Ig Nobel Prized Research

Size: px
Start display at page:

Download "Ig Nobel Prized Research"

Transcription

1 Ig Nobel Prized Research 2010 Chemistry Prize Eric Adams (MIT) Scott Socolofsky (TAMU) Steve Masutani (U. Hawaii) British Petroleum for disproving the old adage that oil and water don t mix Selected other winners: Engineering: Remote controlled whale snot collector Health: Roller coaster asthma therapy Peace: Swearing relieves pain Management: Organizations should promote people randomly

2 Industry Technical Advisory Committee The Fate of Deep Sea Plumes E. Eric Adams Massachusetts Institute of Technology Cambridge, MA USA October 24, 2016

3 Collaborators Scott Socolofsky, Texas A & M Michel Boufadel, NJIT Steve Masutani, U. Hawaii Oistein Johansen, SINTEF Per Johan Brandvik, SINTEF Elizabeth North, U. Maryland

4 DWH spill site & data collection In-situ measurements of CDOM, temp, conductivity, etc collected by cruises w/o intrusion w intrusion o Sample period: ~3 mo. o Sample area: 7km o Total # of casts: 266 Terra Satellite, NASA, as of May 24, 2010 o Casts w/ intrusion: 111 (87)

5 Intrusion Types

6 # of casts Variation with Time and Space Type A Type B Type C Type D Type E 0 05/12 05/22 06/01 06/11 06/21 07/01 07/11 Date A B C D E

7 gas released in linear stratification Density stratification is caused when lighter (warmer) water overlies heavier (colder) water. Light gas and heavy seawater rise to a level of neutral buoyancy causing oil and seawater to separate from the gas and intrude laterally. Gas bubbles continue to rise, causing plume to restart, with lesser quantities of oil Socolofsky & Adams (2003)

8 oil and gas released in a current Gas bubbles create plume, but currents blow oil and entrained seawater downstream, leaving gas to rise separately. Socolofsky & Adams (2002)

9 Plumes in quiescent ambient Plume behavior depends on B, N, Us, z B = Qg r - r w r w N = g r / r z U c = (BN ) 1/4 L c Q c ( B N ( B 3 3 N ) 1/ 4 5 ) 1/ 4 U s = droplet slip velocity Socolofsky & Adams (2005); Crounse et al. (2007); Seol et al., (2009)

10 Stratification to Crossflow Domination Increasing U a Stratification dominants Cross-flow dominates h To /L c = 2.9exp[-(U s /U c -1) 2 /27] h T = h To exp[-ku a /U c ] h s = 5.1B/(U a U s 2.4 ) 0.88 U a /U c = (U c /U s ) 2

11 Observed and Predicted Trap Heights h T /(B 1/4 /N 3/4 )= 2.9exp[-(U s /(BN) 1/4-1) 2 /27]*exp[-kU a /(BN) 1/4 ] (U a = 0) Socolofsky, Adams, Sherwood (2011)

12 Variation in current speed, U a A Origin B h S Origin h i h T h i h P Displaced origin x h total U a U a x o 4 z 1.2 x c Wang and Adams (2016) 3 1 h T /(B/N 3 ) 1/4 z 2 1 f 2 = h T /(f 1 l c ) z 6 8 U s /(BN) 1/ U a /U c

13 Variation in buoyancy flux, B Small jets at the kink during first 1.5 months Kink jet Slugging Oily flow Gassy flow

14 Variation in local stratification, N Temporal variation of N at source Spatial variation in N as reflected in CDOM casts

15 Variation in droplet size, Us

16 Sensitivity relative to reference case N B U a U s

17 Secondary intrusion height, h T2 h T ~ B1/4 N 3/4 h T 2 h T1 = (B 2 / B 1 )1/4 (N 2 / N 1 ) 3/4 B 1 = B o + B g B 2 = B o r ~ z 2 N ~ z 1/2 h T 2 h T1 = 0.56 h T2 /h T Ave of obs. = h T2 h T Cast #

18 Secondary Intrusions, cont d Less likely with height (Plumes more likely to be crossflow dominant U a /U c > (U c /U s ) 2 U a > B 3/4 N 3/4 /U s 2 Less likely to be observed (lighter fractions have dissolved by first intrusion)

19 Yang et al. (2016) Additional details with CFD

20 Plume Classification (Quiescent Conditions) s Type 1a* Type 1b* Type 2 Type 3 U N < < U N < < U N < < U N U N = u s /(BN) 1/4 ; B = plume buoyancy flux; N = stratification frequency Smallest droplets are broadcast most widely Chan et al. (2014); Socolofsky & Adams (2003); Asaeda & Imberger (1993)

21 Initial Jet Break-up In turbulent regime, droplet size not directly scaled by outlet Tang & Masutani (2003) Transition between laminar and turbulent regimes depends on We = ru o2 D/s

22 Oh Atomization Large drops We = ru o2 D/s DWH Re Tang, Gorgas & Masutani (2003)

23 SINTEF Tower Basin Experiments d 50 /D = 15We/[1+0.8Vi(d 50 /D) 1/3 ] DOR = 0 1:50

24 Numerical (Population) Models Based on a set of differential equations of droplets of various diameters. dn (, t) For each diameter δ, i Birth i Death dt Bandera & Yapa (2011) Zhao et al. (2014)

25 Latent Droplet Behavior unfiltered DOR <~ 1:1000 (elliptical droplets stable for days) filtered DOR >~ 1:250 ( jellyfish disappear in 10s minutes) Nagamine & Masutani (2014)

26 Sigma (m) Application to Deepwater Horizon km >>100 km [>> 100 X non-disp] X m m 750 m 20 km [ X non-disp] m s s 10 1 With dispersant after latent break-up d/ diameter (microns) With dispersant after jet breakup (d/10) No dispersant (d) Chan, Chow & Adams (2014)

27 Vertical Microstructure w e = e 1/2 /N 1/2 Wang, DiMarco & Socolofsky (2016) 27

28 Turbulence Measures Increasing turbulence w e = e 1/2 /N 1/2 Wang, DiMarco & Socolofsky (2016) 28

29 Effect on Droplet Rise w s = w e d e = f -1 (w s ) [Zheng & Yapa (2000); Clift (1978) with Dr/r = 0.85] Disp; w/ LBU Disp; w/ JBU No disp Wang, DiMarco & Socolofsky,

30 Far Field Behavior of Droplets with Degradation Half-life = 1.2 d 3.1 d 6.1 d Infinity North, et al., 2014 North, Adams & Socolofsky (2014)

31 Questions?

Near Field Behavior of Oil & Gas Plumes

Near Field Behavior of Oil & Gas Plumes Near Field Behavior of Oil & Gas Plumes Effects of bubble/ droplet sizes Eric Adams and S. Socolofsky A. Chow G. Chan 1 Phase Separation Socolofsky & Adams (2002) Bubbles & droplets can separate from plume

More information

Detrainment Fluxes for Multi-Phase Plumes in Quiescent Stratification

Detrainment Fluxes for Multi-Phase Plumes in Quiescent Stratification Environmental Hydraulics: Jets, Plumes, and Wakes Detrainment Fluxes for Multi-Phase Plumes in Quiescent Stratification S. A. Socolofsky 1 & E. E. Adams 2 1 Inst. for Hydromechanics, University of Karlsruhe,

More information

Simulating the dispersal of aging oil from the Deepwater Horizon spill with a Lagrangian approach

Simulating the dispersal of aging oil from the Deepwater Horizon spill with a Lagrangian approach Simulating the dispersal of aging oil from the Deepwater Horizon spill with a Lagrangian approach Elizabeth W. North 1, E. Eric Adams 2, Zachary Schlag 1, Christopher R. Sherwood 3, Rouying He 4, Kyung

More information

Jets and Plumes. Agenda. Definition of jets, plumes, and others. Engineering applications of Jets/Plumes. Basic properties of Jets/Plumes

Jets and Plumes. Agenda. Definition of jets, plumes, and others. Engineering applications of Jets/Plumes. Basic properties of Jets/Plumes Dr. (IfH) Environmental Fluid Mechanics II Stratified Flow and Buoyant Mixing Jets and Plumes Dong-Guan Seol INSTITUTE FOR HYDROMECHANICS National Research Center of the Helmholtz Association www.kit.edu

More information

Simulating Oil Droplet Dispersal From the Deepwater Horizon Spill With a Lagrangian Approach

Simulating Oil Droplet Dispersal From the Deepwater Horizon Spill With a Lagrangian Approach Simulating Oil Droplet Dispersal From the Deepwater Horizon Spill With a Lagrangian Approach Elizabeth W. North, 1 E. Eric Adams, 2 Zachary Schlag, 1 Christopher R. Sherwood, 3 Ruoying He, 4 Kyung Hoon

More information

Water Bodies Subjected to Waves

Water Bodies Subjected to Waves The Transport of Oil in Water Bodies Subjected to Waves Jim Weaver, PhD National Exposure Research Lab, Athens GA Weaver.jim@epa.gov Michel C. Boufadel, PhD, PE Temple University, Philadelphia Pennsylvania

More information

Background Field program information Examples of measurements Wind validation for synthetic modeling effort

Background Field program information Examples of measurements Wind validation for synthetic modeling effort Background Field program information Examples of measurements Wind validation for synthetic modeling effort How do complex fine-scale structure and processes in coastal waters dominated by pulsed-river

More information

Subsurface Trapping of Oil Plumes in Stratification: Laboratory Investigations

Subsurface Trapping of Oil Plumes in Stratification: Laboratory Investigations Subsurface Trapping of Oil Plumes in Stratification: Laboratory Investigations David Adalsteinsson, 1,2,3 Roberto Camassa, 1,2,3 Steven Harenberg, 1 Zhi Lin, 4 Richard M. McLaughlin, 1,2,3 Keith Mertens,

More information

Project Title: Arctic Oil Spill Modeling

Project Title: Arctic Oil Spill Modeling Project Title: Arctic Oil Spill Modeling FOA/NOFO Research Question(s): Topic 1a, Maritime Risk & Threat Analysis; Topic 2a, Coastal and Marine Critical Infrastructure development; Topic 2b, Coastal and

More information

ENVIRONMENTAL FLUID MECHANICS

ENVIRONMENTAL FLUID MECHANICS ENVIRONMENTAL FLUID MECHANICS Turbulent Jets http://thayer.dartmouth.edu/~cushman/books/efm/chap9.pdf Benoit Cushman-Roisin Thayer School of Engineering Dartmouth College One fluid intruding into another

More information

Ambit of Multiphase CFD in Modelling Transport Processes Related to Oil Spill Scenario and Microfluidics

Ambit of Multiphase CFD in Modelling Transport Processes Related to Oil Spill Scenario and Microfluidics Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2015 Ambit of Multiphase CFD in Modelling Transport Processes Related to Oil Spill Scenario and Microfluidics Abhijit

More information

Deepwater Horizon Gulf of Mexico Oil Spill NSF Rapid Response Research

Deepwater Horizon Gulf of Mexico Oil Spill NSF Rapid Response Research Deepwater Horizon Gulf of Mexico Oil Spill NSF Rapid Response Research Presentation to the Ocean Leadership 2011 Public Policy Forum Consortium for Ocean Leadership Dr. David Conover National Science Foundation

More information

PIV measurements of turbulence in an inertial particle plume in an unstratified ambient

PIV measurements of turbulence in an inertial particle plume in an unstratified ambient PIV measurements of turbulence in an inertial particle plume in an unstratified ambient D.B. Bryant & S.A. Socolofsky Zachry Department of Civil Engineering, Texas A&M University, USA ABSTRACT: A high-speed

More information

Office of Naval Research Arctic Observing Activities

Office of Naval Research Arctic Observing Activities Office of Naval Research Arctic Observing Activities Jim Thomson Applied Physics Laboratory, University of Washington jthomson@apl.washington.edu Scott L. Harper, Program Officer, Arctic and Global Prediction

More information

OTC Vertical current structures in the Deep Gulf using EOF analysis S.F. DiMarco, R.O. Reid, and W. D.Nowlin, Jr., Texas A&M University

OTC Vertical current structures in the Deep Gulf using EOF analysis S.F. DiMarco, R.O. Reid, and W. D.Nowlin, Jr., Texas A&M University OTC 12994 Vertical current structures in the Deep Gulf using EOF analysis S.F. DiMarco, R.O. Reid, and W. D.Nowlin, Jr., Texas A&M University Copyright 21, Offshore Technology Conference This paper was

More information

Chapter 7. Three Dimensional Modelling of Buoyancy-Driven Displacement Ventilation: Point Source

Chapter 7. Three Dimensional Modelling of Buoyancy-Driven Displacement Ventilation: Point Source Chapter 7 Three Dimensional Modelling of Buoyancy-Driven Displacement Ventilation: Point Source 135 7. Three Dimensional Modelling of Buoyancy- Driven Displacement Ventilation: Point Source 7.1 Preamble

More information

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature Lectures 7 and 8: 14, 16 Oct 2008 Sea Surface Temperature References: Martin, S., 2004, An Introduction to Ocean Remote Sensing, Cambridge University Press, 454 pp. Chapter 7. Robinson, I. S., 2004, Measuring

More information

Physical and chemical processes affecting release of CO 2 at the seafloor. Peter M. Haugan

Physical and chemical processes affecting release of CO 2 at the seafloor. Peter M. Haugan Physical and chemical processes affecting release of CO 2 at the seafloor Peter M. Haugan Geophysical Institute, University of Bergen, Norway With contributions from Dr. Guttorm Alendal, Bergen Centre

More information

Parameterizing the Effects of Upper-Ocean Large Eddies on Air-Sea Interaction

Parameterizing the Effects of Upper-Ocean Large Eddies on Air-Sea Interaction Parameterizing the Effects of Upper-Ocean Large Eddies on Air-Sea Interaction Ming Li Horn Point Laboratory University of Maryland Center for Environmental Science 2020 Horn Point Road, Cambridge, MD 21613

More information

The Simulation of the Oil Weathering Processes in Marine Environment

The Simulation of the Oil Weathering Processes in Marine Environment 0 International Conference on nvironmental and Computer Science IPCB vol.9(0) (0) IACSIT Press, Singapore The Simulation of the Oil Weathering Processes in Marine nvironment Kameleh Aghaanloo +, Moharam

More information

Hypoxia in the Northern Gulf of Mexico in 2010: was the Deepwater Horizon Oil Spill a Factor? Nathaniel E. Ostrom

Hypoxia in the Northern Gulf of Mexico in 2010: was the Deepwater Horizon Oil Spill a Factor? Nathaniel E. Ostrom Agricultural Outlook Forum Presented: February 24-25, 2011 U.S. Department of Agriculture Hypoxia in the Northern Gulf of Mexico in 2010: was the Deepwater Horizon Oil Spill a Factor? Nathaniel E. Ostrom

More information

Utilizing In Situ Observations and Satellite Measurements to Examine the Extent and. Gustavo Jorge Goni presented by Ryan Smith NOAA / AOML Miami, FL

Utilizing In Situ Observations and Satellite Measurements to Examine the Extent and. Gustavo Jorge Goni presented by Ryan Smith NOAA / AOML Miami, FL Utilizing In Situ Observations and Satellite Measurements to Examine the Extent and Variability of the DWH Oil Spill Gustavo Jorge Goni presented by Ryan Smith NOAA / AOML Miami, FL NTSC SOST 2011 Deepwater

More information

Ocean Surface Mixed Layer

Ocean Surface Mixed Layer Ocean Surface Mixed Layer Physical Phenomena and Challenges for Oil Spill Response Greg Chini Department of Mechanical Engineering, University of New Hampshire Scope Describe physical processes involved

More information

AN INTEGRATED MODELING APPROACH FOR SIMULATING OIL SPILL AT THE STRAIT OF BOHAI SEA. Jinhua Wang 1 and Jinshan Zhang 1

AN INTEGRATED MODELING APPROACH FOR SIMULATING OIL SPILL AT THE STRAIT OF BOHAI SEA. Jinhua Wang 1 and Jinshan Zhang 1 AN INTEGRATED MODELING APPROACH FOR SIMULATING OIL SPILL AT THE STRAIT OF BOHAI SEA Jinhua Wang 1 and Jinshan Zhang 1 A three dimensional integrated model is developed for simulating oil spills transport

More information

Inertial Range Dynamics in Density-Stratified Turbulent Flows

Inertial Range Dynamics in Density-Stratified Turbulent Flows Inertial Range Dynamics in Density-Stratified Turbulent Flows James J. Riley University of Washington Collaborators: Steve debruynkops (UMass) Kraig Winters (Scripps IO) Erik Lindborg (KTH) Workshop on

More information

Numerical simulation of Helium dispersion in a semi-confined airfilled

Numerical simulation of Helium dispersion in a semi-confined airfilled Numerical simulation of Helium dispersion in a semi-confined airfilled cavity 1. Huong Lan TRAN (UPMC, LIMSI-CNRS, CEA-Saclay) 2. Anne SERGENT (LIMSI-CNRS, UPMC) 3. Gilles BERNARD-MICHEL (CEA-Saclay) 4.

More information

The Stable Boundary layer

The Stable Boundary layer The Stable Boundary layer the statistically stable or stratified regime occurs when surface is cooler than the air The stable BL forms at night over land (Nocturnal Boundary Layer) or when warm air travels

More information

Extent and Degree of Shoreline Oiling: Deepwater Horizon (DWH) Oil Spill, Scott Zengel Research Planning, Inc. Tallahassee, Florida

Extent and Degree of Shoreline Oiling: Deepwater Horizon (DWH) Oil Spill, Scott Zengel Research Planning, Inc. Tallahassee, Florida Extent and Degree of Shoreline Oiling: Deepwater Horizon (DWH) Oil Spill, 2010 2013 Scott Zengel Research Planning, Inc. Tallahassee, Florida Background & Definitions SCAT survey data presented here SCAT

More information

ABSTRACT INTRODUCTION. Konstantin A. Korotenko

ABSTRACT INTRODUCTION. Konstantin A. Korotenko Effects of mesoscale eddies on behavior of an oil spill resulting from an accidental deepwater blowout in the Black Sea: an assessment of the environmental impacts Konstantin A. Korotenko Physical Oceanography,

More information

C-MEDS: Consortium for the Molecular Engineering of Dispersant Systems. The Science and Technology of Dispersants as Relevant to Deep Sea Oil Releases

C-MEDS: Consortium for the Molecular Engineering of Dispersant Systems. The Science and Technology of Dispersants as Relevant to Deep Sea Oil Releases C-MEDS: Consortium for the Molecular Engineering of Dispersant Systems. The Science and Technology of Dispersants as Relevant to Deep Sea Oil Releases Tulane Univ. Louisiana State Univ. Univ. Texas at

More information

Physical factors driving the oceanographic regime around the Florida Keys. Villy Kourafalou. University of Miami/RSMAS

Physical factors driving the oceanographic regime around the Florida Keys. Villy Kourafalou. University of Miami/RSMAS Physical factors driving the oceanographic regime around the Florida Keys Villy Kourafalou University of Miami/RSMAS Oceanographic connectivity around the Florida Keys LC FC http://oceancurrents.rsmas.miami.edu/atlantic/loop-current_2.html

More information

CHAM Case Study CFD Modelling of Gas Dispersion from a Ruptured Supercritical CO 2 Pipeline

CHAM Case Study CFD Modelling of Gas Dispersion from a Ruptured Supercritical CO 2 Pipeline CHAM Limited Pioneering CFD Software for Education & Industry CHAM Case Study CFD Modelling of Gas Dispersion from a Ruptured Supercritical CO 2 Pipeline 1. INTRODUCTION This demonstration calculation

More information

Dynamics of turbulent jet with positive buoyancy in stratified fluid

Dynamics of turbulent jet with positive buoyancy in stratified fluid 18 ème Congrès Français de Mécanique Grenoble, 7-31 août 7 Dynamics of turbulent jet with positive buoyancy in stratified fluid Troitskaya Yu, Sergeev D, Soustova I, Kazakov V, Ezhova K. Institute of applied

More information

Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations

Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations Miyazawa, Yasumasa (JAMSTEC) Collaboration with Princeton University AICS Data

More information

COHERENT STRUCTURES IN TURBULENT FLOWS: EXPERIMENTAL STUDIES ON THE TURBULENCE OF MULTIPHASE PLUMES AND TIDAL VORTICES.

COHERENT STRUCTURES IN TURBULENT FLOWS: EXPERIMENTAL STUDIES ON THE TURBULENCE OF MULTIPHASE PLUMES AND TIDAL VORTICES. COHERENT STRUCTURES IN TURBULENT FLOWS: EXPERIMENTAL STUDIES ON THE TURBULENCE OF MULTIPHASE PLUMES AND TIDAL VORTICES A Dissertation by DUNCAN BURNETTE BRYANT Submitted to the Office of Graduate Studies

More information

John Steffen and Mark A. Bourassa

John Steffen and Mark A. Bourassa John Steffen and Mark A. Bourassa Funding by NASA Climate Data Records and NASA Ocean Vector Winds Science Team Florida State University Changes in surface winds due to SST gradients are poorly modeled

More information

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli Lecture. Equations of Motion Scaling, Non-dimensional Numbers, Stability and Mixing We have learned how to express the forces per unit mass that cause acceleration in the ocean, except for the tidal forces

More information

Lecture 20 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY

Lecture 20 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 20 Learning objectives: should be able to apply mixed layer temperature equation to explain observations; understand buoyancy forcing & salinity

More information

Use of in-situ and remote sensors, sampling, and systems for assessing extent, fate, impact, and mitigation of oil and dispersants

Use of in-situ and remote sensors, sampling, and systems for assessing extent, fate, impact, and mitigation of oil and dispersants Use of in-situ and remote sensors, sampling, and systems for assessing extent, fate, impact, and mitigation of oil and dispersants Gustavo Jorge Goni (NOAA/AOML, Miami, FL) Gustavo.Goni@noaa.gov and the

More information

Evolution of Internal Waves in Hydrostatic Models

Evolution of Internal Waves in Hydrostatic Models Evolution of Internal Waves in Hydrostatic Models Ben R. Hodges Department of Civil Engineering The University of Texas at Austin 1 University Station, C1786 Austin, TX 78712-1076 phone: (512) 471-4730

More information

Modelling multiphase flows in the Chemical and Process Industry

Modelling multiphase flows in the Chemical and Process Industry Modelling multiphase flows in the Chemical and Process Industry Simon Lo 9/11/09 Contents Breakup and coalescence in bubbly flows Particle flows with the Discrete Element Modelling approach Multiphase

More information

LES Investigation of Fuel Effects on Lean Blow off (LBO) for a Realistic Two-Phase Flow Combustor

LES Investigation of Fuel Effects on Lean Blow off (LBO) for a Realistic Two-Phase Flow Combustor LES Investigation of Fuel Effects on Lean Blow off (LBO) for a Realistic Two-Phase Flow Combustor J.W. LABAHN, P. C. M A, L. E SCLAPE, M. I HME S TANFORD U NIVERSITY 2017 SIAM International Conference

More information

A note concerning the Lighthill sandwich model of tropical cyclones

A note concerning the Lighthill sandwich model of tropical cyclones Applied Mathematics A note concerning the Lighthill sandwich model of tropical cyclones G.I. Barenblatt, A.J. Chorin, V.M. Prostokishin The authors dedicate this work to the glowing memory of the great

More information

INTRODUCTION TO MULTIPHASE FLOW. Mekanika Fluida II -Haryo Tomo-

INTRODUCTION TO MULTIPHASE FLOW. Mekanika Fluida II -Haryo Tomo- 1 INTRODUCTION TO MULTIPHASE FLOW Mekanika Fluida II -Haryo Tomo- 2 Definitions Multiphase flow is simultaneous flow of Matters with different phases( i.e. gas, liquid or solid). Matters with different

More information

Erich Gundlach, Ph.D.

Erich Gundlach, Ph.D. Oil Shoreline Interactions: Deepwater Horizon SETAC Boston, November 2011 Erich Gundlach, Ph.D. E-Tech International Inc. New York, USA ErichEti@ cs.com www.oil-spill-info.com What s Going On Shorelines

More information

Environmental Measurement Symposium 2017

Environmental Measurement Symposium 2017 Environmental Measurement Symposium 2017 Red Crabs As Sentinel Organisms of Deepwater Horizon Oil in Gulf of Mexico Sediments Gregory Douglas, Ph.D., Bo Liu, Jeffery Hardenstine "The views expressed herein

More information

Factors impacting the formation & modification of sinking oil snow : Processes and Pathways

Factors impacting the formation & modification of sinking oil snow : Processes and Pathways Factors impacting the formation & modification of sinking oil snow : Processes and Pathways K.L. Daly 1, U. Passow 2, C. Hu 1, N. Prouty 3, F. Mienis 4,A. Remsen 1, K. Kramer 1, and S. Murasko 5 1 University

More information

NUMERICAL INVESTIGATION ON THE EFFECT OF COOLING WATER SPRAY ON HOT SUPERSONIC JET

NUMERICAL INVESTIGATION ON THE EFFECT OF COOLING WATER SPRAY ON HOT SUPERSONIC JET Volume 119 No. 12 2018, 59-63 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu NUMERICAL INVESTIGATION ON THE EFFECT OF COOLING WATER SPRAY ON HOT SUPERSONIC JET Ramprasad T and Jayakumar

More information

Introduction to Flow Reactors

Introduction to Flow Reactors Introduction to Flow Reactors Advanced Atmospheric chemistry CHEM 5152 Spring 2015 Prof. J.L. Jimenez 1 Types of Reactors Which ones can be simulated w KinSim? A. Batch B. Batch and Plug C. All D. Batch

More information

Computational Study of Sprays for the Development of a Monte Carlo Model

Computational Study of Sprays for the Development of a Monte Carlo Model 38th Dayton-Cincinnati Aerospace Sciences Symposium Computational Study of Sprays for the Development of a Monte Carlo Model Presenter: Murat Dinc West Virginia University Donald D. Gray West Virginia

More information

Math 142-2, Homework 2

Math 142-2, Homework 2 Math 142-2, Homework 2 Your name here April 7, 2014 Problem 35.3 Consider a species in which both no individuals live to three years old and only one-year olds reproduce. (a) Show that b 0 = 0, b 2 = 0,

More information

Mustafa M. Aral

Mustafa M. Aral Air Pathway Analysis Mustafa M. Aral MESL @CEE,GT http://mesl.ce.gatech.edu/ maral@ce.gatech.edu Air Pollution Air pollution affects humans more than water pollution. Whereas we can always treat the water

More information

FLOW CHARACTERIZATION WITHIN A SPHERE-PACKED BED USING PIV MEASUREMENT

FLOW CHARACTERIZATION WITHIN A SPHERE-PACKED BED USING PIV MEASUREMENT FLOW CHARACTERIZATION WITHIN A SPHERE-PACKED BED USING PIV MEASUREMENT J. H.ZHANG, L.XIONG, N.X.WANG and W ZHOU Department of reactor physics, Shanghai institute of applied physics, Chinese academy of

More information

Restriction of convective depth in the Weddell Sea

Restriction of convective depth in the Weddell Sea GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L10610, doi:10.1029/2007gl029295, 2007 Restriction of convective depth in the Weddell Sea K. Akitomo 1 Received 8 January 2007; revised 11 March 2007; accepted 25

More information

Cambridge Using Plume Rise Schemes To Model Highly Buoyant Plumes From Large Fires

Cambridge Using Plume Rise Schemes To Model Highly Buoyant Plumes From Large Fires Using Plume Rise Schemes To Model Highly Buoyant Plumes From Large Fires Helen Webster, Robert Beare, Benjamin Devenish, James Haywood, Adrian Lock and David Thomson Crown copyright 2007 Page 1 Outline

More information

Modeling environmental impact on sediment caused by discharges deposited on the sea floor

Modeling environmental impact on sediment caused by discharges deposited on the sea floor Water Pollution IX 319 Modeling environmental impact on sediment caused by discharges deposited on the sea floor H. Rye SINTEF, Trondheim, Norway Abstract A model has been developed that is able to model

More information

Kinematic Effects of Differential Transport on Mixing Efficiency in a Diffusively Stable, Turbulent Flow

Kinematic Effects of Differential Transport on Mixing Efficiency in a Diffusively Stable, Turbulent Flow Iowa State University From the SelectedWorks of Chris R. Rehmann January, 2003 Kinematic Effects of Differential Transport on Mixing Efficiency in a Diffusively Stable, Turbulent Flow P. Ryan Jackson,

More information

Volcanic Plumes. JOHN WILEY & SONS Chichester New York Weinheim Brisbane Singapore Toronto

Volcanic Plumes. JOHN WILEY & SONS Chichester New York Weinheim Brisbane Singapore Toronto Volcanic Plumes R. S. J. SPARKS University of Bristol, UK M. I. BURSIK State University of New York, USA S. N. CAREY University of Rhode Island, USA J. S. GILBERT Lancaster University, UK L. S. GLAZE NASA/Goddard

More information

Entrainment and mixing properties of a simple bubble plume 1

Entrainment and mixing properties of a simple bubble plume 1 Entrainent and ixing properties of a siple ule plue 1 C. Bergann, D.-G. Seol, T. Bhauik & S.A. Socolofsky Coastal & Ocean Engineering Division, Departent of Civil Engineering, Texas A&M University, College

More information

Catastrophic reduction of seaice in the Arctic Ocean - its impact on the marine ecosystems in the polar region-

Catastrophic reduction of seaice in the Arctic Ocean - its impact on the marine ecosystems in the polar region- 1/12 Catastrophic reduction of seaice in the Arctic Ocean - its impact on the marine ecosystems in the polar region- KAKENHI No.22221003 Naomi Harada (JAMSTEC) J. Onodera, E. Watanabe, K. Matsuno, K. Kimoto,

More information

Assessment Schedule 2015 Chemistry: Demonstrate understanding of aspects of carbon chemistry (90932)

Assessment Schedule 2015 Chemistry: Demonstrate understanding of aspects of carbon chemistry (90932) NCEA Level 1 Chemistry (90932) 2015 page 1 of 6 Assessment Schedule 2015 Chemistry: Demonstrate understanding of aspects of carbon chemistry (90932) Evidence Statement Q Evidence Achievement Merit Excellence

More information

Module 01 Lecture - 06 Pollution modeling I

Module 01 Lecture - 06 Pollution modeling I Health, Safety and Environmental Management in Offshore and Petroleum Engineering Prof. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institution of Technology, Madras Module 01 Lecture

More information

CVEN : Special Topics in Mixing and Transport Processes in the Environment

CVEN : Special Topics in Mixing and Transport Processes in the Environment CVEN 489-501: Special Topics in Mixing and Transport Processes in the Environment Engineering Lectures By Scott A. Socolofsky & Gerhard H. Jirka 5th Edition, 2005 Coastal and Ocean Engineering Division

More information

A comparative study on the hydrodynamics of liquid liquid hydrocyclonic separation

A comparative study on the hydrodynamics of liquid liquid hydrocyclonic separation Advances in Fluid echanics X 361 A comparative study on the hydrodynamics of liquid liquid hydrocyclonic separation H. H. Al-Kayiem, H. Osei, K. Y. Yin & F.. Hashim echanical Engineering Department, Universiti

More information

Case study analysis of the Real-Time Mesoscale Analysis (RTMA) in the northern Gulf of Mexico

Case study analysis of the Real-Time Mesoscale Analysis (RTMA) in the northern Gulf of Mexico Case study analysis of the Real-Time Mesoscale Analysis (RTMA) in the northern Gulf of Mexico Pat Fitzpatrick and Yee Lau Mississippi State University Stennis Space Center, MS Description of research consortium

More information

PHYSICAL MECHANISM OF NATURAL CONVECTION

PHYSICAL MECHANISM OF NATURAL CONVECTION 1 NATURAL CONVECTION In this chapter, we consider natural convection, where any fluid motion occurs by natural means such as buoyancy. The fluid motion in forced convection is quite noticeable, since a

More information

( ) = 1005 J kg 1 K 1 ;

( ) = 1005 J kg 1 K 1 ; Problem Set 3 1. A parcel of water is added to the ocean surface that is denser (heavier) than any of the waters in the ocean. Suppose the parcel sinks to the ocean bottom; estimate the change in temperature

More information

SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011

SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011 SIO 210 Problem Set 2 October 17, 2011 Due Oct. 24, 2011 1. The Pacific Ocean is approximately 10,000 km wide. Its upper layer (wind-driven gyre*) is approximately 1,000 m deep. Consider a west-to-east

More information

Fjernmåling og modellering av oljesøl - på åpen sjø og i is

Fjernmåling og modellering av oljesøl - på åpen sjø og i is Fjernmåling og modellering av oljesøl - på åpen sjø og i is Associate Professor, Camilla Brekke CIRFA (SFI) WP3 leader - Oil Spill Remote Sensing cirfa.uit.no What we are aiming for Detection & characterization

More information

Contrail cirrus and their climate impact

Contrail cirrus and their climate impact Contrail cirrus and their climate impact Ulrike Burkhardt DLR Institute for Atmospheric Physics, Oberpfaffenhofen, Germany Wakenet Workshop, 28 June 10 Contrail formation Contrail formation Aircraft engines

More information

Understanding and modeling dense overflows. Sonya Legg Princeton University AOMIP/FAMOS school for young scientists 2012

Understanding and modeling dense overflows. Sonya Legg Princeton University AOMIP/FAMOS school for young scientists 2012 Understanding and modeling dense overflows Sonya Legg Princeton University AOMIP/FAMOS school for young scientists 2012 What is an overflow? Dense water formation on shelf or marginal sea Dense water accelerates

More information

Trajectories of a Pair of Interacting Jets or Plumes Issuing Vertically Upwards into a Quiescent Environment

Trajectories of a Pair of Interacting Jets or Plumes Issuing Vertically Upwards into a Quiescent Environment Trajectories of a Pair of Interacting Jets or Plumes Issuing Vertically Upwards into a Quiescent Environment PANAYOTIS C. YANNOPOULOS Environmental Engineering Laboratory, Department of Civil Engineering

More information

Module 6: Free Convections Lecture 26: Evaluation of Nusselt Number. The Lecture Contains: Heat transfer coefficient. Objectives_template

Module 6: Free Convections Lecture 26: Evaluation of Nusselt Number. The Lecture Contains: Heat transfer coefficient. Objectives_template The Lecture Contains: Heat transfer coefficient file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture26/26_1.html[12/24/2014 6:08:23 PM] Heat transfer

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

Studies on Convection in Polar Oceans

Studies on Convection in Polar Oceans Studies on Convection in Polar Oceans H.J.S. Fernando Environmental Fluid Dynamics Program Department of Mechanical & Aerospace Engineering Arizona State University, Tempe, AZ 85287-9809 phone: (602) 965-2807

More information

Breakage of Single Droplets in 2-D Turbulent Flows

Breakage of Single Droplets in 2-D Turbulent Flows UM - HSMRP Breakage of Single Droplets in 2-D Turbulent Flows Derrick I. Ko* and Richard V. Calabrese University of Maryland College Park, MD 2742-2111 USA DOMINO-HSMRP Project Meetings 24 May 217 Project

More information

Multiphase Flow and Heat Transfer

Multiphase Flow and Heat Transfer Multiphase Flow and Heat Transfer ME546 -Sudheer Siddapureddy sudheer@iitp.ac.in Two Phase Flow Reference: S. Mostafa Ghiaasiaan, Two-Phase Flow, Boiling and Condensation, Cambridge University Press. http://dx.doi.org/10.1017/cbo9780511619410

More information

Estimation of evapotranspiration using satellite TOA radiances Jian Peng

Estimation of evapotranspiration using satellite TOA radiances Jian Peng Estimation of evapotranspiration using satellite TOA radiances Jian Peng Max Planck Institute for Meteorology Hamburg, Germany Satellite top of atmosphere radiances Slide: 2 / 31 Surface temperature/vegetation

More information

A CFD Analysis of Gas Plume Stratification in Confined Space

A CFD Analysis of Gas Plume Stratification in Confined Space AMSE JOURNALS-AMSE IIETA publication-2017-series: Modelling B; Vol. 86; N 2; pp 557-568 Submitted Apr. 01, 2017; Revised May 21, 2017; Accepted Jun. 10, 2017 A CFD Analysis of Gas Plume Stratification

More information

Part I: Dry Convection

Part I: Dry Convection Turbulent dispersion and chemical transformation in the atmospheric boundary layer: Part I: Dry Convection DISPERSION Thanks: Alessandro Dosio Jordi Vilà-Guerau de Arellano WA G E N I N G E N U N I VE

More information

1. describe the two methods by which cloud droplets can grow to produce precipitation (pp );

1. describe the two methods by which cloud droplets can grow to produce precipitation (pp ); 10 Precipitation Learning Goals After studying this chapter, students should be able to: 1. describe the two methods by which cloud droplets can grow to produce precipitation (pp. 232 236); 2. distinguish

More information

Building and removing stratification in the Arctic Ocean

Building and removing stratification in the Arctic Ocean Building and removing stratification in the Arctic Ocean John Marshall Massachusetts Institute of Technology With help and advice from: An Nguyen Patrick Heimbach Hajoon Song Christopher Klingshirn FAMOS

More information

Linking 2D+1 and 3D+1 Transport in the Ocean

Linking 2D+1 and 3D+1 Transport in the Ocean Linking 2D+1 and 3D+1 Transport in the Ocean Tamay Özgökmen, University of Miami Annalisa Griffa, Angelique Haza, Jean Mensa, Peng Wang, Yeon Chang In collaboration with: Larry Pratt, Irina Rypina, Andrew

More information

GEOCHEMICAL TRACERS OF ARCTIC OCEAN CIRCULATION

GEOCHEMICAL TRACERS OF ARCTIC OCEAN CIRCULATION GEOCHEMICAL TRACERS OF ARCTIC OCEAN CIRCULATION Earth Sciences Division Lawrence Berkeley National Laboratory Fresh Water Cycle Maintains Stratification of Upper Arctic Ocean Stably stratified surface

More information

Transient natural ventilation of a room with a distributed heat source

Transient natural ventilation of a room with a distributed heat source J. Fluid Mech. (27), vol. 591, pp. 21 42. c 27 Cambridge University Press doi:1.117/s2211277598 Printed in the United Kingdom 21 Transient natural ventilation of a room with a distributed heat source SHAUN

More information

Feedback in Galaxy Clusters

Feedback in Galaxy Clusters Feedback in Galaxy Clusters Brian Morsony University of Maryland 1 Not talking about Galaxy-scale feedback Local accretion disk feedback 2 Outline Galaxy cluster properties Cooling flows the need for feedback

More information

On a slippery slope. Maarten van Reeuwijk 1, Markus Holzner 2, Colm-Cille Caulfield 3 and Harm Jonker 4. Abstract

On a slippery slope. Maarten van Reeuwijk 1, Markus Holzner 2, Colm-Cille Caulfield 3 and Harm Jonker 4. Abstract Abstract On a slippery slope Maarten van Reeuwijk 1, Markus Holzner 2, Colm-Cille Caulfield 3 and Harm Jonker 4 1 Dept of Civil and Environmental Engineering, Imperial College London, UK 2 Institute of

More information

ICE IS THICKER THAN WATER GALENA, ALASKA. Taunnie Boothby, CFM State of Alaska NFIP Coordinator Alaska Division of Community and Regional Affairs

ICE IS THICKER THAN WATER GALENA, ALASKA. Taunnie Boothby, CFM State of Alaska NFIP Coordinator Alaska Division of Community and Regional Affairs ICE IS THICKER THAN WATER GALENA, ALASKA Taunnie Boothby, CFM State of Alaska NFIP Coordinator Alaska Division of Community and Regional Affairs 2014 ASFPM Conference Seattle, WA June 1 6, 2014 Agenda

More information

Numerical Simulations of Turbulent Flow in Volcanic Eruption Clouds

Numerical Simulations of Turbulent Flow in Volcanic Eruption Clouds Numerical Simulations of Turbulent Flow in Volcanic Eruption Clouds Project Representative Takehiro Koyaguchi Authors Yujiro Suzuki Takehiro Koyaguchi Earthquake Research Institute, University of Tokyo

More information

Periodic planes v i+1 Top wall u i. Inlet. U m y. Jet hole. Figure 2. Schematic of computational domain.

Periodic planes v i+1 Top wall u i. Inlet. U m y. Jet hole. Figure 2. Schematic of computational domain. Flow Characterization of Inclined Jet in Cross Flow for Thin Film Cooling via Large Eddy Simulation Naqavi, I.Z. 1, Savory, E. 2 and Martinuzzi, R. J. 3 1,2 The Univ. of Western Ontario, Dept. of Mech.

More information

Modeling of Humidification in Comsol Multiphysics 4.4

Modeling of Humidification in Comsol Multiphysics 4.4 Modeling of Humidification in Comsol Multiphysics 4.4 Indrajit Wadgaonkar *1 and Suresh Arikapudi 1 1 Tata Motors Ltd. Pimpri, Pune, India, 411018. *Corresponding author: Indrajit Wadgaonkar, Tata Motors

More information

Deformation and Secondary Atomization of Droplets in Technical Two-Phase Flows

Deformation and Secondary Atomization of Droplets in Technical Two-Phase Flows Institute for Applied Sustainable Science, Engineering & Technology Roland Schmehl Flow Problem Analysis in Oil & Gas Industry Conference Rotterdam, January 2 Deformation and Secondary Atomization of Droplets

More information

Outline of presentation

Outline of presentation // Fate and Examples from research projects -8 Effects of Dispersed Oil Workshop Anchorage, March 8 Alf G. Melbye Research Manager Fate and Effects Marine Environmental Chemistry SINTEF Materials and Chemistry

More information

Vorticity-based Analytical Models for Internal Bores and Gravity Currents

Vorticity-based Analytical Models for Internal Bores and Gravity Currents Vorticity-based Analytical Models for Internal Bores and Gravity Currents Zac Borden and Eckart Meiburg UC Santa Barbara Motivation - Hydraulic jumps - Internal bores - Gravity currents Earlier modeling

More information

Ocean Boundary Currents Guiding Question: How do western boundary currents influence climate and ocean productivity?

Ocean Boundary Currents Guiding Question: How do western boundary currents influence climate and ocean productivity? Name: Date: TEACHER VERSION: Suggested Student Responses Included Ocean Boundary Currents Guiding Question: How do western boundary currents influence climate and ocean productivity? Introduction The circulation

More information

Mixing and Turbulence

Mixing and Turbulence Mixing and Turbulence November 3, 2012 This section introduces some elementary concepts associated with mixing and turbulence in the environment. 1 Conserved Variables Studies of mixing of different airmasses

More information

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O Formulas/Constants, Physics/Oceanography 4510/5510 B Atmospheric Physics II N A = 6.02 10 23 molecules/mole (Avogadro s number) 1 mb = 100 Pa 1 Pa = 1 N/m 2 Γ d = 9.8 o C/km (dry adiabatic lapse rate)

More information

Modeling the Columbia River Plume on the Oregon Shelf during Summer Upwelling. 2 Model

Modeling the Columbia River Plume on the Oregon Shelf during Summer Upwelling. 2 Model Modeling the Columbia River Plume on the Oregon Shelf during Summer Upwelling D. P. Fulton August 15, 2007 Abstract The effects of the Columbia River plume on circulation on the Oregon shelf are analyzed

More information

A Numerical Simulation for Predicting Sea Waves Characteristics and Downtime for Marine and Offshore Structures Installation Operations

A Numerical Simulation for Predicting Sea Waves Characteristics and Downtime for Marine and Offshore Structures Installation Operations K. Sadeghi, GAU J. Soc. & Appl. Sci., 3(5), 1-12, 2007 A Numerical Simulation for Predicting Sea Waves Characteristics and Downtime for Marine and Offshore Structures Installation Operations Kabir Sadeghi

More information

A-Train observations of the 2010 eruption of Eyjafjallajökull volcano (Iceland)

A-Train observations of the 2010 eruption of Eyjafjallajökull volcano (Iceland) A-Train observations of the 2010 eruption of Eyjafjallajökull volcano (Iceland) S.A. Carn 1, N.A. Krotkov 2, K. Yang 2, A.J. Prata 3 1. Michigan Technological University, Houghton, MI, USA 2. GEST Center,

More information