 2 (), also reduce Theorem 1.2 to show that m(p ) is weak-type (1, 1) by the arcinkiewicz Interpolation Theorem. The weak-type (1,1) estimates of m(p ) will involve a splitting of m(p ) into two pieces m(p ) = m(p ) + r(p ). For the remainder r(p ), one can obtain the strong (1,1) estimates by the L estimates on χ λ f as done in [6]. For the main term m(p ), in [4] and [6], the authors used the paramatrix of the wave kernel of m(p ) to get the required estimates on the integral kernel of m(p ), and applying these estimates, proved the weak-type (1,1) estimates on m(p ). As people know, the the paramatrix construction of the wave equation does not work well for general compact manifolds with boundary unless one assume the boundary is geodesically concave. Here we use another approach to prove the weak-type (1,1) estimates on m(p ), which works for any compact manifolds with boundary (One may see it from [11] and [12] for the proof of Hörmander ultiplier Theorem of Dirichlet Laplacian and Neumann Laplacian on compact manifolds with boundary). We make a second decomposition {K λ,l (x, y)} l= for each term K λ (x, y), which comes from the dyadic decomposition of the integral kernel K(x, y) of m(p ) K(x, y) = K 2 k(x, y) + K 0 (x, y), k=1 ( ) such that K λ (x, y) = l= K λ,l (x, y) and m(p )f(x) = T 2,l(P )f(x), where T k λ,l (P )f(x) = k=0 l= K λ,l (x, y)f(y)dy. We shall give the definitions of K λ,l (x, y) in the proof of Theorem 1.2. And for each operator T λ,l (P ), we shall prove the L 1 L 2 estimates by a rescaling argument of the proof for the remainder r(p ) using the L estimates and gradient estimates on 5

6 χ λ f which we obtained in Theorem 1.1. With the support properties and the finite propagation speed properties, one has the relation (10) between λ and l, which is one key observation when we apply the Calderón-Zygmund decomposition to show the weak-type (1,1) estimates on m(p ). In what follows we shall use the convention that C will denote a constant that is not necessarily the same at each occurrence. Acknowledgement: The author would like to thank his advisor, Professor C.D. Sogge, brings the problems to him and a number helpful conversations on these problems and his research. The results in this paper come from part of the author s Ph.D. thesis [12] in Johns Hopkins University. 2 Gradient estimates In this section, we shall prove Theorem 1.1. by using maximum principle. Proof of Theorem 1.1. Now we fix x 0. We shall use the maximum principle in the cube centered at x 0 with length d = (λ + 1) 1 to prove the same gradient estimates for χ λ f as for Poisson s equation. Define the geodesic coordinates x = (x 1,, x n ) centered at point x 0 as following, fixed an orthogonormal basis {v i } n i=1 T x0, identity x = (x 1,, x n ) R n with the point exp( n i=1 x i v i ). In this coordinate, the elliptic operator L can be written as L = n i,j=1 2 a ij (x) + x i x j n i=1 b i (x) x i + c(x), where a ij (x), b i (x), c(x) C (), and c(x) 0 which comes from L is an elliptic 6

7 operator. Now define the cube Q = {x = (x 1,, x n ) R n x i < d, i = 1,, n}. Denote u(x; f) = χ λ f(x), we have u C 2 (Q), and Lu(x; f) = λ j [λ,λ+1) λ 2 je j (f) := h(x; f). From the L estimate in [5], and Cauchy-Schwarz inequality, we have h(x; f) 2 = ( λ j [λ,λ+1) λ j [λ,λ+1) (λ + 1) 4 ( (λ 2 je j (x))( λ 4 je 2 j(x) λ j [λ,λ+1) ( λ j [λ,λ+1) C(λ + 1) n+3 χ λ f 2 L 2 () e j (y)f(y)dy)) 2 e 2 j(x)) χ λ f 2 L 2 () e j (y)f(y)dy) 2 Here we estimate D n u(0; f) = x n u(0; f) only, and the same estimate holds for D i u(0; f) with i = 1,, n 1 also. Now in the half-cube Q = {x = (x 1,, x n ) R n x i < d, i = 1,, n 1, 0 < x n < d.}, Consider the function ϕ(x, x n ; f) = 1 2 [u(x, x n ; f) u(x, x n ; f)], where we write x = (x, x n ) = (x 1,, x n 1, x n ). One sees that ϕ(x, 0; f) = 0, sup Q ϕ sup Q u := A, and Lϕ sup Q h := N in Q. Now consider the function ψ(x, x n ) = A d 2 [ x 2 + αx n (nd (n 1)x n )] + βnx n (d x n ) 0 7

8 defined on the half-cube Q, where α 1 and β 1 will be determined below. Obviously ψ(x, x n ) 0 on x n = 0 and ψ(x, x n ) A in the remaining portion of Q. Lψ(x) = A n d [2tr(a ij(x)) (2nα 2α + 1)a 2 nn (x) + 2 b i (x)x i + b n (x)(nαd i=1 (2nα 2α + 1)x n )] + Nβ[ 2a nn (x) + b n (x)(d 2x n )] + c(x)ψ(x). Since in, tr(a ij (x)) and b i (x) are bounded uniformly, c(x) 0 and a nn (x) is positive, then for a large α, we can make 2tr(a ij (x)) (2nα 2α + 1)a nn (x) 1, Fix such a α, since d = (λ + 1) 1, for large λ, we have n 2 b i (x)x i + b n (x)(nαd (2nα 2α + 1)x n ) < 1. i=1 Then the first term is negative. For second term, let β large enough, we have β[ 2a nn (x) + b n (x)(d 2x n )] < 1. For the third term, we have c(x) 0 and ψ(x) 0 in Q. Hence we have Lψ(x) N in Q. Now we have L(ψ ± ϕ) 0 in Q and ψ ± ϕ 0 on Q, from which it follows by the maximum principle that ϕ(x, x n ; f) ψ(x, x n ) in Q. Letting x = 0 in the expressions for ψ and ϕ, then dividing by x n and letting x n tend to zero, we obtain D n u(0; f) = lim ϕ(0, x n; f) αna xn 0 d x n + βdn. Note that d = (λ + 1) 1, A C(λ + 1) (n 1)/2, and N (λ + 1) (n+3)/2, then we have the estimate D n u(0; f) C(λ + 1) (n+1)/2. 8

9 The same estimate holds for D i u(0), i = 1,, n 1. Hence we have u(0) C(λ + 1) (n+1)/2. Since the estimate is for any x 0, Theorem 1.1 is proved. Q.E.D. For Riemannian manifolds without boundary, in [8], the authors proved that for generic metrics on any manifold one has the bounds e j L () = o(λ (n 1)/2 j ) for L 2 normalized eigenfunctions. For Laplace-Beltrami operator g, there are eigenvalues { λ 2 j}, where 0 λ 2 0 λ 2 1 are counted with multiplicity. Let {e j (x)} be an associated orthogonal basis of L 2 normalized eigenfunctions. If λ 2 is in the spectrum of g, let V λ = {u g u = λ 2 u} denote the corresponding eigenspace. We define the eigenfunction growth rate in term of L (λ, g) = and the gradient growth rate in term of L (, λ, g) = sup u L, u V λ ; u L 2 =1 sup u L. u V λ ; u L 2 =1 In [8], Sogge and Zelditch proved the following results L (λ, g) = o(λ (n 1)/2 j ) for a generic metric on any manifold without boundary. Here we have the following estimates on the gradient growth rate Theorem 2.1 L (, λ, g) = o(λ (n+1)/2 j ) for a generic metric on any manifold without boundary. And the bounds are uniform if there is a uniformly bound on the norm of tr(g ij (x)) for (, g). 9

10 Proof. For a compact Riemannian manifold (, g) without boundary, we can apply Theorem 1.1 to any point in. From Theorem 1.4 in [8], we have L (λ, g) = o(λ (n 1)/2 j ) for a generic metric on any compact manifold without boundary. Fix any such a metric on the manifold and a L 2 normalized eigenfunction u(x), apply Theorem 1.1 to u(x) at each point x 0, we have u(x 0 ) αna d + βdn. where α and β are constants depending on the norm of tr(g ij (x)) at only, which can been seen in the above proof of Theorem 1.1, and A = sup Q u = o(λ (n 1)/2 j ), and N = sup Q λ 2 u = (λ (n+3)/2 j ), where the cube Q = {x = (x 1,, x n ) R n x i < d, i = 1,, n}, we choose d = (λ + 1) 1 / n. Hence we have u(x 0 ) = o(λ (n+1)/2 j ) holds for all L 2 normalized eigenfunction u(x) V λ, furthermore, the bounds are uniform when those metrics of (, g) have a uniformly bound on the norm of tr(g ij (x)) from the proof. Hence we have our Theorem. Q.E.D. 3 Hörmander ultiplier Theorem In this section, we shall see how the L estimates and gradients estimates for χ λ imply Hörmander multiplier Theorem. As discussed in Introduction, we reduce 10

11 Theorem 1.2 to show that m(p ) is weak-type (1, 1), i.e., µ{x : m(p )f(x) > α} α 1 f L 1, (6) where µ(e) denotes the dx measure of E. Since the all eigenvalues of L are non-negative, we may assume m(t) is an even function on R. Then we have m(p )f(x) = 1 2π R ˆm(t)e itp f(x)dt = 1 π R + ˆm(t) cos(tp )f(x)dt, where P = L, and the cosine transform u(t, x) = cos(tp )f(x) is the solution of the following Cauchy problem of the wave equation: ( 2 t 2 L)u(t, x) = 0, u(0, x) = f(x), u t(0, x) = 0. We shall use the finite propagation speed of solutions of the wave equation in Part 2 of the proof to get the key observation (10). Proof of Theorem 1.2. The proof of the weak-type (1,1) estimate will involve a splitting of m(p ) into two pieces: a main piece which one need carefully study, plus a remainder which has strong (1,1) estimate by using the L estimates for the unit spectral projection operators as done in [6]. Specifically, define ρ C 0 (R) as ρ(t) = 1, for t ɛ, ρ(t) = 0, for t ɛ. (7) 2 where ɛ > 0 is a given small constant related to the manifold, which will be specified later. Write m(p ) = m(p ) + r(p ), where m(p ) = (m ˇρ)(P ) = 1 e itp ρ(t) ˆm(t)dt 2π r(p ) = (m (1 ρ)ˇ)(p ) = 1 e itp (1 ρ(t)) ˆm(t)dt 2π 11

12 To estimate the main term and remainder, for λ = 2 j, j = 1, 2,, define m λ (τ) = β( τ )m(τ). (8) λ Part 1: Strong (1, 1) estimate on the remainder r(p )f L 1 C f L 1. We first show r(p )f L 2 C f L 1. Here we follow the first part in proof of Theorem in [6]. Define r λ (P ) = (m λ (1 ρ)ˇ)(p ) = 1 2π e itp (1 ρ(t)) ˆm λ (t)dt Notice that r 0 (P ) = r(p ) j 1 r 2 j(p ) is a bounded and rapidly decreasing function of P. Hence r 0 (P ) is bounded from L 1 to any L p space. We need only to show r λ (P )f L 2 Cλ n/2 s f L 1, λ = 2 j, j = 1, 2,. Using the L estimate on χ k, see [5] or [6], we have r λ (P )f 2 L r 2 λ (P )χ k f 2 L C 2 k=1 Hence we need only to show sup k=1 τ [k,k+1] sup k=1 τ [k,k+1] r λ (τ) 2 (1 + k) n 1 Cλ n 2s Notice since m λ (τ) = 0, for τ / [λ/2, 2λ], we have r λ (τ) 2 (1 + k) n 1 f 2 L 1 m λ (τ) = O((1 + τ + λ ) N ) r λ (τ) = O((1 + τ + λ ) N ) 12

13 for any N when τ / [λ/4, 4λ]. Hence we need only to show that is 4λ sup k=λ/4 τ [k,k+1] r λ (τ) 2 (1 + k) n 1 Cλ n 2s 4λ sup k=λ/4 τ [k,k+1] r λ (τ) 2 Cλ 1 2s Using the fundamental theorem of calculus and the Cauchy-Schwartz inequality, we have 4λ sup k=λ/4 τ [k,k+1] r λ (τ) 2 C( r λ (τ) 2 dτ + r λ(τ) 2 dτ) R R = C( R ˆm λ (t)(1 ρ(t)) 2 dt + R t ˆm λ (t)(1 ρ(t)) 2 dt) Recall that ρ(t) = 1, for t ɛ, by a change variables shows that this is 2 dominated by λ 1 2s R t s ˆm λ (t/λ) 2 dt = λ 1 2s λβ( )m(λ ) 2 L 2 s = λ 1 2s β( )m(λ ) 2 L 2 s Cλ 1 2s Here the first equality comes from a change variables, the second equality comes from the definition of Sobolev norm of L 2 s() and the third inequality comes from our assumption (4). Hence we have the estimate for the remainder r(p )f L 2 C f L 1. And since our manifold is compact, we have r(p )f L 1 V ol() 1/2 r(p )f L 2 C f L 1. 13

14 Part 2: weak-type (1, 1) estimate on the main term µ{x : m(p )f(x) > α} α 1 f L 1. The weak-type (1, 1) estimate on m(p ) would follow from the integral operator m(p )f(x) = 1 2π = 1 2π = 1 2π R R ˆm(t)ρ(t)e itp f(x)dt ˆm(t)ρ(t) e itλ k e λk (x) k 1 { R e λk (y)f(y)dydt ˆm(t)ρ(t) k 1 e itλ k e λk (x)e λk (y)dt}f(y)dy with the kernel K(x, y) = ˆm(t)ρ(t) e itλ k e λk (x)e λk (y)dt R k 1 = k 1(m ˇρ)(λ k )e λk (x)e λk (y) is weak-type (1,1). Now define the dyadic decomposition K λ (x, y) = R ˆm λ (t)ρ(t) k 1 e itλ k e λk (x)e λk (y)dt We have K(x, y) = K 2 j(x, y) + K 0 (x, y) j=1 where K 0 is bounded and vanishes when dist(x, y) is larger than a fixed constant. In order to estimate K λ (x, y), we make a second dyadic decomposition as follows K λ,l (x, y) = R ˆm λ (t)β(2 l λ t )ρ(t) k 1 e itλ k e λk (x)e λk (y)dt We have K λ (x, y) = K λ,l (x, y) l= 14

15 Define T λ,l (P )f(x) = K λ,l (x, y)f(y)dy. From above two dyadic decompositions, we have m(p )f(x) = T 2,l(P )f(x). (9) k k=0 l= Note that, because of the support properties of ρ(t), K λ,l (x, y) vanishes if l is larger than a fixed multiple of logλ. Now we exploit the fact that the finite propagation speed of the wave equation mentioned before implies that the kernels of the operators T λ,l, K λ,l must satisfy K λ,l (x, y) = 0, if dist(x, y) C(2 l λ 1 ), since cos(tp ) will have a kernel that vanishes on this set when t belongs to the support of the integral defining K λ,l (x, y). Hence in each of the second sum of (9), there are uniform constants c, C > 0 such that cλdist(x, y) 2 l Cλ (10) must be satisfied for each λ = 2 k, we will use this key observation later. Now for T λ,l (P )s, we have the following estimates: (a). (b). T λ,l (P )f L 2 () C(2 l ) s λ n/2 f L 1 () T λ,l (P )g L 2 () C(2 l ) s 0 λ n/2 [λ max y,y 0 Ω dist(y, y 0)] g L 1 (Ω) where Ω = support(g), Ω g(y)dy = 0 and n/2 < s 0 < min{s, n/2 + 1}. We first show estimate (a). Notice that β(2 l λ t )ρ(t) = 0 when t 2 l 1 λ 1, we can use the same idea to prove estimate (a) as we prove the estimate on the 15

16 remainder r(p ) in Part 1, where 1 ρ(t) = 0, for t ɛ. Using orthogonality of 2 χ k for k N, and the L estimates on χ k in [5], we have T λ,l (P )f 2 L T 2 λ,l (P )χ k f 2 L 2 Hence we need only to show sup k=1 τ [k,k+1] k=1 C sup k=1 τ [k,k+1] T λ,l (τ) 2 (1 + k) n 1 f 2 L 1 T λ,l (τ) 2 (1 + k) n 1 C(2 l ) 2s λ n Notice since m λ (τ) = 0, for τ / [λ/2, 2λ], we have T λ,l (τ) = O((1 + τ + λ ) N ) for any N when τ / [λ/4, 4λ]. Then we have sup k / [λ/4,4λ] τ [k,k+1] T λ,l (τ) 2 (1 + k) n 1 C C k / [λ/4,4λ] x>1,x/ [λ/4,4λ] C(1 + λ) n 2N (1 + k + λ) 2N (1 + k) n 1 x n 1 dx (x + λ) 2N Since 2 l Cλ from our observation (10) above, we need only to show that is 4λ sup k=λ/4 τ [k,k+1] 4λ k=λ/4 τ [k,k+1] T λ,l (τ) 2 (1 + k) n 1 C(2 l ) 2s λ n sup T λ,l (τ) 2 C(2 l ) 2s λ 16

17 Using the same argument as in Part 1, Notice that β(2 l λ t )ρ(t) = 0 when t 2 l 1 λ 1, we have the estimate (a), T λ,l (P )f L 2 () C(2 l ) s λ n/2 f L 1 () Next we prove the estimate (b). We will use the orthogonality of {e j } j N, e λk (x)e λj (x)dx = δ kj, and the gradient estimates on χ k for all k N as in Theorem 1.1. Given function g L 1 () with Ω = support(g) and g(y)dy = 0, fix a point y 0 Ω, we have = = = T λ,l (P )g 2 L 2 K λ,l (x, y)g(y)dy 2 dx Ω [K λ,l (x, y) K λ,l (x, y 0 )]g(y)dy 2 dx Ω (here use the cancellation of g) T λ,l (λ k )e λk (x)[e λk (y) e λk (y 0 )]g(y)dy 2 dx = k 1 Ω k 1 Ω λ j [k,k+1) {T λ,l (λ j )e λj (x)[e λj (y) e λj (y 0 )]}g(y)dy 2 dx (here use the orthogonality) max {T λ,l (λ j )e λj (x)[e λj (y) e λj (y 0 )]} 2 dx k 1 y Ω λ j [k,k+1) = g 2 L {T 1 λ,l (λ j )e λj (x)[e λj (y 1 ) e λj (y 0 )]} 2 dx k 1 λ j [k,k+1) (where the maximum achieves at y 1 ) = g 2 L ( 1 y T λ,l (λ j )e λj (x)e λj (ȳ), y 1 y 0 ) 2 dx = g 2 L 1 k 1 k 1 { λ j [k,k+1) λ j [k,k+1) T λ,l (λ j )e λj (x)( e λj (ȳ), y 1 y 0 )} 2 dx 17 Ω g(y) dy 2

18 = g 2 L 1 k 1 λ j [k,k+1) g 2 L max T λ,l(τ) 2 { 1 τ [k,k+1) k 1 (here use the orthogonality) T λ,l (λ j )( e λj (ȳ), y 1 y 0 ) 2 λ j [k,k+1) g 2 L1[ max dist(y, y 0)] 2 max T λ,l(τ) 2 { y,y 0 Ω τ [k,k+1) k 1 e λj (ȳ) 2 dist(y 1, y 0 ) 2 } λ j [k,k+1) C g 2 L1[ max dist(y, y 0)] 2 max T λ,l(τ) 2 (1 + k) n+1 y,y 0 Ω τ [k,k+1) k 1 e λj (ȳ) 2 } Now using the same computation as to the estimate (a), for some constant s 0 satisfying n/2 < s 0 < min{s, n/2 + 1}, we have max T λ,l(τ) 2 (1 + k) n+1 C(2 l ) 2s 0 λ n+2. τ [k,k+1) k 1 Combine above two estimates, we proved the estimate (b), T λ,l (P )g L 2 () C(2 l ) s 0 λ n/2 [λ max y,y 0 Ω dist(y, y 0)] g L 1 (Ω) Now we use the estimates (a) and (b) to show m(p )f(x) = K(x, y)f(y)dy is weak-type (1,1). We let f(x) = g(x) + k=1 b k (x) := g(x) + b(x) be the Calderón- Zygmund decomposition of f L 1 () at the level α using the same idea as Lemma in [6]. Let Q k supp(b k ) be the cube associated to b k on, and we have g L 1 + b k L 1 3 f L 1 k=1 g(x) 2 n α almost everywhere, and for certain non-overlapping cubes Q k, b k (x) = 0 for x / Q k and µ Q k α 1 f L 1. k=1 b k (x)dx = 0 18

19 Now we show the weak-type (1, 1) estimate for m(p ). Since {x : m(p )f(x) > α} {x : m(p )g(x) > α/2} {x : m(p )b(x) > α/2} Notice g 2 dx 2 n α g dx. Hence we use the L 2 boundedness of m(p ) and Tchebyshev s inequality to get µ{x : m(p )g(x) > α/2} Cα 2 g 2 L 2 C α 1 f L 1. Let Q k be the cube with the same center as Q k but twice the side-length. After possibly making a translation, we may assume that Q k = {x : max x j R}. Let O = Q k, we have µ O 2 n α 1 f L 1, and µ{x / O : m(p )b(x) > α/2} 2α 1 x/ O m(p )b(x) dx Hence we need only to show 2α 1 k=1 x/ Q k m(p )b k (x) dx m(p )b k (x) dx = x/ Q k x/ Q k C K(x, y)b k (y)dy dx Q k b k dx. From the double dyadic decomposition (9), we show two estimates of T λ,l (P )b k (x) on set {x : x / O }, (I) T λ,l (P )b k L 1 (x/ O ) C(2 l ) n/2 s b k L 1 (Q k ) (II) T λ,l (P )b k L 1 (x/ O ) C(2 l ) n/2 s 0 [λ max y,y 0 Q k dist(y, y 0 )] b k L 1 (Q k ) 19

20 From our observation (10), as did in [7], it suffices to show that for all geodesic balls B Rλ,l of radius R λ,l = 2 l λ 1, one has the bounds (I) T λ,l (P )b k L 1 ({x/ O } B Rλ,l ) C(2 l ) n/2 s b k L 1 (Q k ) (II) T λ,l (P )b k L 1 ({x/ O } B Rλ,l ) C(2 l ) n/2 s 0 [λ max y,y 0 Q k dist(y, y 0 )] b k L 1 (Q k ) To show (I), using the estimate (a), and Hölder inequality, we get T λ,l (P )b k L 1 ({x/ O } B Rλ,l ) V ol(b Rλ,l ) 1/2 T λ,l (P )b k L 2 C(2 l λ 1 ) n/2 (2 l ) s λ n/2 b k L 1 = C(2 l ) n/2 s b k L 1 To show (II), using the cancellation property Q k b k (y)dy = 0, the estimate (b), and Hölder inequality, we have T λ,l (P )b k L 1 ({x/ O } B Rλ,l ) V ol(b Rλ,l ) 1/2 T λ,l (P )b k L 2 C( 2l λ )n/2 (2 l ) s 0 λ n/2 [λ max y,y 0 Q k dist(y, y 0 )] b k L 1 (Q k ) = C(2 l ) n/2 s 0 [λ max y,y 0 Q k dist(y, y 0 )] b k L 1 (Q k ) From our observation (10), and estimates (I), we have l= T λ,l (P )b k L 1 (x/ O ) C 2 l cλdist(x,y) (2 l ) n/2 s b k L 1 (Q k ) C s (λdist(x, y)) n/2 s b k L 1 (Q k ) C s (λr) n/2 s b k L 1 (Q k ), and from max y,y0 Q k dist(y, y 0 ) CR, estimate (II), and n/2 < s 0 < min{s, n/2 + 1}, we have l= T λ,l (P )b k L 1 (x/ O ) C 2 l cλdist(x,y) 20 (2 l ) n/2 s 0 [λ max dist(y, y 0 )] b k L y,y 0 Q 1 (Q k ) k

21 C s0 (λdist(x, y)) n/2 s 0 [λ max y,y 0 Q k dist(y, y 0 )] b k L 1 (Q k ) C s0 (λr) n/2+1 s 0 b k L 1 (Q k ). Therefore, we combine the above two estimate we conclude that x/ Q k m(p )b k (x) dx j=0 l= C s 2 j R>1 C s b k L 1 T 2 j,l(p )b k L 1 (x/ O ) (λr) n/2 s b k L 1 + C s0 2 j R1 Hence we have the weak-type (1, 1) estimate on the main term µ{x : m(p )f(x) > α} α 1 f L 1. (λr) n/2+1 s 0 b k L 1 Combine Case 1 and Case 2, we have the weak-type estimate of m(p ) and we finish the proof of Theorem 1.2. Q.E.D. References [1] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, 2001 [2] L. Hörmander, The spectral function of an elliptic operator, Acta ath. 88 (1968), [3] L. Hörmander, The analysis of linear partial differential operators III, Springer- Verlag, [4] A. Seeger and C. D. Sogge, On the boundedness of functions of pseudodifferential operators on compact manifolds. Duke ath. J. 59 (1989),

22 [5] C. D. Sogge, Concerning the L p norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), no. 1, [6] C. D. Sogge, Fourier integrals in classical analysis. Cambridge Tracts in athematics, 105. Cambridge University Press, Cambridge, [7] C. D. Sogge, Eigenfunction and Bochner Riesz estimates on manifolds with boundary. athematical Research Letter 9, (2002). [8] C. D. Sogge, S. Zelditch, Riemannian manifolds with maximal eigenfunction growth. Duke ath. J. Vol. 114, No. 3, (2002). [9] E.. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton Uniersity Press, Princeton, [10]. Taylor, Pseudo-differential Operators. Princeton Univ. Press, Princeton N.J., [11] Xiangjin Xu, Gradient estimates for eigenfunctions of compact manifolds with boundary and the Hörmander ultiplier Theorem. (preprint) [12] Xiangjin Xu, Eigenfunction Estimates on Compact anifolds with Boundary and Hörmander ultiplier Theorem. PhD Thesis, Johns Hopkins University, ay,

Gradient estimates for the eigenfunctions on compact manifolds with boundary and Hörmander multiplier Theorem

Gradient estimates for the eigenfunctions on compact manifolds with boundary and Hörmander multiplier Theorem Gradient estimates for the eigenfunctions on compact manifolds with boundary and Hörmander multiplier Theorem Xiangjin Xu Department of athematics, Johns Hopkins University Baltimore, D, 21218, USA Fax:

More information

Eigenfunction Estimates on Compact Manifolds with Boundary and Hörmander Multiplier Theorem

Eigenfunction Estimates on Compact Manifolds with Boundary and Hörmander Multiplier Theorem Eigenfunction Estimates on Compact anifolds with Boundary and Hörmander ultiplier Theorem by Xiangjin Xu A dissertation submitted to the Johns Hopkins University in conformity with the requirements for

More information

Gradient estimates for eigenfunctions on compact Riemannian manifolds with boundary

Gradient estimates for eigenfunctions on compact Riemannian manifolds with boundary Gradient estimates for eigenfunctions on compact Riemannian manifolds with boundary Xiangjin Xu Department of athematics Johns Hopkins University Baltimore, D 21218 Abstract The purpose of this paper is

More information

Research Statement. Xiangjin Xu. 1. My thesis work

Research Statement. Xiangjin Xu. 1. My thesis work Research Statement Xiangjin Xu My main research interest is twofold. First I am interested in Harmonic Analysis on manifolds. More precisely, in my thesis, I studied the L estimates and gradient estimates

More information

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock WEYL S LEMMA, ONE OF MANY Daniel W Stroock Abstract This note is a brief, and somewhat biased, account of the evolution of what people working in PDE s call Weyl s Lemma about the regularity of solutions

More information

YAIZA CANZANI AND BORIS HANIN

YAIZA CANZANI AND BORIS HANIN C SCALING ASYMPTOTICS FOR THE SPECTRAL PROJECTOR OF THE LAPLACIAN YAIZA CANZANI AND BORIS HANIN Abstract. This article concerns new off-diagonal estimates on the remainder and its derivatives in the pointwise

More information

Singular Integrals. 1 Calderon-Zygmund decomposition

Singular Integrals. 1 Calderon-Zygmund decomposition Singular Integrals Analysis III Calderon-Zygmund decomposition Let f be an integrable function f dx 0, f = g + b with g Cα almost everywhere, with b

More information

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n THE L 2 -HODGE THEORY AND REPRESENTATION ON R n BAISHENG YAN Abstract. We present an elementary L 2 -Hodge theory on whole R n based on the minimization principle of the calculus of variations and some

More information

arxiv: v1 [math.ap] 18 May 2017

arxiv: v1 [math.ap] 18 May 2017 Littlewood-Paley-Stein functions for Schrödinger operators arxiv:175.6794v1 [math.ap] 18 May 217 El Maati Ouhabaz Dedicated to the memory of Abdelghani Bellouquid (2/2/1966 8/31/215) Abstract We study

More information

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell Eigenvalues and eigenfunctions of the Laplacian Andrew Hassell 1 2 The setting In this talk I will consider the Laplace operator,, on various geometric spaces M. Here, M will be either a bounded Euclidean

More information

POINTWISE BOUNDS ON QUASIMODES OF SEMICLASSICAL SCHRÖDINGER OPERATORS IN DIMENSION TWO

POINTWISE BOUNDS ON QUASIMODES OF SEMICLASSICAL SCHRÖDINGER OPERATORS IN DIMENSION TWO POINTWISE BOUNDS ON QUASIMODES OF SEMICLASSICAL SCHRÖDINGER OPERATORS IN DIMENSION TWO HART F. SMITH AND MACIEJ ZWORSKI Abstract. We prove optimal pointwise bounds on quasimodes of semiclassical Schrödinger

More information

A RELATIONSHIP BETWEEN THE DIRICHLET AND REGULARITY PROBLEMS FOR ELLIPTIC EQUATIONS. Zhongwei Shen

A RELATIONSHIP BETWEEN THE DIRICHLET AND REGULARITY PROBLEMS FOR ELLIPTIC EQUATIONS. Zhongwei Shen A RELATIONSHIP BETWEEN THE DIRICHLET AND REGULARITY PROBLEMS FOR ELLIPTIC EQUATIONS Zhongwei Shen Abstract. Let L = diva be a real, symmetric second order elliptic operator with bounded measurable coefficients.

More information

ON STRICHARTZ ESTIMATES FOR SCHRÖDINGER OPERATORS IN COMPACT MANIFOLDS WITH BOUNDARY. 1. Introduction

ON STRICHARTZ ESTIMATES FOR SCHRÖDINGER OPERATORS IN COMPACT MANIFOLDS WITH BOUNDARY. 1. Introduction ON STRICHARTZ ESTIMATES FOR SCHRÖDINGER OPERATORS IN COMPACT MANIFOLDS WITH BOUNDARY MATTHEW D. BLAIR, HART F. SMITH, AND CHRISTOPHER D. SOGGE 1. Introduction Let (M, g) be a Riemannian manifold of dimension

More information

Algebras of singular integral operators with kernels controlled by multiple norms

Algebras of singular integral operators with kernels controlled by multiple norms Algebras of singular integral operators with kernels controlled by multiple norms Alexander Nagel Conference in Harmonic Analysis in Honor of Michael Christ This is a report on joint work with Fulvio Ricci,

More information

HERMITE MULTIPLIERS AND PSEUDO-MULTIPLIERS

HERMITE MULTIPLIERS AND PSEUDO-MULTIPLIERS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 124, Number 7, July 1996 HERMITE MULTIPLIERS AND PSEUDO-MULTIPLIERS JAY EPPERSON Communicated by J. Marshall Ash) Abstract. We prove a multiplier

More information

Math The Laplacian. 1 Green s Identities, Fundamental Solution

Math The Laplacian. 1 Green s Identities, Fundamental Solution Math. 209 The Laplacian Green s Identities, Fundamental Solution Let be a bounded open set in R n, n 2, with smooth boundary. The fact that the boundary is smooth means that at each point x the external

More information

Global Harmonic Analysis and the Concentration of Eigenfunctions, Part II:

Global Harmonic Analysis and the Concentration of Eigenfunctions, Part II: Global Harmonic Analysis and the Concentration of Eigenfunctions, Part II: Toponogov s theorem and improved Kakeya-Nikodym estimates for eigenfunctions on manifolds of nonpositive curvature Christopher

More information

The Calderon-Vaillancourt Theorem

The Calderon-Vaillancourt Theorem The Calderon-Vaillancourt Theorem What follows is a completely self contained proof of the Calderon-Vaillancourt Theorem on the L 2 boundedness of pseudo-differential operators. 1 The result Definition

More information

. A NOTE ON THE RESTRICTION THEOREM AND GEOMETRY OF HYPERSURFACES

. A NOTE ON THE RESTRICTION THEOREM AND GEOMETRY OF HYPERSURFACES . A NOTE ON THE RESTRICTION THEOREM AND GEOMETRY OF HYPERSURFACES FABIO NICOLA Abstract. A necessary condition is established for the optimal (L p, L 2 ) restriction theorem to hold on a hypersurface S,

More information

Definition and basic properties of heat kernels I, An introduction

Definition and basic properties of heat kernels I, An introduction Definition and basic properties of heat kernels I, An introduction Zhiqin Lu, Department of Mathematics, UC Irvine, Irvine CA 92697 April 23, 2010 In this lecture, we will answer the following questions:

More information

Bielefeld Course on Nonlinear Waves - June 29, Department of Mathematics University of North Carolina, Chapel Hill. Solitons on Manifolds

Bielefeld Course on Nonlinear Waves - June 29, Department of Mathematics University of North Carolina, Chapel Hill. Solitons on Manifolds Joint work (on various projects) with Pierre Albin (UIUC), Hans Christianson (UNC), Jason Metcalfe (UNC), Michael Taylor (UNC), Laurent Thomann (Nantes) Department of Mathematics University of North Carolina,

More information

Sharp estimates for a class of hyperbolic pseudo-differential equations

Sharp estimates for a class of hyperbolic pseudo-differential equations Results in Math., 41 (2002), 361-368. Sharp estimates for a class of hyperbolic pseudo-differential equations Michael Ruzhansky Abstract In this paper we consider the Cauchy problem for a class of hyperbolic

More information

Wave equation on manifolds and finite speed of propagation

Wave equation on manifolds and finite speed of propagation Wave equation on manifolds and finite speed of propagation Ethan Y. Jaffe Let M be a Riemannian manifold (without boundary), and let be the (negative of) the Laplace-Beltrami operator. In this note, we

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

The oblique derivative problem for general elliptic systems in Lipschitz domains

The oblique derivative problem for general elliptic systems in Lipschitz domains M. MITREA The oblique derivative problem for general elliptic systems in Lipschitz domains Let M be a smooth, oriented, connected, compact, boundaryless manifold of real dimension m, and let T M and T

More information

HARMONIC ANALYSIS. Date:

HARMONIC ANALYSIS. Date: HARMONIC ANALYSIS Contents. Introduction 2. Hardy-Littlewood maximal function 3. Approximation by convolution 4. Muckenhaupt weights 4.. Calderón-Zygmund decomposition 5. Fourier transform 6. BMO (bounded

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Classical Fourier Analysis

Classical Fourier Analysis Loukas Grafakos Classical Fourier Analysis Second Edition 4y Springer 1 IP Spaces and Interpolation 1 1.1 V and Weak IP 1 1.1.1 The Distribution Function 2 1.1.2 Convergence in Measure 5 1.1.3 A First

More information

ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS

ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS LOUKAS GRAFAKOS Abstract. It is shown that maximal truncations of nonconvolution L -bounded singular integral operators with kernels satisfying Hörmander s condition

More information

MATH34032 Mid-term Test 10.00am 10.50am, 26th March 2010 Answer all six question [20% of the total mark for this course]

MATH34032 Mid-term Test 10.00am 10.50am, 26th March 2010 Answer all six question [20% of the total mark for this course] MATH3432: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH3432 Mid-term Test 1.am 1.5am, 26th March 21 Answer all six question [2% of the total mark for this course] Qu.1 (a)

More information

Existence theorems for some nonlinear hyperbolic equations on a waveguide

Existence theorems for some nonlinear hyperbolic equations on a waveguide Existence theorems for some nonlinear hyperbolic equations on a waveguide by Ann C. Stewart A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of

More information

Lp Bounds for Spectral Clusters. Compact Manifolds with Boundary

Lp Bounds for Spectral Clusters. Compact Manifolds with Boundary on Compact Manifolds with Boundary Department of Mathematics University of Washington, Seattle Hangzhou Conference on Harmonic Analysis and PDE s (M, g) = compact 2-d Riemannian manifold g = Laplacian

More information

Chapter One. The Calderón-Zygmund Theory I: Ellipticity

Chapter One. The Calderón-Zygmund Theory I: Ellipticity Chapter One The Calderón-Zygmund Theory I: Ellipticity Our story begins with a classical situation: convolution with homogeneous, Calderón- Zygmund ( kernels on R n. Let S n 1 R n denote the unit sphere

More information

THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS

THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS OGNJEN MILATOVIC Abstract. We consider H V = M +V, where (M, g) is a Riemannian manifold (not necessarily

More information

Course Description for Real Analysis, Math 156

Course Description for Real Analysis, Math 156 Course Description for Real Analysis, Math 156 In this class, we will study elliptic PDE, Fourier analysis, and dispersive PDE. Here is a quick summary of the topics will study study. They re described

More information

Inverse Scattering with Partial data on Asymptotically Hyperbolic Manifolds

Inverse Scattering with Partial data on Asymptotically Hyperbolic Manifolds Inverse Scattering with Partial data on Asymptotically Hyperbolic Manifolds Raphael Hora UFSC rhora@mtm.ufsc.br 29/04/2014 Raphael Hora (UFSC) Inverse Scattering with Partial data on AH Manifolds 29/04/2014

More information

Strichartz estimates for the Schrödinger equation on polygonal domains

Strichartz estimates for the Schrödinger equation on polygonal domains estimates for the Schrödinger equation on Joint work with Matt Blair (UNM), G. Austin Ford (Northwestern U) and Sebastian Herr (U Bonn and U Düsseldorf)... With a discussion of previous work with Andrew

More information

TD M1 EDP 2018 no 2 Elliptic equations: regularity, maximum principle

TD M1 EDP 2018 no 2 Elliptic equations: regularity, maximum principle TD M EDP 08 no Elliptic equations: regularity, maximum principle Estimates in the sup-norm I Let be an open bounded subset of R d of class C. Let A = (a ij ) be a symmetric matrix of functions of class

More information

Multilinear local Tb Theorem for Square functions

Multilinear local Tb Theorem for Square functions Multilinear local Tb Theorem for Square functions (joint work with J. Hart and L. Oliveira) September 19, 2013. Sevilla. Goal Tf(x) L p (R n ) C f L p (R n ) Goal Tf(x) L p (R n ) C f L p (R n ) Examples

More information

A NEW PROOF OF THE ATOMIC DECOMPOSITION OF HARDY SPACES

A NEW PROOF OF THE ATOMIC DECOMPOSITION OF HARDY SPACES A NEW PROOF OF THE ATOMIC DECOMPOSITION OF HARDY SPACES S. DEKEL, G. KERKYACHARIAN, G. KYRIAZIS, AND P. PETRUSHEV Abstract. A new proof is given of the atomic decomposition of Hardy spaces H p, 0 < p 1,

More information

Variations on Quantum Ergodic Theorems. Michael Taylor

Variations on Quantum Ergodic Theorems. Michael Taylor Notes available on my website, under Downloadable Lecture Notes 8. Seminar talks and AMS talks See also 4. Spectral theory 7. Quantum mechanics connections Basic quantization: a function on phase space

More information

arxiv: v1 [math.ca] 29 Dec 2018

arxiv: v1 [math.ca] 29 Dec 2018 A QUANTITATIVE WEIGHTED WEAK-TYPE ESTIMATE FOR CALDERÓN-ZYGMUND OPERATORS CODY B. STOCKDALE arxiv:82.392v [math.ca] 29 Dec 208 Abstract. The purpose of this article is to provide an alternative proof of

More information

RIESZ BASES AND UNCONDITIONAL BASES

RIESZ BASES AND UNCONDITIONAL BASES In this paper we give a brief introduction to adjoint operators on Hilbert spaces and a characterization of the dual space of a Hilbert space. We then introduce the notion of a Riesz basis and give some

More information

4 Riesz Kernels. Since the functions k i (ξ) = ξ i. are bounded functions it is clear that R

4 Riesz Kernels. Since the functions k i (ξ) = ξ i. are bounded functions it is clear that R 4 Riesz Kernels. A natural generalization of the Hilbert transform to higher dimension is mutiplication of the Fourier Transform by homogeneous functions of degree 0, the simplest ones being R i f(ξ) =

More information

On L p -resolvent estimates and the density of eigenvalues for compact Riemannian manifolds

On L p -resolvent estimates and the density of eigenvalues for compact Riemannian manifolds On p -resolvent estimates and the density of eigenvalues for compact Riemannian manifolds Chris Sogge (Johns Hopkins University) Joint work with: Jean Bourgain (IAS) Peng Shao (JHU) Xiaohua Yao (JHU, Huazhong

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

Local Asymmetry and the Inner Radius of Nodal Domains

Local Asymmetry and the Inner Radius of Nodal Domains Local Asymmetry and the Inner Radius of Nodal Domains Dan MANGOUBI Institut des Hautes Études Scientifiques 35, route de Chartres 91440 Bures-sur-Yvette (France) Avril 2007 IHES/M/07/14 Local Asymmetry

More information

RADIATION FIELDS ON ASYMPTOTICALLY EUCLIDEAN MANIFOLDS

RADIATION FIELDS ON ASYMPTOTICALLY EUCLIDEAN MANIFOLDS RADIATION FIELDS ON ASYMPTOTICALLY EUCLIDEAN MANIFOLDS ANTÔNIO SÁ BARRETO Abstract. F.G. Friedlander introduced the notion of radiation fields for asymptotically Euclidean manifolds. Here we answer some

More information

V. CHOUSIONIS AND X. TOLSA

V. CHOUSIONIS AND X. TOLSA THE T THEOEM V. CHOUSIONIS AND X. TOLSA Introduction These are the notes of a short course given by X. Tolsa at the Universitat Autònoma de Barcelona between November and December of 202. The notes have

More information

A new class of pseudodifferential operators with mixed homogenities

A new class of pseudodifferential operators with mixed homogenities A new class of pseudodifferential operators with mixed homogenities Po-Lam Yung University of Oxford Jan 20, 2014 Introduction Given a smooth distribution of hyperplanes on R N (or more generally on a

More information

Gradient Estimates and Sobolev Inequality

Gradient Estimates and Sobolev Inequality Gradient Estimates and Sobolev Inequality Jiaping Wang University of Minnesota ( Joint work with Linfeng Zhou) Conference on Geometric Analysis in honor of Peter Li University of California, Irvine January

More information

2. Function spaces and approximation

2. Function spaces and approximation 2.1 2. Function spaces and approximation 2.1. The space of test functions. Notation and prerequisites are collected in Appendix A. Let Ω be an open subset of R n. The space C0 (Ω), consisting of the C

More information

Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities

Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities Laurent Saloff-Coste Abstract Most smoothing procedures are via averaging. Pseudo-Poincaré inequalities give a basic L p -norm control

More information

SOLUTION OF POISSON S EQUATION. Contents

SOLUTION OF POISSON S EQUATION. Contents SOLUTION OF POISSON S EQUATION CRISTIAN E. GUTIÉRREZ OCTOBER 5, 2013 Contents 1. Differentiation under the integral sign 1 2. The Newtonian potential is C 1 2 3. The Newtonian potential from the 3rd Green

More information

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM OLEG ZUBELEVICH DEPARTMENT OF MATHEMATICS THE BUDGET AND TREASURY ACADEMY OF THE MINISTRY OF FINANCE OF THE RUSSIAN FEDERATION 7, ZLATOUSTINSKY MALIY PER.,

More information

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm Chapter 13 Radon Measures Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm (13.1) f = sup x X f(x). We want to identify

More information

Focal points and sup-norms of eigenfunctions

Focal points and sup-norms of eigenfunctions Focal points and sup-norms of eigenfunctions Chris Sogge (Johns Hopkins University) Joint work with Steve Zelditch (Northwestern University)) Chris Sogge Focal points and sup-norms of eigenfunctions 1

More information

Integro-differential equations: Regularity theory and Pohozaev identities

Integro-differential equations: Regularity theory and Pohozaev identities Integro-differential equations: Regularity theory and Pohozaev identities Xavier Ros Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya PhD Thesis Advisor: Xavier Cabré Xavier

More information

VISCOSITY SOLUTIONS. We follow Han and Lin, Elliptic Partial Differential Equations, 5.

VISCOSITY SOLUTIONS. We follow Han and Lin, Elliptic Partial Differential Equations, 5. VISCOSITY SOLUTIONS PETER HINTZ We follow Han and Lin, Elliptic Partial Differential Equations, 5. 1. Motivation Throughout, we will assume that Ω R n is a bounded and connected domain and that a ij C(Ω)

More information

Analysis in weighted spaces : preliminary version

Analysis in weighted spaces : preliminary version Analysis in weighted spaces : preliminary version Frank Pacard To cite this version: Frank Pacard. Analysis in weighted spaces : preliminary version. 3rd cycle. Téhéran (Iran, 2006, pp.75.

More information

Logarithmic Harnack inequalities

Logarithmic Harnack inequalities Logarithmic Harnack inequalities F. R. K. Chung University of Pennsylvania Philadelphia, Pennsylvania 19104 S.-T. Yau Harvard University Cambridge, assachusetts 02138 1 Introduction We consider the relationship

More information

SCHWARTZ SPACES ASSOCIATED WITH SOME NON-DIFFERENTIAL CONVOLUTION OPERATORS ON HOMOGENEOUS GROUPS

SCHWARTZ SPACES ASSOCIATED WITH SOME NON-DIFFERENTIAL CONVOLUTION OPERATORS ON HOMOGENEOUS GROUPS C O L L O Q U I U M M A T H E M A T I C U M VOL. LXIII 1992 FASC. 2 SCHWARTZ SPACES ASSOCIATED WITH SOME NON-DIFFERENTIAL CONVOLUTION OPERATORS ON HOMOGENEOUS GROUPS BY JACEK D Z I U B A Ń S K I (WROC

More information

Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus.

Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. Xuan Thinh Duong (Macquarie University, Australia) Joint work with Ji Li, Zhongshan

More information

Eigenfunction L p Estimates on Manifolds of Constant Negative Curvature

Eigenfunction L p Estimates on Manifolds of Constant Negative Curvature Eigenfunction L p Estimates on Manifolds of Constant Negative Curvature Melissa Tacy Department of Mathematics Australian National University melissa.tacy@anu.edu.au July 2010 Joint with Andrew Hassell

More information

Topics in Harmonic Analysis Lecture 6: Pseudodifferential calculus and almost orthogonality

Topics in Harmonic Analysis Lecture 6: Pseudodifferential calculus and almost orthogonality Topics in Harmonic Analysis Lecture 6: Pseudodifferential calculus and almost orthogonality Po-Lam Yung The Chinese University of Hong Kong Introduction While multiplier operators are very useful in studying

More information

MAXIMAL AVERAGE ALONG VARIABLE LINES. 1. Introduction

MAXIMAL AVERAGE ALONG VARIABLE LINES. 1. Introduction MAXIMAL AVERAGE ALONG VARIABLE LINES JOONIL KIM Abstract. We prove the L p boundedness of the maximal operator associated with a family of lines l x = {(x, x 2) t(, a(x )) : t [0, )} when a is a positive

More information

NOTES ON SCHAUDER ESTIMATES. r 2 x y 2

NOTES ON SCHAUDER ESTIMATES. r 2 x y 2 NOTES ON SCHAUDER ESTIMATES CRISTIAN E GUTIÉRREZ JULY 26, 2005 Lemma 1 If u f in B r y), then ux) u + r2 x y 2 B r y) B r y) f, x B r y) Proof Let gx) = ux) Br y) u r2 x y 2 Br y) f We have g = u + Br

More information

Low frequency resolvent estimates for long range perturbations of the Euclidean Laplacian

Low frequency resolvent estimates for long range perturbations of the Euclidean Laplacian Low frequency resolvent estimates for long range perturbations of the Euclidean Laplacian Jean-Francois Bony, Dietrich Häfner To cite this version: Jean-Francois Bony, Dietrich Häfner. Low frequency resolvent

More information

PARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007

PARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007 PARTIAL DIFFERENTIAL EQUATIONS Lecturer: D.M.A. Stuart MT 2007 In addition to the sets of lecture notes written by previous lecturers ([1, 2]) the books [4, 7] are very good for the PDE topics in the course.

More information

Weighted norm inequalities for singular integral operators

Weighted norm inequalities for singular integral operators Weighted norm inequalities for singular integral operators C. Pérez Journal of the London mathematical society 49 (994), 296 308. Departmento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid,

More information

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES JUHA LEHRBÄCK Abstract. We establish necessary conditions for domains Ω R n which admit the pointwise (p, β)-hardy inequality u(x) Cd Ω(x)

More information

Determinant of the Schrödinger Operator on a Metric Graph

Determinant of the Schrödinger Operator on a Metric Graph Contemporary Mathematics Volume 00, XXXX Determinant of the Schrödinger Operator on a Metric Graph Leonid Friedlander Abstract. In the paper, we derive a formula for computing the determinant of a Schrödinger

More information

and finally, any second order divergence form elliptic operator

and finally, any second order divergence form elliptic operator Supporting Information: Mathematical proofs Preliminaries Let be an arbitrary bounded open set in R n and let L be any elliptic differential operator associated to a symmetric positive bilinear form B

More information

Fourier Transform & Sobolev Spaces

Fourier Transform & Sobolev Spaces Fourier Transform & Sobolev Spaces Michael Reiter, Arthur Schuster Summer Term 2008 Abstract We introduce the concept of weak derivative that allows us to define new interesting Hilbert spaces the Sobolev

More information

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record Netrusov, Y., & Safarov, Y. (2010). Estimates for the counting function of the laplace operator on domains with rough boundaries. In A. Laptev (Ed.), Around the Research of Vladimir Maz'ya, III: Analysis

More information

RESULTS ON FOURIER MULTIPLIERS

RESULTS ON FOURIER MULTIPLIERS RESULTS ON FOURIER MULTIPLIERS ERIC THOMA Abstract. The problem of giving necessary and sufficient conditions for Fourier multipliers to be bounded on L p spaces does not have a satisfactory answer for

More information

MATH 825 FALL 2014 ANALYSIS AND GEOMETRY IN CARNOT-CARATHÉODORY SPACES

MATH 825 FALL 2014 ANALYSIS AND GEOMETRY IN CARNOT-CARATHÉODORY SPACES MATH 825 FALL 2014 ANALYSIS AND GEOMETRY IN CARNOT-CARATHÉODORY SPACES Contents 1. Introduction 1 1.1. Vector fields and flows 2 1.2. Metrics 2 1.3. Commutators 3 1.4. Consequences of Hörmander s condition

More information

On a class of pseudodifferential operators with mixed homogeneities

On a class of pseudodifferential operators with mixed homogeneities On a class of pseudodifferential operators with mixed homogeneities Po-Lam Yung University of Oxford July 25, 2014 Introduction Joint work with E. Stein (and an outgrowth of work of Nagel-Ricci-Stein-Wainger,

More information

Topics in Harmonic Analysis Lecture 1: The Fourier transform

Topics in Harmonic Analysis Lecture 1: The Fourier transform Topics in Harmonic Analysis Lecture 1: The Fourier transform Po-Lam Yung The Chinese University of Hong Kong Outline Fourier series on T: L 2 theory Convolutions The Dirichlet and Fejer kernels Pointwise

More information

A PROPERTY OF SOBOLEV SPACES ON COMPLETE RIEMANNIAN MANIFOLDS

A PROPERTY OF SOBOLEV SPACES ON COMPLETE RIEMANNIAN MANIFOLDS Electronic Journal of Differential Equations, Vol. 2005(2005), No.??, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) A PROPERTY

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT 4

SOLUTIONS TO HOMEWORK ASSIGNMENT 4 SOLUTIONS TO HOMEWOK ASSIGNMENT 4 Exercise. A criterion for the image under the Hilbert transform to belong to L Let φ S be given. Show that Hφ L if and only if φx dx = 0. Solution: Suppose first that

More information

On m-accretive Schrödinger operators in L p -spaces on manifolds of bounded geometry

On m-accretive Schrödinger operators in L p -spaces on manifolds of bounded geometry On m-accretive Schrödinger operators in L p -spaces on manifolds of bounded geometry Ognjen Milatovic Department of Mathematics and Statistics University of North Florida Jacksonville, FL 32224 USA. Abstract

More information

Chapter 7: Bounded Operators in Hilbert Spaces

Chapter 7: Bounded Operators in Hilbert Spaces Chapter 7: Bounded Operators in Hilbert Spaces I-Liang Chern Department of Applied Mathematics National Chiao Tung University and Department of Mathematics National Taiwan University Fall, 2013 1 / 84

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. Research Scholarships Screening Test. Saturday, January 20, Time Allowed: 150 Minutes Maximum Marks: 40

NATIONAL BOARD FOR HIGHER MATHEMATICS. Research Scholarships Screening Test. Saturday, January 20, Time Allowed: 150 Minutes Maximum Marks: 40 NATIONAL BOARD FOR HIGHER MATHEMATICS Research Scholarships Screening Test Saturday, January 2, 218 Time Allowed: 15 Minutes Maximum Marks: 4 Please read, carefully, the instructions that follow. INSTRUCTIONS

More information

L p -boundedness of the Hilbert transform

L p -boundedness of the Hilbert transform L p -boundedness of the Hilbert transform Kunal Narayan Chaudhury Abstract The Hilbert transform is essentially the only singular operator in one dimension. This undoubtedly makes it one of the the most

More information

Appendix A Functional Analysis

Appendix A Functional Analysis Appendix A Functional Analysis A.1 Metric Spaces, Banach Spaces, and Hilbert Spaces Definition A.1. Metric space. Let X be a set. A map d : X X R is called metric on X if for all x,y,z X it is i) d(x,y)

More information

Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate

Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate A survey of Lihe Wang s paper Michael Snarski December 5, 22 Contents Hölder spaces. Control on functions......................................2

More information

arxiv:math/ v2 [math.ap] 3 Oct 2006

arxiv:math/ v2 [math.ap] 3 Oct 2006 THE TAYLOR SERIES OF THE GAUSSIAN KERNEL arxiv:math/0606035v2 [math.ap] 3 Oct 2006 L. ESCAURIAZA From some people one can learn more than mathematics Abstract. We describe a formula for the Taylor series

More information

Microlocal analysis and inverse problems Lecture 3 : Carleman estimates

Microlocal analysis and inverse problems Lecture 3 : Carleman estimates Microlocal analysis and inverse problems ecture 3 : Carleman estimates David Dos Santos Ferreira AGA Université de Paris 13 Monday May 16 Instituto de Ciencias Matemáticas, Madrid David Dos Santos Ferreira

More information

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS EXISTECE AD REGULARITY RESULTS FOR SOME OLIEAR PARABOLIC EUATIOS Lucio BOCCARDO 1 Andrea DALL AGLIO 2 Thierry GALLOUËT3 Luigi ORSIA 1 Abstract We prove summability results for the solutions of nonlinear

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 9 November 13 November Deadline to hand in the homeworks: your exercise class on week 16 November 20 November Exercises (1) Show that if T B(X, Y ) and S B(Y, Z)

More information

MATH6081A Homework 8. In addition, when 1 < p 2 the above inequality can be refined using Lorentz spaces: f

MATH6081A Homework 8. In addition, when 1 < p 2 the above inequality can be refined using Lorentz spaces: f MATH68A Homework 8. Prove the Hausdorff-Young inequality, namely f f L L p p for all f L p (R n and all p 2. In addition, when < p 2 the above inequality can be refined using Lorentz spaces: f L p,p f

More information

The spectral zeta function

The spectral zeta function The spectral zeta function Bernd Ammann June 4, 215 Abstract In this talk we introduce spectral zeta functions. The spectral zeta function of the Laplace-Beltrami operator was already introduced by Minakshisundaram

More information

Integral Representation Formula, Boundary Integral Operators and Calderón projection

Integral Representation Formula, Boundary Integral Operators and Calderón projection Integral Representation Formula, Boundary Integral Operators and Calderón projection Seminar BEM on Wave Scattering Franziska Weber ETH Zürich October 22, 2010 Outline Integral Representation Formula Newton

More information

CHARACTERIZATIONS OF PSEUDODIFFERENTIAL OPERATORS ON THE CIRCLE

CHARACTERIZATIONS OF PSEUDODIFFERENTIAL OPERATORS ON THE CIRCLE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 5, May 1997, Pages 1407 1412 S 0002-9939(97)04016-1 CHARACTERIZATIONS OF PSEUDODIFFERENTIAL OPERATORS ON THE CIRCLE SEVERINO T. MELO

More information

Microlocal Analysis : a short introduction

Microlocal Analysis : a short introduction Microlocal Analysis : a short introduction Plamen Stefanov Purdue University Mini Course, Fields Institute, 2012 Plamen Stefanov (Purdue University ) Microlocal Analysis : a short introduction 1 / 25 Introduction

More information

JUHA KINNUNEN. Harmonic Analysis

JUHA KINNUNEN. Harmonic Analysis JUHA KINNUNEN Harmonic Analysis Department of Mathematics and Systems Analysis, Aalto University 27 Contents Calderón-Zygmund decomposition. Dyadic subcubes of a cube.........................2 Dyadic cubes

More information

A note on W 1,p estimates for quasilinear parabolic equations

A note on W 1,p estimates for quasilinear parabolic equations 200-Luminy conference on Quasilinear Elliptic and Parabolic Equations and Systems, Electronic Journal of Differential Equations, Conference 08, 2002, pp 2 3. http://ejde.math.swt.edu or http://ejde.math.unt.edu

More information

ASYMPTOTIC BEHAVIOR OF GENERALIZED EIGENFUNCTIONS IN N-BODY SCATTERING

ASYMPTOTIC BEHAVIOR OF GENERALIZED EIGENFUNCTIONS IN N-BODY SCATTERING ASYMPTOTIC BEHAVIOR OF GENERALIZED EIGENFUNCTIONS IN N-BODY SCATTERING ANDRAS VASY Abstract. In this paper an asymptotic expansion is proved for locally (at infinity) outgoing functions on asymptotically

More information

Poisson Equation on Closed Manifolds

Poisson Equation on Closed Manifolds Poisson Equation on Closed anifolds Andrew acdougall December 15, 2011 1 Introduction The purpose of this project is to investigate the poisson equation φ = ρ on closed manifolds (compact manifolds without

More information