INTRODUCTION TO MULTIPHASE FLOW. Mekanika Fluida II Haryo Tomo


 Estella Glenn
 2 years ago
 Views:
Transcription
1 1 INTRODUCTION TO MULTIPHASE FLOW Mekanika Fluida II Haryo Tomo
2 2 Definitions Multiphase flow is simultaneous flow of Matters with different phases( i.e. gas, liquid or solid). Matters with different chemical substances but with the same phase (i.e. liquidliquid like oilwater). Primary and secondary phases One of the phases is considered continuous (primary) and others (secondary) are considered to be dispersed within the continuous phase. A diameter has to be assigned for each secondary phase to calculate its interaction (drag) with the primary phase (except for VOF model). Dilute phase vs. Dense phase; Refers to the volume fraction of secondary phase(s) Volume fraction of a phase = Volume of the phase in a cell/domain Volume of the cell/domain
3 Rushton CD6 BT6 3 Why model multiphase flow? Multiphase flow is important in many industrial processes: Riser reactors. Bubble column reactors. Fluidized bed reactors. Scrubbers, dryers, etc. Typical objectives of a modeling analysis: Maximize the contact between the different phases, typically different chemical compounds. Flow dynamics.
4 Twophase Flow Applications The practical importance in many common engineering and industrial applications are: Steam generators and condensers, steam turbines ( Power Plants ). Refrigeration. Coal fired furnaces. Fluidized bed reactors. Liquid sprays. Separation of contaminants from a carrier fluid
5 Free surface flows, where sharp interfaces exist. pumping of slurries. pumping of flashing liquids. raining bed driers. oil industry two phase flow occurs in pipelines carrying oil and natural gas. energy conversion. paper manufacturing. food manufacturing. medical applications.
6 The laws governing two phase flow are identical to those for single phase flow. However, the equations are more complex and/or more numerous than those of single phase flow.
7 The description of the twophase flow is complicated due to the existence of interface between the phases depending on a large number of variables such as : 1. quality (x). 2. phase physical properties. 3. flow patterns. 4. pipe geometry. 5. orientation of flow.
8 A general classifications divide twophase flow into four groups depending on the mixtures of phases in the flow. The four groups are the flow of gasliquid, gassolid, liquidsolid and immiscible liquidliquid mixtures. The last case is technically not a twophase mixture, it is rather a single phase twocomponent flow, but for all practical purposes it can be considered as a twophase mixture.
9 Flow Regimes In Horizontal Flow 1. Bubble flow. 2. Plug flow. 3. Stratified flow (layered, separated). 4. Wavy flow (ripple flow, cresting). 5. Slug flow. 6. Semiannular flow. 7. Annular flow (ringed). 8. Spray flow (mist, froth, dispersed).
10
11 11 Flow Regimes in Vertical Flow Multiphase flow can be classified by the following regimes: 1. Bubbly flow: Discrete gaseous or fluid bubbles in a continuous fluid 2. Droplet flow: Discrete fluid droplets in a continuous gas 3. Particleladen flow: Discrete solid particles in a continuous fluid 4. Slug flow: Large bubbles (nearly filling crosssection) in a continuous fluid 5. Annular flow: Continuous fluid along walls, gas in center 6. Stratified/freesurface flow: Immiscible fluids separated by a clearlydefined interface slug flow annular flow bubbly flow droplet flow particleladen flow freesurface flow
12 Slug Bubble Separated Annular
13 Two Phase Flow Regimes Mapping Mapping of flow patterns that occur in pipe flow has always been a popular means of describing the behaviors of flow at different conditions. The superficial velocity of the gas and liquid are usually put on the two different axes, and supply an efficient method of comparing and contrasting the effects of different flow conditions.
14
15 15 Flow regimes: vertical gasliquid flow Evaporator 3 Q( m / s) Superficial Velocity : vsg ( m/ s) 2 A( m ) 3 Q( m / s) Q( VVM ) 60 3 V ( m )
16 16 Multiphase flow regimes User must know a priori the characteristics of the flow. Flow regime, e.g. bubbly flow, slug flow, annular flow, etc. Only model one flow regime at a time. Predicting the transition from one regime to another possible only if the flow regimes can be predicted by the same model. This is not always the case. Laminar or turbulent. Dilute or dense. Secondary phase diameter for drag considerations.
17 Increased complexity 17 Modeling approach Empirical correlations. Lagrangian. Track individual point particles. Particles do not interact. Algebraic slip model. Dispersed phase in a continuous phase. Solve one momentum equation for the mixture. Twofluids theory (multifluids). Eulerian models. Solve as many momentum equations as there are phases. Discrete element method. Solve the trajectories of individual objects and their collisions, inside a continuous phase. Fully resolved and coupled.
18 18 Coupling between phases Oneway coupling: Fluid phase influences particulate phase via aerodynamic drag and turbulence transfer. No influence of particulate phase on the gas phase. Twoway coupling: Fluid phase influences particulate phase via aerodynamic drag and turbulence transfer. Particulate phase reduces mean momentum and turbulent kinetic energy in fluid phase. Fourway coupling: Includes all twoway coupling. Particleparticle collisions create particle pressure and viscous stresses.
19 19 Modeling multiphase flows What is the goal of the simulation? Which effects are important? Controlled by which hydrodynamic effects? Controlled by which other transport phenomena effects? All these factors influence which model to choose for the analysis. Flow Specific bubbly droplet particleladen slug annular stratified/free surface rapid granular flow? Process Model Specific Lagrangian Dispersed Phase Algebraic Slip Eulerian Eulerian Granular Volume of Fluid Specific Separation Filtration Suspension Evaporation Reaction
20 20 Physical effects in dispersed systems Hydrodynamics: Change in shape. Diameter. Particlewall collision. Particleparticle collision. Coalescence. Dispersion and breakup. Turbulence. Inversion. Other transport phenomena: Heat transfer. Mass transfer. Change in composition. Heterogeneous reactions.
21 21 Multiphase formulation Two phases Fluid Solids Fluid Three phases Solids  1 Solids  2
22 22 Sediment transport under unidirectional flows I. Classification of sediment load The sediment that is transported by a current. Two main classes: Wash load: silt and clay size material that remains in suspension even during low flow events in a river. Bed material load: sediment (sand and gravel size) that resides in the bed but goes into transport during high flow events (e.g., floods). Bed material load makes up many arenites and rudites in the geological record.
23 Three main components of bed material load. Contact load: particles that move in contact with the bed by sliding or rolling over it. 23
24 Saltation load: movement as a series of hops along the bed, each hop following a ballistic trajectory. 24
25 When the ballistic trajectory is disturbed by turbulence the motion is referred to as Suspensive saltation. 25
26 Intermittent suspension load: carried in suspension by turbulence in the flow. Intermittent because it is in suspension only during high flow events and otherwise resides in the deposits of the bed. 26 Bursting is an important process in initiating suspension transport.
27 27 II. Hydraulic interpretation of grain size distributions In the section on grain size distributions we saw that some sands are made up of several normally distributed subpopulations. These subpopulations can be interpreted in terms of the modes of transport that they underwent prior to deposition.
28 28 The finest subpopulation represents the wash load. Only a very small amount of wash load is ever stored within the bed material so that it makes up a very small proportion of these deposits.
29 29 The coarsest subpopulation represents the contact and saltation loads. In some cases they make up two subpopulations (only one is shown in the figure).
30 30 The remainder of the distribution, normally making up the largest proportion, is the intermittent suspension load. This interpretation of the subpopulations gives us two bases for quantitatively determining the strength of the currents that transported the deposits.
31 31 The grain size X is the coarsest sediment that the currents could move on the bed. In this case, X = 1.5 f or approximately 2.8 mm. If the currents were weaker, that grain size would not be present. If the currents were stronger, coarser material would be present. This assumes that there were no limitations to the size of grains available in the system.
32 32 The grain size Y is the coarsest sediment that the currents could take into suspension. In this case, Y = 1.3 f or approximately 0.41 mm. Therefore the currents must have been just powerful enough to take the 0.41 mm particles into suspension. If the currents were stronger the coarsest grain size would be larger. This assumes that there were no limitations to the size of grains available in the system.
33 33 To quantitatively interpret X we need to know the hydraulic conditions needed to just begin to move of that size. This condition is the threshold for sediment movement. To quantitatively interpret Y we need to know the hydraulic conditions needed to just begin carry that grain size in suspension. This condition is the threshold for suspension.
34 The threshold for grain movement on the bed. 34 Grain size X can be interpreted if we know what flow strength is required to just move a particle of that size. That flow strength will have transported sediment with that maximum grain size. Several approaches have been taken to determine the critical flow strength to initiate motion on the bed.
35 Hjulstrom s Diagram 35 Based on a series of experiments using unidirectional currents with a flow depth of 1 m. The diagram (below) shows the critical velocity that is required to just begin to move sediment of a given size (the top of the yellow field). It also shows the critical velocity for deposition of sediment of a given size (the bottom of the yellow field).
36 Note that for grain sizes coarser than 0.5 mm the velocity that is required for transport increases with grain size; the larger the particles the higher velocity that is required for transport. 36 For finer grain sizes (with cohesive clay minerals) the finer the grain size the greater the critical velocity for transport. This is because the more mud is present the greater the cohesion and the greater the resistance to erosion, despite the finer grain size.
37 37 The problem is that the forces that are required to move sediment are not only related to flow velocity. Boundary shear stress is a particularly important force and it varies with flow depth. t o = rgdsinq Therefore, Hjulstrom s diagram is reasonably accurate only for sediment that has been deposited under flow depths of 1 m.
38 Shield s criterion for the initiation of motion 38 Based on a large number of experiments Shield s criterion considers the problem in terms of the forces that act to move a particle. The criterion applies to beds of spherical particles of uniform grain size. Forces that are important to initial motion: r 6 1. The submerged weight of the particle ( 3 ( ) which s r ) gd resists motion. 2. t o which causes a drag force that acts to move the particle down current. 3. Lift force (L) that reduces the effective submerged weight.
39 What s a Lift Force? 39 The flow velocity that is felt by the particle varies from approximately zero at its base to some higher velocity at its highest point.
40 Pressure (specifically dynamic pressure in contrast to static pressure) is also imposed on the particle and the magnitude of the dynamic pressure varies inversely with the velocity: 40 Higher velocity, lower dynamic pressure. Maximum dynamic pressure is exerted at the base of the particle and minimum pressure at its highest point.
41 The dynamic pressure on the particle varies symmetrically from a minimum at the top to a maximum at the base of the particle. 41
42 This distribution of dynamic pressure results in a net pressure force that acts upwards. 42 Thus, the net pressure force (known as the Lift Force) acts oppose the weight of the particle (reducing its effective weight). This makes it easier for the flow to roll the particle along the bed. The lift force reduces the drag force that is required to move the particle.
43 A quick note on saltation 43 If the particle remains immobile to the flow and the velocity gradient is large enough so that the Lift force exceeds the particle s weight.it will jump straight upwards away from the bed. Once off the bed, the pressure difference from top to bottom of the particle is lost and it is carried down current as it falls back to the bed. following the ballistic trajectory of saltation.
44 44 Example: bubble column design Gas A bubble column is a liquid pool sparged by a process stream. Liquid 2 < L/D < 20 U G,sup up to 50 cm/s Liquid Pool U G,sup >> U L,sup Sparger Gas Liquid/Slurry Inlet Gas Inlet
45 45 Bubble columns: flow regimes Bubbly Flow ChurnTurbulent Flow ( Heterogeneous ) Flow Regime Map (Deckwer, 1980)
46 46 Bubble column design issues Design parameters: Gas holdup. Directly related to rise velocity. Correlations of the form a ~ u sga r lb s c m l d are commonly used. Mass transfer coefficient k l a. Correlations of the form k l a ~ u sga r lb s c m l d m ge D f Dr g are commonly used. Axial dispersion occurs in both the liquid and gas phase, and correlations for each are available. Mixing time. Correlations are available for a limited number of systems. Volume, flow rates and residence time. Flow regime: homogeneous, heterogeneous, slug flow.
47 47 Bubble column design issues  cont d Accurate knowledge of the physical properties is important, especially the effects of coalescence and mass transfer affecting chemicals. Although good correlations are available for commonly studied airwater systems, these are limited to the ranges studied. Correlations may not be available for large scale systems or systems with vessel geometries other than cylinders without internals. Furthermore, experimental correlations may not accurately reflect changes in performance when flow regime transitions occur.
48 48 Bubble size At present, bubble column reactors are modeled using a single effective bubble size. Coalescence and breakup models are not yet mature. Statistical approach. Solve equation for number density. Population balance approach. Application of population balance with twofluid models with initial focus on gasliquid. The gas phase is composed of n bubble bins and share the same velocity as the second phase. The death and birth of each bubble bin is solved from the above models.
49 49 Example  gasliquid mixing vessel Combinations of multiple impeller types used. Bottom radial flow turbine disperses the gas. Top hydrofoil impeller provides good blending performance in tall vessels.
50 50 Euleriangranular/fluid model features Solves momentum equations for each phase and additional volume fraction equations. Appropriate for modeling fluidized beds, risers, pneumatic lines, hoppers, standpipes, and particleladen flows in which phases mix or separate. Granular volume fractions from 0 to ~60%. Several choices for drag laws. Appropriate drag laws can be chosen for different processes. Several kinetictheory based formulas for the granular stress in the viscous regime. Frictional viscosity based formulation for the plastic regime stresses. Added mass and lift force.
51 51 Euleriangranular/fluid model features Solves momentum equations for each phase and additional volume fraction equations. Appropriate for modeling fluidized beds, risers, pneumatic lines, hoppers, standpipes, and particleladen flows in which phases mix or separate. Granular volume fractions from 0 to ~60%. Several choices for drag laws. Appropriate drag laws can be chosen for different processes.
52 52 Granular flow regimes Elastic Regime Plastic Regime Viscous Regime Stagnant Slow flow Rapid flow Stress is strain Strain rate Strain rate dependent independent dependent Elasticity Soil mechanics Kinetic theory
53 53 Fluidizedbed systems When a fluid flows upward through a bed of solids, beyond a certain fluid velocity the solids become suspended. The suspended solids: has many of the properties of a fluid, seeks its own level ( bed height ), assumes the shape of the containing vessel. Bed height typically varies between 0.3m and 15m. Particle sizes vary between 1 mm and 6 cm. Very small particles can agglomerate. Particle sizes between 10 mm and 150 mm typically result in the best fluidization and the least formation of large bubbles. Addition of finer size particles to a bed with coarse particles usually improves fluidization. Superficial gas velocities (based on cross sectional area of empty bed) typically range from 0.15 m/s to 6 m/s.
54 Fluidized bed example 54
55 55 Fluidized bed uses Fluidized beds are generally used for gassolid contacting. Typical uses include: Chemical reactions: Catalytic reactions (e.g. hydrocarbon cracking). Noncatalytic reactions (both homogeneous and heterogeneous). Physical contacting: Heat transfer: to and from fluidized bed; between gases and solids; temperature control; between points in bed. Solids mixing. Gas mixing. Drying (solids or gases). Size enlargement or reduction. Classification (removal of fines from gas or fines from solids). Adsorptiondesorption. Heat treatment. Coating.
56 Bed depth Freeboard 56 Typical fluidized bed systems  1 Gas and entrained solids Gas Dust Solids Feed Disengaging Space (may also contain a cyclone separator) Separator Dust Fluidized Bed Gas in Solids Discharge Windbox or plenum chamber Gas distributor or constriction plate
57 57 Typical fluidized bed systems  2 Gas + solids Riser section of a recirculating fluidized bed Solids Gas Uniform Fluidization Bed with central jet
58 Solids Return Solids Return Solids Return 58 Fluidization regimes U mf U mb U ch U U Gas Fixed Bed Particulate Regime Bubbling Regime Slug Flow Regime Turbulent Regime Fast Fluidization Pneumatic Conveying Increasing Gas Velocity
59 59 Fluidized bed design parameters Main components are the fluidization vessel (bed portion, disengagement space, gas distributor), solids feeder, flow control, solids discharge, dust separator, instrumentation, gas supply. There is no single design methodology that works for all applications. The design methodologies to be used depend on the application. Typical design parameters are bed height (depends on gas contact time, solids retention time, L/D for staging, space required for internal components such as heat exchangers). Flow regimes: bubbling, turbulent, recirculating, slugs. Flow regime changes can affect scaleup. Heat transfer and flow around heat exchanger components. Temperature and pressure control. Location of instrumentation, probes, solids feed, and discharges.
60 60 Fluidized bed  input required for CFD CFD can not be used to predict the: minimum fluidization velocity, and the minimum bubbling velocity. These depend on the: particle shape, particle surface roughness, particle cohesiveness, and the particle size distribution. All of these effects are lumped into the drag term. Hence we need to fine tune the drag term to match the experimental data for minimum fluidization or minimum bubbling velocity.
61 61 Fluidized bed  when to use CFD If the drag term is tuned to match the minimum fluidization velocity, CFD then can be used to predict: bed expansion gas flow pattern solid flow pattern bubbling size, frequency and population short circuiting effects of internals effects of inlet and outlets hot spots reaction and conversion rates mixing of multiple particle size residence times of solids and gases backmixing and downflows (in risers) solids distribution/segregation
MULTIPHASE FLOW MODELLING
MULTIPHASE FLOW MODELLING 1 Introduction 2 Outline Multiphase Flow Modeling Discrete phase model Eulerian model Mixture model Volumeoffluid model Reacting Flow Modeling Eddy dissipation model Nonpremixed,
More informationModeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics!
http://www.nd.edu/~gtryggva/cfdcourse/! Modeling Complex Flows! Grétar Tryggvason! Spring 2011! Direct Numerical Simulations! In direct numerical simulations the full unsteady NavierStokes equations
More informationChapter 6 Pneumatic Transport
Chapter 6 Pneumatic Transport 6.1 Pneumatic Transport Use of a gas to transport a particulate solid through pipeline Powder Rotary valve Blower Three major variables for pneumatic conveying  solid mass
More informationTable of Contents. Preface... xiii
Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics... 3 1.1. Forces, stress tensor, and pressure... 4 1.2. Navier Stokes equations in Cartesian coordinates...
More informationChapter 6 Pneumatic Transport and Standpipes
Chapter 6 Pneumatic Transport and Standpipes 6.1 Pneumatic Transport Use of a gas to transport a particulate solid through pipeline Powder Rotary valve Blower Three major variables for pneumatic conveying
More informationCFD modelling of multiphase flows
1 Lecture CFD3 CFD modelling of multiphase flows Simon Lo CDadapco Trident House, Basil Hill Road Didcot, OX11 7HJ, UK simon.lo@cdadapco.com 2 VOF Free surface flows LMP Droplet flows Liquid film DEM
More informationBASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS
BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS Starting Reference 1. P. A. Ramachandran and R. V. Chaudhari, ThreePhase Catalytic Reactors, Gordon and Breach Publishers, New York, (1983). 2. Nigam, K.D.P.
More informationAqueous and Aeolian Bedforms
Aqueous and Aeolian Bedforms 1 Further reading & review articles R.A. Bagnold, 1941, The physics of blown sand and desert dunes Charru et al., 2013, Sand ripples and dunes, Ann. Review of Fluid Mech. 2
More informationInterparticle force and stress models for wet and dry particulate flow at the intermediate flow regime
Interparticle force and stress models for wet and dry particulate flow at the intermediate flow regime Xi Yu 1, Raffaella Ocone 3, Sotos Generalis 2, Yassir Makkawi 1 1 Chemical Engineering & Applied
More informationAIRLIFT BIOREACTORS. contents
AIRLIFT BIOREACTORS contents Introduction Fluid Dynamics Mass Transfer Airlift Reactor Selection and Design 1 INTRODUCTION airlift reactor (ALR) covers a wide range of gas liquid or gas liquid solid pneumatic
More informationNumerical Simulation of GasLiquidReactors with Bubbly Flows using a Hybrid MultiphaseCFD Approach
Numerical Simulation of GasLiquidReactors with Bubbly Flows using a Hybrid MultiphaseCFD Approach TFM Hybrid Interface Resolving TwoFluid Model (HIRESTFM) by Coupling of the VolumeofFluid (VOF)
More informationBED LOAD SEDIMENT TRANSPORT
BED LOAD SEDIMENT TRANSPORT Kamal EL KADI ABDERREZZAK EDFR&D, Laboratoire National d Hydraulique et Environnement (LNHE) 1 1719 September 2009 UNL, Santa Fe, Argentina OUTLINE I. Bed load II. Settling
More informationD.R. Rector, M.L. Stewart and A.P. Poloski Pacific Northwest National Laboratory P.O. Box 999, Richland, WA
Modeling of Sediment Bed Behavior for Critical Velocity in Horizontal Piping 9263 D.R. Rector, M.L. Stewart and A.P. Poloski Pacific Northwest National Laboratory P.O. Box 999, Richland, WA ABSTRACT A
More informationMultiphase Flow and Heat Transfer
Multiphase Flow and Heat Transfer ME546 Sudheer Siddapureddy sudheer@iitp.ac.in Two Phase Flow Reference: S. Mostafa Ghiaasiaan, TwoPhase Flow, Boiling and Condensation, Cambridge University Press. http://dx.doi.org/10.1017/cbo9780511619410
More informationStorm Sewer Design [2]
Class 5 [1] Storm Sewer Design 9. Check Q < Qf and Vmax > vf > Vmin. Vmin is normally specified to avoid sedimentation. This will normally be 1.0 m/s at pipe full condition. (BS EN 752 suggests that for
More informationMechanistic model for fourphase sand/water/oil/gas stratified flow in horizontal pipes
Computational Methods in Multiphase Flow VIII 335 Mechanistic model for fourphase sand/water/oil/gas stratified flow in horizontal pipes B. Moradi, M. Hossain & G. Oluyemi School of Engineering, Robert
More information6. Basic basic equations I ( )
6. Basic basic equations I (4.24.4) Steady and uniform flows, streamline, streamtube One, two, and threedimensional flow Laminar and turbulent flow Reynolds number System and control volume Continuity
More information15. Physics of Sediment Transport William Wilcock
15. Physics of Sediment Transport William Wilcock (based in part on lectures by Jeff Parsons) OCEAN/ESS 410 Lecture/Lab Learning Goals Know how sediments are characteried (sie and shape) Know the definitions
More informationPrediction of Minimum Fluidisation Velocity Using a CFDPBM Coupled Model in an Industrial Gas Phase Polymerisation Reactor
Journal of Engineering Science, Vol. 10, 95 105, 2014 Prediction of Minimum Fluidisation Velocity Using a CFDPBM Coupled Model in an Industrial Gas Phase Polymerisation Reactor Vahid Akbari and Mohd.
More informationChapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.
Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation
More informationProf. B V S Viswanadham, Department of Civil Engineering, IIT Bombay
13 Permeability and Seepage 2 Conditions favourable for the formation quick sand Quick sand is not a type of sand but a flow condition occurring within a cohesionless soil when its effective stress is
More informationAnNajah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction
1 AnNajah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies
More informationBest Practice Guidelines for Computational Turbulent Dispersed Multiphase Flows. René V.A. Oliemans
Best Practice Guidelines for Computational Turbulent Dispersed Multiphase Flows René V.A. Oliemans ERCOFTAC Seminar, Innventia, Stockholm, June 78, 2011 1 Vermelding onderdeel organisatie Department of
More informationPRESENTATION SLIDES: Hydrodynamic ScaleUp of Circulating Fluidized Beds
Refereed Proceedings The 12th International Conference on Fluidization  New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 PRESENTATION SLIDES: Hydrodynamic ScaleUp
More informationSediment transport and river bed evolution
1 Chapter 1 Sediment transport and river bed evolution 1.1 What is the sediment transport? What is the river bed evolution? System of the interaction between flow and river beds Rivers transport a variety
More informationENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids
CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific
More informationPairwise Interaction Extended PointParticle (PIEP) Model for dropletladen flows: Towards application to the midfield of a spray
Pairwise Interaction Extended PointParticle (PIEP) Model for dropletladen flows: Towards application to the midfield of a spray Georges Akiki, Kai Liu and S. Balachandar * Department of Mechanical &
More informationNumerical modelling of the slurry flow in pipelines and prediction of flow regimes
Computational Methods in Multiphase Flow VIII 311 Numerical modelling of the slurry flow in pipelines and prediction of flow regimes M. Swamy, N. González Díez & A. Twerda Heat Transfer and Fluid Dynamics,
More informationMeasurement Technique in Multiphase Flows Dr. Rajesh Kumar Upadhyay Department of Chemical Engineering Indian Institute of Technology, Guwahati
Measurement Technique in Multiphase Flows Dr. Rajesh Kumar Upadhyay Department of Chemical Engineering Indian Institute of Technology, Guwahati Lecture 01 Introduction to Multiphase flow Measurement Techniques
More informationAGITATION AND AERATION
AGITATION AND AERATION Although in many aerobic cultures, gas sparging provides the method for both mixing and aeration  it is important that these two aspects of fermenter design be considered separately.
More informationSedimentation Scour Model Gengsheng Wei, James Brethour, Markus Grünzner and Jeff Burnham August 2014; Revised October 2014
Flow Science Report 0314 Sedimentation Scour Model Gengsheng Wei, James Brethour, Markus Grünzner and Jeff Burnham August 2014; Revised October 2014 1. Introduction The threedimensional sediment scour
More informationPrinciples of Convection
Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid
More informationPART 2:! FLUVIAL HYDRAULICS" HYDROEUROPE
PART 2:! FLUVIAL HYDRAULICS" HYDROEUROPE 2009 1 HYDROEUROPE 2009 2 About shear stress!! Extremely complex concept, can not be measured directly!! Computation is based on very primitive hypotheses that
More informationINFLUENCE OF JOULE THOMPSON EFFECT ON THE TEMPERATURE DISTRIBUTION IN VERTICAL TWO PHASE FLOW
INFLUENCE OF JOULE THOMPSON EFFECT ON THE TEMPERATURE DISTRIBUTION IN VERTICAL TWO PHASE FLOW Daniel Merino Gabriel S. Bassani, Luiz Eduardo A. P. Duarte Deibi E. Garcia Angela O. Nieckele Twophase Flow
More informationColloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 2426, 2012 p.1
p.1 NUMERICAL MODEL OF SALTATION IN OPEN CHANNEL WITH ROUGH BED Irina Kharlamova, Pavel Vlasak Institute of Hydrodynamics AS CR, v. v. i., Pod Patankou 30/5; 166 12, Prague 6, Czech Republic, email: kharlamova@ih.cas.cz,
More informationModeling of dispersed phase by Lagrangian approach in Fluent
Lappeenranta University of Technology From the SelectedWorks of Kari Myöhänen 2008 Modeling of dispersed phase by Lagrangian approach in Fluent Kari Myöhänen Available at: https://works.bepress.com/kari_myohanen/5/
More informationch01.qxd 8/4/04 2:33 PM Page 1 Part 1 Basic Principles of Open Channel Flows
ch01.qxd 8/4/04 2:33 PM Page 1 Part 1 Basic Principles of Open Channel Flows ch01.qxd 8/4/04 2:33 PM Page 3 Introduction 1 Summary The introduction chapter reviews briefly the basic fluid properties
More informationSlurry Pump Mixing Effectiveness in Tank 50H
WSRCSTI200800151 Si Young Lee and Richard A. Dimenna February 2008 Washington Savannah River Company Savannah River National Laboratory Aiken, SC 29808 Prepared for the U.S. Department of Energy Under
More informationMinimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes
Computational Methods in Multiphase Flow V 227 Minimum fluidization velocity, bubble behaviour and pressure drop in fluidized beds with a range of particle sizes B. M. Halvorsen 1,2 & B. Arvoh 1 1 Institute
More informationInvestigation into Sand Deposition and Transportation in Multiphase Pipelines Phase 2
Investigation into Sand Deposition and Transportation in Multiphase Pipelines Phase 2 Matthew Avent Dr Jeremy Leggoe School of Mechanical and Chemical Engineering CEED Client: Woodside Energy Ltd. Abstract
More informationApplications of Computational Fluid Dynamics in the Process Industries. Ahmad Haidari & Peter Spicka Fluent Inc.
Applications of Computational Fluid Dynamics in the Process Industries Ahmad Haidari & Peter Spicka Fluent Inc. 1 Outline Overview of CFD s growth in the process Industry Overview of modeling multiphase
More informationENGG 199 Reacting Flows Spring Lecture 4 GasLiquid Mixing Reactor Selection Agitator Design
ENGG 199 Reacting Flows Spring 2006 Lecture 4 GasLiquid Mixing Reactor Selection gitator Design Copyright 2000,.W. Etchells, R.K.Grenville & R.D. LaRoche ll rights reserved. Background Roughly 25 % of
More informationAMRITA VISHWA VIDYAPEETHAM DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE. PhD Entrance Examination  Syllabus
AMRITA VISHWA VIDYAPEETHAM DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE PhD Entrance Examination  Syllabus The research being carried out in the department of Chemical Engineering & Materials
More informationMSc. Thesis Project. Simulation of a Rotary Kiln. MSc. Cand.: Miguel A. Romero Advisor: Dr. Domenico Lahaye. Challenge the future
MSc. Thesis Project Simulation of a Rotary Kiln MSc. Cand.: Miguel A. Romero Advisor: Dr. Domenico Lahaye 1 Problem Description What is a Rotary Kiln? A Rotary Kiln is a pyroprocessing device used to raise
More information(3) Sediment Movement Classes of sediment transported
9/17/15 (3) Sediment Movement Classes of sediment transported Dissolved load Suspended load Important for scouring algae Bedload (510% total load) Moves along bed during floods Source of crushing for
More informationEVALUATION OF SLUDGE REMOVAL CAPABILITIES FOR ADMP MIXER IN TANK 18
WSRCTR200300166 KEYWORDS: Sludge Suspension Computational Approach Sludge Mixing Jet Flow Model Mixing Pump Model RETENTION  Permanent EVALUATION OF SLUDGE REMOVAL CAPABILITIES FOR ADMP MIXER IN TANK
More informationMODELING ON THE BREAKUP OF VISCOELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION
1446 THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 14461450 MODELING ON THE BREAKUP OF VISCOELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION by LiJuan QIAN * China Jiliang University, Hangzhou, China Short
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationModelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids
Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 3: Examples of analyses conducted for Newtonian fluids Globex Julmester 017 Lecture # 04 July 017 Agenda Lecture
More informationChapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian
Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite
More informationDispersed Multiphase Flow Modeling using Lagrange Particle Tracking Methods Dr. Markus Braun Ansys Germany GmbH
Dispersed Multiphase Flow Modeling using Lagrange Particle Tracking Methods Dr. Markus Braun Ansys Germany GmbH 2011 ANSYS, Inc., Markus Braun 1 Overview The Euler/Lagrange concept Breaking the barrier
More informationLABORATORY TESTING OF PIPE FLOWS OF BIMODAL COMPLEX SLURRIES
18th International Conference on TRANSPORT AND SEDIMENTATION OF SOLID PARTICLES 1115 September 2017, Prague, Czech Republic ISSN 08677964 ISBN 9788377172698 LABORATORY TESTING OF PIPE FLOWS OF BIMODAL
More informationFluid: Air and water are fluids that exert forces on the human body.
Fluid: Air and water are fluids that exert forces on the human body. term fluid is often used interchangeably with the term liquid, from a mechanical perspective, Fluid: substance that flows when subjected
More informationUnit OperatiOn. Table 1: List of some unit operations
Unit OperatiOn What is chemical engineering? Chemical Engineering is a group of industrial processes in which row materials are changed or separated into useful products What are "Unit Operations"? Every
More informationInstructor : Dr. Jehad Hamad. Chapter (7)
Instructor : Dr. Jehad Hamad Chapter (7) 20172016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility SoilWater Relationships Shear Strength Bearing Capacity
More informationFluid Mechanics. Spring 2009
Instructor: Dr. YangCheng Shih Department of Energy and Refrigerating AirConditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 11 General Remarks 12 Scope
More informationModelling multiphase flows in the Chemical and Process Industry
Modelling multiphase flows in the Chemical and Process Industry Simon Lo 9/11/09 Contents Breakup and coalescence in bubbly flows Particle flows with the Discrete Element Modelling approach Multiphase
More informationChemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017
Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering
More informationEmpirical Co  Relations approach for solving problems of convection 10:06:43
Empirical Co  Relations approach for solving problems of convection 10:06:43 10:06:44 Empirical Corelations for Free Convection Use T f or T b for getting various properties like Re = VL c / ν β = thermal
More informationLecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.
Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical
More informationDay 24: Flow around objects
Day 24: Flow around objects case 1) fluid flowing around a fixed object (e.g. bridge pier) case 2) object travelling within a fluid (cars, ships planes) two forces are exerted between the fluid and the
More information(3) Sediment Movement Classes of sediment transported
(3) Sediment Movement Classes of sediment transported Dissolved load Suspended (and wash load ) Important for scouring algae Bedload (510% total load Moves along bed during floods Source of crushing for
More informationAPPLIED FLUID DYNAMICS HANDBOOK
APPLIED FLUID DYNAMICS HANDBOOK ROBERT D. BLEVINS H imhnisdia ttodisdiule Darmstadt Fachbereich Mechanik 'rw.nr.. [VNR1 VAN NOSTRAND REINHOLD COMPANY ' ' New York Contents Preface / v 1. Definitions /
More informationJ. Matthew Treinen & Justin Jacobs. Paterson & Cooke USA, 221 Corporate Circle Suite D, Golden CO, 80401, USA.
ISBN 9788392708483 ISSN 08677964 THE APPLICABILITY OF THE EULERIANEULERIAN CFD APPROACH USING GRANULAR KINETIC THEORY TO PREDICT PARTICLE SETTLING AND MIGRATION IN VISCOPLASTIC FLUIDS J. Matthew
More informationIntroduction to Marine Hydrodynamics
1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first
More informationCONVEYING OF COARSE PARTICLES IN INCLINED PIPES. Pavel Vlasak, Zdenek Chara, Jiri Konfrst
ISBN 9788392708483 ISSN 08677964 CONVEYING OF COARSE PARTICLES IN INCLINED PIPES Pavel Vlasak, Zdenek Chara, Jiri Konfrst Institute of Hydrodynamics ASCR, v. v. i., Pod Patankou 30/5, Prague 6, Czech
More informationChapter 14. Fluid Mechanics
Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these
More informationOverview of Turbulent Reacting Flows
Overview of Turbulent Reacting Flows Outline Various Applications Overview of available reacting flow models LES Latest additions Example Cases Summary Reacting Flows Applications in STARCCM+ EverExpanding
More informationCHEMICAL ENGINEERING
CHEMICAL ENGINEERING Subject Code: CH Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Section B Section C Section D Section E Section F Section G Section H Section I
More informationLiquid Feed Injection in a High Density Riser
Refereed Proceedings The 12th International Conference on Fluidization  New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 Liquid Feed Injection in a High Density
More informationB1. Attachment B1. Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling
Attachment B1 Evaluation of AdH Model Simplifications in Conowingo Reservoir Sediment Transport Modeling 1 October 2012 Lower Susquehanna River Watershed Assessment Evaluation of AdH Model Simplifications
More informationStreams. Water. Hydrologic Cycle. Geol 104: Streams
Streams Why study streams? Running water is the most important geologic agent in erosion, transportation and deposition of sediments. Water The unique physical and chemical properties of water make it
More informationUNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More informationCFD SIMULATION OF SOLIDLIQUID STIRRED TANKS
CFD SIMULATION OF SOLIDLIQUID STIRRED TANKS Divyamaan Wadnerkar 1, Ranjeet P. Utikar 1, Moses O. Tade 1, Vishnu K. Pareek 1 Department of Chemical Engineering, Curtin University Perth, WA 6102 r.utikar@curtin.edu.au
More informationC ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127
C ONTENTS Preface xviii Nomenclature xxvi CHAPTER ONE BASICS OF HEAT TRANSFER 1 11 Thermodynamics and Heat Transfer 2 Application Areas of Heat Transfer 3 Historical Background 3 12 Engineering Heat
More informationStudy of Sediment Transport in Shallow Channel Flows
This paper was peerreviewed for scientific content. Pages 77724. In: D.E. Stott, R.H. Mohtar and G.C. Steinhardt (eds). 2. Sustaining the Global Farm. Selected papers from the th International Soil Conservation
More informationChapter 7 Mixing and Granulation
Chapter 7 Mixing and Granulation 7.1 Mixing and Segregation (Chapter 9) Mixing vs. segregation (1) Types of Mixture * Perfect mixing Random mixing Segregating mixing Figure 9.1 (2) Segregation 1) Causes
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationNumerical Simulation Analysis of Ultrafine Powder Centrifugal Classifier Bizhong XIA 1, a, Yiwei CHEN 1, b, Bo CHEN 2
5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015) Numerical Simulation Analysis of Ultrafine Powder Centrifugal Classifier Bizhong XIA 1, a, Yiwei CHEN 1,
More informationContents 1 Introduction 2 Basic Ideas 3 How Cyclones Work
Contents 1 Introduction 1 1.1 Removal of Particles from Gases 1 1.1.1 Filtration 2 1.1.2 Wet Scrubbers 5 1.1.3 Centrifugal/Cyclonic Devices 5 1.1.4 Knockout Vessels and Settling Chambers 6 1.2 A Closer
More informationC C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2
This chapter provides an introduction to the transport of particles that are either more dense (e.g. mineral sediment) or less dense (e.g. bubbles) than the fluid. A method of estimating the settling velocity
More information5. MODELING OF NONSTRATIFIED MIXTURE FLOWS (Pseudohomogeneous flows)
5. MODELING OF NONSTRATIFIED MIXTURE FLOWS (Pseudohomogeneous flows) Uniform (or almost uniform) distribution of transported solids across a pipeline cross section is characteristic of pseudohomogeneous
More informationFLOW OF HETEROGENEOUS SLURRY IN HORIZONTAL AND INCLINED PIPES. Pavel Vlasák, Zdeněk Chára, Jiří Konfršt, Bohuš Kysela
18th International Conference on TRANSPORT AND SEDIMENTATION OF SOLID PARTICLES 1115 September 2017, Prague, Czech Republic ISSN 08677964 ISBN 9788377172698 FLOW OF HETEROGENEOUS SLURRY IN HORIZONTAL
More informationCONVECTION HEAT TRANSFER
CONVECTION HEAT TRANSFER THIRD EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina WILEY JOHN WILEY & SONS, INC. CONTENTS Preface Preface to the
More informationReview of Fluid Mechanics
Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may
More informationChapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
More informationFluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture  17 Laminar and Turbulent flows
Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture  17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In
More informationDEVELOPMENT OF A NUMERICAL APPROACH FOR SIMULATION OF SAND BLOWING AND CORE FORMATION
TMS (The Minerals, Metals & Materials Society), DEVELOPMENT OF A NUMERICAL APPROACH FOR SIMULATION OF SAND BLOWING AND CORE FORMATION G.F. Yao, C. W. Hirt, and
More informationMeasuring Particle Velocity Distribution in Circulating Fluidized Bed
Measuring Particle Velocity Distribution in Circulating Fluidized Bed Haneen T. Shatub 1, Saad N. Saleh 2, Ahmed A. Mohammed 3 1,2 Department of chemical Engineering, Tikrit University, Tikrit, Iraq 3
More informationUNIT II CONVECTION HEAT TRANSFER
UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationPredictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical and CFD Method
International Journal of Engineering and Technical Research (IJETR) ISSN: 23210869, Volume3, Issue5, May 2015 Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical
More informationInlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones
IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones To cite this article: Erikli and A
More informationA discussion on the velocity of debris flow
Erosion, Debris Flows and Environment in Mountain Regions (Proceedings of the Chengdu Symposium, July 1992). IAHS Publ. no. 209, 1992. 369 A discussion on the velocity of debris flow ZHU PENGCHENG Institute
More informationExperimental Investigation on Segregation of Binary Mixture of Solids by Continuous Liquid Fluidization
214 5th International Conference on Chemical Engineering and Applications IPCBEE vol.74 (214) (214) IACSIT Press, Singapore DOI: 1.7763/IPCBEE. 214. V74. 5 Experimental Investigation on Segregation of
More informationCONVECTION HEAT TRANSFER
CONVECTION HEAT TRANSFER SECOND EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina A WILEYINTERSCIENCE PUBUCATION JOHN WILEY & SONS, INC. New York
More informationEXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018
EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018 Q1. Using Cheng s formula estimate the settling velocity of a sand particle of diameter 1 mm in: (a) air; (b) water. Q2. Find the critical Shields parameter diameter
More informationWhat is segregation? Gabrie Meesters
What is segregation? Gabrie Meesters Outline of the presentation What is segregation Types of segregation Do s and don ts with respect to segregation .so what is segregation Segregation results when particles
More informationIf there is convective heat transfer from outer surface to fluid maintained at T W.
Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature
More informationVisualization of flow pattern over or around immersed objects in open channel flow.
EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:
More information