Building and removing stratification in the Arctic Ocean

Size: px
Start display at page:

Download "Building and removing stratification in the Arctic Ocean"

Transcription

1 Building and removing stratification in the Arctic Ocean John Marshall Massachusetts Institute of Technology With help and advice from: An Nguyen Patrick Heimbach Hajoon Song Christopher Klingshirn FAMOS School for young scientists Tuesday, October 22 nd, 2013

2 Water mass transformation Buoyancy loss Suck Buoyancy gain Pump eddies heavy subduction light subduction Briefly review aspects of circulation in the Arctic basin Dynamics of the Beaufort Gyre Example of light subduction

3 Water mass transformation heavy subduction preconditioning cool, suck Greenland and Labrador Sea mixing spreading

4 Dynamical ideas Extract buoyancy from surface of homogeneous, rotating ocean Jones and Marshall, 1993 H Numbers Helfrich 1994 f 10 4 s 1 Ocean - rotation important Natural Rossby number R o l rot H Radius of deformation 1 H B f B 10 7 m 2 s 3 H 1km l rot 1km R o Atmosphere - rotation not important on convective scale l H R o B 10 2 m 2 s 3 H 10km l rot 100km R o 10 50

5 Interplay between convection and baroclinic instability cool Vertical velocity w Upright convection Jack Whitehead Convection Baroclinic instability reminiscent of metrological flows Baroclinic instability Eddies flux buoyancy vertically to offset loss from the surface

6 Light subduction Subtropical gyres!

7 Building Blocks f-plane Cool, suck -plane gyres Cool, suck Warm, pump Warm, pump Warm, pump Antarctic Circumpolar Current Cool, suck

8 Review aspects of Arctic Circulation Beaufort Gyre

9 Simulation of the Arctic Ocean using MITgcm ECCO2 Project: collaboration between MIT and JPL

10 ECCO2 5-year climatology ( ) T at 200m 400m 500km

11 km Blue circulation is sensitive to local atmospheric circulation Anticyclonic circulation regime: JGR, 1997 Proshutinsky and Johnson

12 Wind stress Mean wind stress N/m**2 Net freshwater flux in to the Arctic Balanced by ice and freshwater export

13 Section through the Beaufort Gyre Pumping down of fresh water by the wind Fresh water lens T colored S contoured Halocline layer Light subduction Vast stores of available potential energy in the fresh water lens. Expect vigorous baroclinic instability.

14 Arctic is seething with baroclinic instability and geostrophic turbulence

15 Dynamics of the Beaufort Gyre What sets depth and stratification of the freshwater lens? Downward buoyancy flux could be balanced by small-scale mixing or eddy fluxes. Note cannot use classic thermocline theory 0

16 Laboratory experiment: f -plane warm pumped lenses Marshall et al. (2002) T t T profile under disc N 2

17 Theory Q r o 2 w Ek eddies fw Ek g r o

18 Numbers for freshwater lens e-folding scale h fw g r h 4 s 1 10 m/ y 500km m s 2 40m 500km l rot wg f m R o l rot h 1 L 4km l rot r In the correct ball-park

19 e-folding scale of 70m S T Data courtesy of Mary-Louise Timmermans Ice-Tethered Profilers John Toole

20 Conclusions Dynamical and water mass transformation processes in the Arctic basin are complex: --- observations reveal extraordinary detail --- models (GCMs) can capture only broad aspects Geostrophic turbulence is ubiquitous ---- not just noise, surely there for a reason Beaufort gyre is a beautiful example of Light Subduction Geostrophic eddies likely play a role in equilibrating the fresh water lens Flow of Atlantic water at depth likely has very different dynamics See, e.g., Nost and Isachsen, JMR, 2003

Arctic Ocean simulation in the CCSM4

Arctic Ocean simulation in the CCSM4 Arctic Ocean simulation in the CCSM4 Alexandra Jahn National Center for Atmospheric Sciences, Boulder, USA Collaborators: K. Sterling, M.M. Holland, J. Kay, J.A. Maslanik, C.M. Bitz, D.A. Bailey, J. Stroeve,

More information

Atmosphere, Ocean, Climate Dynamics: the Ocean Circulation EESS 146B/246B

Atmosphere, Ocean, Climate Dynamics: the Ocean Circulation EESS 146B/246B Atmosphere, Ocean, Climate Dynamics: the Ocean Circulation EESS 146B/246B Instructor: Leif Thomas TA: Gonçalo Zo Zo Gil http://pangea.stanford.edu/courses/eess146bweb/ Course Objectives Identify and characterize

More information

The Ice-Ocean governor: ice-ocean stress feedback limits Beaufort Gyre spin up

The Ice-Ocean governor: ice-ocean stress feedback limits Beaufort Gyre spin up 1 2 The Ice-Ocean governor: ice-ocean stress feedback limits Beaufort Gyre spin up 3 4 Gianluca Meneghello 1, John Marshall 1, Jean-Michel Campin 1, Edward Doddridge 1, Mary-Louise Timmermans 2 5 6 1 Department

More information

Water mass formation, subduction, and the oceanic heat budget

Water mass formation, subduction, and the oceanic heat budget Chapter 5 Water mass formation, subduction, and the oceanic heat budget In the first four chapters we developed the concept of Ekman pumping, Rossby wave propagation, and the Sverdrup circulation as the

More information

The Ice-Ocean governor: ice-ocean stress feedback limits Beaufort Gyre spin up

The Ice-Ocean governor: ice-ocean stress feedback limits Beaufort Gyre spin up 1 2 The Ice-Ocean governor: ice-ocean stress feedback limits Beaufort Gyre spin up 3 4 Gianluca Meneghello 1, John Marshall 1, Jean-Michel Campin 1, Edward Doddridge 1, Mary-Louise Timmermans 2 5 6 1 Department

More information

On the Circulation of Atlantic Water in the Arctic Ocean

On the Circulation of Atlantic Water in the Arctic Ocean 2352 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 43 On the Circulation of Atlantic Water in the Arctic Ocean MICHAEL A. SPALL Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

More information

Lecture 1. Amplitude of the seasonal cycle in temperature

Lecture 1. Amplitude of the seasonal cycle in temperature Lecture 6 Lecture 1 Ocean circulation Forcing and large-scale features Amplitude of the seasonal cycle in temperature 1 Atmosphere and ocean heat transport Trenberth and Caron (2001) False-colour satellite

More information

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P.

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P. Ocean 423 Vertical circulation 1 When we are thinking about how the density, temperature and salinity structure is set in the ocean, there are different processes at work depending on where in the water

More information

SIO 210 Final Exam December 10, :30 2:30 NTV 330 No books, no notes. Calculators can be used.

SIO 210 Final Exam December 10, :30 2:30 NTV 330 No books, no notes. Calculators can be used. SIO 210 Final Exam December 10, 2003 11:30 2:30 NTV 330 No books, no notes. Calculators can be used. There are three sections to the exam: multiple choice, short answer, and long problems. Points are given

More information

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere Need to introduce a new measure of the buoyancy Potential temperature θ In a compressible fluid, the relevant measure

More information

Capabilities of Ocean Mixed Layer Models

Capabilities of Ocean Mixed Layer Models Capabilities of Ocean Mixed Layer Models W.G. Large National Center for Atmospheric Research Boulder Co, USA 1. Introduction The capabilities expected in today s state of the art models of the ocean s

More information

Thermohaline and wind-driven circulation

Thermohaline and wind-driven circulation Thermohaline and wind-driven circulation Annalisa Bracco Georgia Institute of Technology School of Earth and Atmospheric Sciences NCAR ASP Colloquium: Carbon climate connections in the Earth System Tracer

More information

General AW Circulation Schemes

General AW Circulation Schemes General AW Circulation Schemes Aagaard, 1989 - topographically steered boundary current along slopes and ridges - interior flow weak, dominated by eddies (based on current meters) Rudels et al, 1994 -

More information

SIO 210 Final examination Answer Key for all questions except Daisyworld. Wednesday, December 10, PM Name:

SIO 210 Final examination Answer Key for all questions except Daisyworld. Wednesday, December 10, PM Name: SIO 210 Final examination Answer Key for all questions except Daisyworld. Wednesday, December 10, 2008 3-6 PM Name: This is a closed book exam. You may use a calculator. There are two parts: Talley (weighted

More information

Ocean Mixing and Climate Change

Ocean Mixing and Climate Change Ocean Mixing and Climate Change Factors inducing seawater mixing Different densities Wind stirring Internal waves breaking Tidal Bottom topography Biogenic Mixing (??) In general, any motion favoring turbulent

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Contents

More information

Dynamics of Downwelling in an Eddy-Resolving Convective Basin

Dynamics of Downwelling in an Eddy-Resolving Convective Basin OCTOBER 2010 S P A L L 2341 Dynamics of Downwelling in an Eddy-Resolving Convective Basin MICHAEL A. SPALL Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (Manuscript received 11 March

More information

What makes the Arctic hot?

What makes the Arctic hot? 1/3 total USA UN Environ Prog What makes the Arctic hot? Local communities subsistence Arctic Shipping Routes? Decreasing Ice cover Sept 2007 -ice extent (Pink=1979-2000 mean min) Source: NSIDC Oil/Gas

More information

Salinity variability associated with changes in the hydrological cycle variables

Salinity variability associated with changes in the hydrological cycle variables Salinity variability associated with changes in the hydrological cycle variables Olga Sato Paulo Polito olga.sato@usp.br Oceanographic Institute of the University of SÃčo Paulo Olga Sato (IOUSP) Salinity

More information

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk Lecture 8 Lecture 1 Wind-driven gyres Ekman transport and Ekman pumping in a typical ocean basin. VEk wek > 0 VEk wek < 0 VEk 1 8.1 Vorticity and circulation The vorticity of a parcel is a measure of its

More information

GEOCHEMICAL TRACERS OF ARCTIC OCEAN CIRCULATION

GEOCHEMICAL TRACERS OF ARCTIC OCEAN CIRCULATION GEOCHEMICAL TRACERS OF ARCTIC OCEAN CIRCULATION Earth Sciences Division Lawrence Berkeley National Laboratory Fresh Water Cycle Maintains Stratification of Upper Arctic Ocean Stably stratified surface

More information

Wind Gyres. curl[τ s τ b ]. (1) We choose the simple, linear bottom stress law derived by linear Ekman theory with constant κ v, viz.

Wind Gyres. curl[τ s τ b ]. (1) We choose the simple, linear bottom stress law derived by linear Ekman theory with constant κ v, viz. Wind Gyres Here we derive the simplest (and oldest; Stommel, 1948) theory to explain western boundary currents like the Gulf Stream, and then discuss the relation of the theory to more realistic gyres.

More information

FAMOS for YOPP Forum for Arctic Modeling and Observational Synthesis (FAMOS) for Year of Polar Prediction (YOPP)

FAMOS for YOPP Forum for Arctic Modeling and Observational Synthesis (FAMOS) for Year of Polar Prediction (YOPP) FAMOS for YOPP Forum for Arctic Modeling and Observational Synthesis (FAMOS) for Year of Polar Prediction (YOPP) Andrey Proshutinsky (Woods Hole Oceanographic Institution) and research FAMOS team YOPP-Summit

More information

Typical Arctic profiles. How to form halocline water? 2012 Changing Arctic Ocean 506E/497E - Lecture 7 - Woodgate

Typical Arctic profiles. How to form halocline water? 2012 Changing Arctic Ocean 506E/497E - Lecture 7 - Woodgate Schematic Surface and Atlantic Circulation Typical Arctic profiles MIXED LAYER Usually thin (no wind stirring) PACIFIC WATER High nutrients Shallow (

More information

( ) = 1005 J kg 1 K 1 ;

( ) = 1005 J kg 1 K 1 ; Problem Set 3 1. A parcel of water is added to the ocean surface that is denser (heavier) than any of the waters in the ocean. Suppose the parcel sinks to the ocean bottom; estimate the change in temperature

More information

Upper Ocean Circulation

Upper Ocean Circulation Upper Ocean Circulation C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth 1 MAR555 Lecture 4: The Upper Oceanic Circulation The Oceanic Circulation

More information

IPCC AR5 WG1 - Climate Change 2013: The Physical Science Basis. Nandini Ramesh

IPCC AR5 WG1 - Climate Change 2013: The Physical Science Basis. Nandini Ramesh IPCC AR5 WG1 - Climate Change 2013: The Physical Science Basis Nandini Ramesh Seminar in Atmospheric Science 21 st February, 2014 1. Introduc,on The ocean exchanges heat, freshwater, and C with the atmosphere.

More information

The Beaufort Gyre: Models, Observations, & Truth

The Beaufort Gyre: Models, Observations, & Truth The Beaufort Gyre: Models, Observations, & Truth Michael Steele, Jinlun Zhang, & Wendy Ermold PSC / APL / U of WA Seattle WA 7 th AOMIP workshop GFDL, Princeton, NJ June 14-15, 2004 Abstract We have performed

More information

Climate of an Earth- like Aquaplanet: the high- obliquity case and the <dally- locked case

Climate of an Earth- like Aquaplanet: the high- obliquity case and the <dally- locked case Climate of an Earth- like Aquaplanet: the high- obliquity case and the

More information

Size matters: another reason why the Atlantic is saltier than the Pacific C.S. Jones and Paola Cessi

Size matters: another reason why the Atlantic is saltier than the Pacific C.S. Jones and Paola Cessi Size matters: another reason why the Atlantic is saltier than the Pacific C.S. Jones and Paola Cessi Scripps Institution of Oceanography University of California, San Diego Proposed reasons for Atlantic

More information

Lecture 17 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Learning objectives: understand the concepts & physics of

Lecture 17 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Learning objectives: understand the concepts & physics of ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 17 Learning objectives: understand the concepts & physics of 1. Ekman layer 2. Ekman transport 3. Ekman pumping 1. The Ekman Layer Scale analyses

More information

Ocean Circulation. In partnership with Dr. Zafer Top

Ocean Circulation. In partnership with Dr. Zafer Top Ocean Circulation In partnership with Dr. Zafer Top Samantha Hampton Honors Science December 15, 2014 Ocean Circulation is the large scale movement of waters in the ocean basins. Dr. Zafer Top studies

More information

1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter.

1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter. SIO 210 Problem Set 3 November 16, 2015 1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter. (a) What is the name of this type of data display?_hovmöller

More information

Abyssal Ocean Circulation. Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT Les Houches, August 2017

Abyssal Ocean Circulation. Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT Les Houches, August 2017 Abyssal Ocean Circulation Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT Les Houches, August 2017 Outline The deep ocean The deep circulation The sinking branch: deep convection The upwelling

More information

Reconciling theories of a mechanically-driven meridional overturning circulation with thermohaline forcing and multiple equilibria

Reconciling theories of a mechanically-driven meridional overturning circulation with thermohaline forcing and multiple equilibria Reconciling theories of a mechanically-driven meridional overturning circulation with thermohaline forcing and multiple equilibria HELEN L. JOHNSON 1, DAVID P. MARSHALL 2 AND DAVID A. J. SPROSON 3 Department

More information

Getting around in the Arctic

Getting around in the Arctic Getting around in the Arctic what we do (and don t) know about boundary currents Arctic Bathymetry 605ft 184m 70N ~1000ft ~ 330m Rebecca Woodgate University of Washington 150ft 50m BBC Photo by Sullivan

More information

Don't let your PBL scheme be rejected by brine: Parameterization of salt plumes under sea ice in climate models

Don't let your PBL scheme be rejected by brine: Parameterization of salt plumes under sea ice in climate models Don't let your PBL scheme be rejected by brine: Parameterization of salt plumes under sea ice in climate models Dimitris Menemenlis California Institute of Technology, Jet Propulsion Laboratory Frontiers

More information

Evolution of the Eddy Field in the Arctic Ocean s Canada Basin,

Evolution of the Eddy Field in the Arctic Ocean s Canada Basin, Evolution of the Eddy Field in the Arctic Ocean s Canada Basin, 2005 2015 Mengnan Zhao 1, Mary-Louise Timmermans 1, Sylvia Cole 2, Richard Krishfield 2 and John Toole 2 1 Department of Geology and Geophysics,

More information

Figure 1: Two schematic views of the global overturning circulation. The Southern Ocean plays two key roles in the global overturning: (1) the

Figure 1: Two schematic views of the global overturning circulation. The Southern Ocean plays two key roles in the global overturning: (1) the Figure 1: Two schematic views of the global overturning circulation. The Southern Ocean plays two key roles in the global overturning: (1) the Antarctic Circumpolar Current connects the ocean basins, establishing

More information

A Laboratory Model of Thermocline Depth and Exchange Fluxes across Circumpolar Fronts*

A Laboratory Model of Thermocline Depth and Exchange Fluxes across Circumpolar Fronts* 656 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 4 A Laboratory Model of Thermocline Depth and Exchange Fluxes across Circumpolar Fronts* CLAUDIA CENEDESE Physical Oceanography Department, Woods Hole Oceanographic

More information

AGENDA. Tuesday, November 3, School for young scientist. Cape Codder Resort and Spa, 1225 Iyannough Rd, Hyannis, MA02601

AGENDA. Tuesday, November 3, School for young scientist. Cape Codder Resort and Spa, 1225 Iyannough Rd, Hyannis, MA02601 4 nd FAMOS School and Meeting AGENDA Tuesday, November 3, 2015 2015 School for young scientist Cape Codder Resort and Spa, 1225 Iyannough Rd, Hyannis, MA02601 8:15 8:30 Coffee 8:30 9:00 Introductions from

More information

Water in the Climate System Lorenz Center Workshop February, 2014

Water in the Climate System Lorenz Center Workshop February, 2014 Water in the Climate System Lorenz Center Workshop February, 2014 Role of the ocean in the coupled hydrological cycle John Marshall Massachusetts Institute of Technology In steady state, atmospheric moisture

More information

FRESH WATER AS AN ESSENTIAL CLIMATE VARIABLE

FRESH WATER AS AN ESSENTIAL CLIMATE VARIABLE FRESH WATER AS AN ESSENTIAL CLIMATE VARIABLE IN THE ARCTIC CLIMATE SYSTEM Dmitry Dukhovskoy Center for Ocean-Atmospheric Prediction Studies, Florida State University, USA Andrey Proshutinsky Woods Hole

More information

The Role of Eddy Transfer in Setting the Stratification and Transport of a Circumpolar Current

The Role of Eddy Transfer in Setting the Stratification and Transport of a Circumpolar Current JANUAY KASTEN ET AL. 39 The ole of Eddy Transfer in Setting the Stratification and Transport of a Circumpolar Current ICHAD KASTEN,* HELEN JONES, AND JOHN MASHALL Department of Earth, Atmospheric, and

More information

Arne Biastoch Helmholtz Centre for Ocean Research Kiel. Modelling the Agulhas Current and its Coupling with the Atlantic Circulation

Arne Biastoch Helmholtz Centre for Ocean Research Kiel. Modelling the Agulhas Current and its Coupling with the Atlantic Circulation Arne Biastoch Helmholtz Centre for Ocean Research Kiel Modelling the Agulhas Current and its Coupling with the Atlantic Circulation The Agulhas System as a Key Region of the Global Oceanic Circulation

More information

The general circulation: midlatitude storms

The general circulation: midlatitude storms The general circulation: midlatitude storms Motivation for this class Provide understanding basic motions of the atmosphere: Ability to diagnose individual weather systems, and predict how they will change

More information

Eddy-induced meridional heat transport in the ocean

Eddy-induced meridional heat transport in the ocean GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L20601, doi:10.1029/2008gl035490, 2008 Eddy-induced meridional heat transport in the ocean Denis L. Volkov, 1 Tong Lee, 1 and Lee-Lueng Fu 1 Received 28 July 2008;

More information

How to form halocline water?

How to form halocline water? How to form halocline water? Atlantic water - cannot form Halocline water simply by mixing (Aagaard, 1981) Surface Water Adapted from Steele and Boyd, 1998 ADVECTIVE HC Temp Fresh Salty Aagaard et al,

More information

The Oceans in a Warming World

The Oceans in a Warming World The Oceans in a Warming World John Marshall Earth, Atmospheric and Planetary Sciences 1. Review global observations of warming trends. Ocean temperature trends key part of the puzzle. 2. Discuss timing

More information

Munk and Mixing Story of recipe

Munk and Mixing Story of recipe Munk and Mixing Story of recipe Raffaele Ferrari Department of Earth, Atmospheric and Planetary Sciences, MIT Munk Centennial Symposium, Scripps May 15-17 munk & mixing Raffaele Ferrari Department of Earth,

More information

Interpreting recent Southern Ocean climate trends. John Marshall, MIT

Interpreting recent Southern Ocean climate trends. John Marshall, MIT Interpreting recent Southern Ocean climate trends John Marshall, MIT Interpreting recent Southern Ocean climate trends John Marshall, MIT 1. Observed trends in SST, sea-ice extent, ocean heat content etc

More information

Global Atmospheric Circulation

Global Atmospheric Circulation Global Atmospheric Circulation Polar Climatology & Climate Variability Lecture 11 Nov. 22, 2010 Global Atmospheric Circulation Global Atmospheric Circulation Global Atmospheric Circulation The Polar Vortex

More information

Lecture 4:the observed mean circulation. Atmosphere, Ocean, Climate Dynamics EESS 146B/246B

Lecture 4:the observed mean circulation. Atmosphere, Ocean, Climate Dynamics EESS 146B/246B Lecture 4:the observed mean circulation Atmosphere, Ocean, Climate Dynamics EESS 146B/246B The observed mean circulation Lateral structure of the surface circulation Vertical structure of the circulation

More information

Advancements and Limitations in Understanding and Predicting Arctic Climate Change

Advancements and Limitations in Understanding and Predicting Arctic Climate Change Advancements and Limitations in Understanding and Predicting Arctic Climate Change Wieslaw Maslowski Naval Postgraduate School Collaborators: Jaclyn Clement Kinney, Rose Tseng, Timothy McGeehan - NPS Jaromir

More information

Spectral Albedos. a: dry snow. b: wet new snow. c: melting old snow. a: cold MY ice. b: melting MY ice. d: frozen pond. c: melting FY white ice

Spectral Albedos. a: dry snow. b: wet new snow. c: melting old snow. a: cold MY ice. b: melting MY ice. d: frozen pond. c: melting FY white ice Spectral Albedos a: dry snow b: wet new snow a: cold MY ice c: melting old snow b: melting MY ice d: frozen pond c: melting FY white ice d: melting FY blue ice e: early MY pond e: ageing ponds Extinction

More information

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics.

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics. OCN/ATM/ESS 587 Ocean circulation, dynamics and thermodynamics. Equation of state for seawater General T/S properties of the upper ocean Heat balance of the upper ocean Upper ocean circulation Deep circulation

More information

Eddy-mixed layer interactions in the ocean

Eddy-mixed layer interactions in the ocean Eddy-mixed layer interactions in the ocean Raffaele Ferrari 1 Massachusetts Institute of Technology, Cambridge, MA 02139, USA Numerical models have become essential tools in the study and prediction of

More information

Regimes of Thermocline Scaling: The Interaction of Wind Stress and Surface Buoyancy

Regimes of Thermocline Scaling: The Interaction of Wind Stress and Surface Buoyancy AUGUST 27 C E S S I 29 Regimes of Thermocline Scaling: The Interaction of Wind Stress and Surface Buoyancy PAOLA CESSI Scripps Institution of Oceanography, University of California, San Diego, La Jolla,

More information

Basic Ocean Current Systems. Basic Ocean Structures. The State of Oceans. Lecture 6: The Ocean General Circulation and Climate. Temperature.

Basic Ocean Current Systems. Basic Ocean Structures. The State of Oceans. Lecture 6: The Ocean General Circulation and Climate. Temperature. Lecture 6: The Ocean General Circulation and Climate Basic Ocean Current Systems Upper Ocean surface circulation Basic Structures Mixed Layer Wind-Driven Circulation Theories Thermohaline Circulation Ocean

More information

2/15/2012. Earth System Science II EES 717 Spring 2012

2/15/2012. Earth System Science II EES 717 Spring 2012 Earth System Science II EES 717 Spring 2012 1. The Earth Interior Mantle Convection & Plate Tectonics 2. The Atmosphere - Climate Models, Climate Change and Feedback Processes 3. The Oceans Circulation;

More information

Evolution of the Eddy Field in the Arctic Ocean s Canada Basin,

Evolution of the Eddy Field in the Arctic Ocean s Canada Basin, GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:10.1029/, Evolution of the Eddy Field in the Arctic Ocean s Canada Basin, 2005 2015 Mengnan Zhao 1, Mary-Louise Timmermans 1, Sylvia Cole 2, Richard Krishfield

More information

Presentation A simple model of multiple climate regimes

Presentation A simple model of multiple climate regimes A simple model of multiple climate regimes Kerry Emanuel March 21, 2012 Overview 1. Introduction 2. Essential Climate Feedback Processes Ocean s Thermohaline Circulation, Large-Scale Circulation of the

More information

Climate impact on interannual variability of Weddell Sea Bottom Water

Climate impact on interannual variability of Weddell Sea Bottom Water Climate impact on interannual variability of Weddell Sea Bottom Water Darren C. McKee, LDEO/CU Connecting the Tropics to the Polar Regions Mini-conference at LDEO 06/02/14 Outline Overview of Weddell

More information

Answer to reviewers The answers to the reviewers comments are indicated in italics

Answer to reviewers The answers to the reviewers comments are indicated in italics Answer to reviewers The answers to the reviewers comments are indicated in italics Reviewer 1: General comments The manuscript by Bourgain et al. reports on several cruises from the Canada Basin from the

More information

SIO 210 Final Exam Dec Name:

SIO 210 Final Exam Dec Name: SIO 210 Final Exam Dec 8 2006 Name: Turn off all phones, pagers, etc... You may use a calculator. This exam is 9 pages with 19 questions. Please mark initials or name on each page. Check which you prefer

More information

On the Wind Power Input and Eddy Residence Time

On the Wind Power Input and Eddy Residence Time Hamburg Workshop 215 On the Wind Power Input and Eddy Residence Time Xiaoming Zhai Centre for Ocean and Atmospheric Sciences School of Environmental Sciences, University of East Anglia With David Marshall,

More information

Arctic Ocean-Sea Ice-Climate Interactions

Arctic Ocean-Sea Ice-Climate Interactions Arctic Ocean-Sea Ice-Climate Interactions Sea Ice Ice extent waxes and wanes with the seasons. Ice extent is at a maximum in March (typically 14 million square km, about twice the area of the contiguous

More information

The impacts of stochastic noise on climate models

The impacts of stochastic noise on climate models The impacts of stochastic noise on climate models Paul Williams Department of Meteorology, University of Reading, UK The impacts of στοχαστικός noise on climate models Paul Williams Department of Meteorology,

More information

Comments on Eddies, Mixing and the Large-Scale Ocean Circulation

Comments on Eddies, Mixing and the Large-Scale Ocean Circulation Comments on Eddies, Mixing and the Large-Scale Ocean Circulation John Marshall Massachusetts Institute of Technology Abstract. Some recent laboratory and numerical studies of idealized ocean gyres and

More information

DEAPS Activity 3 Weather systems and the general circulation of the atmosphere

DEAPS Activity 3 Weather systems and the general circulation of the atmosphere DEAPS Activity 3 Weather systems and the general circulation of the atmosphere Lodovica Illari 1 Introduction What is responsible for stormy weather? What causes relatively warm temperatures one day and

More information

How de-coupling cloud radiative feedbacks strengthens the AMOC

How de-coupling cloud radiative feedbacks strengthens the AMOC How de-coupling cloud radiative feedbacks strengthens the AMOC Elizabeth Maroon1, Eleanor Middlemas2, Jennifer Kay1, Brian Medeiros3 1CIRES, University of Colorado Boulder, 2University of Miami, 3National

More information

Boundary Currents and Watermass Transformation in Marginal Seas*

Boundary Currents and Watermass Transformation in Marginal Seas* MAY 04 SPALL 1197 Boundary Currents and Watermass Transformation in Marginal Seas* MICHAEL A. SPALL Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

More information

Arctic climate projections and progress towards a new CCSM. Marika Holland NCAR

Arctic climate projections and progress towards a new CCSM. Marika Holland NCAR Arctic climate projections and progress towards a new CCSM Marika Holland NCAR The Arctic is changing! Loss of Sept Arctic Sea Ice 2002 Loss of about 8% per decade Or >20% since 1979 (Courtesy I. Rigor

More information

CANER SERTKAN ( ) WIND DRIVEN OCEAN CIRCULATION

CANER SERTKAN ( ) WIND DRIVEN OCEAN CIRCULATION CANER SERTKAN (517101005) WIND DRIVEN OCEAN CIRCULATION INTRODUCTION The waters of the ocean are continually moving in powerful currents like the Gulf Stream, in large gyres, in feautures visible from

More information

Transformed Eulerian-Mean Theory. Part II: Potential Vorticity Homogenization and the Equilibrium of a Wind- and Buoyancy-Driven Zonal Flow

Transformed Eulerian-Mean Theory. Part II: Potential Vorticity Homogenization and the Equilibrium of a Wind- and Buoyancy-Driven Zonal Flow FEBRUARY 2005 K U O E T A L. 175 Transformed Eulerian-Mean Theory. Part II: Potential Vorticity Homogenization and the Equilibrium of a Wind- and Buoyancy-Driven Zonal Flow ALLEN KUO, R. ALAN PLUMB, AND

More information

Deep-Water Flow over the Lomonosov Ridge in the Arctic Ocean

Deep-Water Flow over the Lomonosov Ridge in the Arctic Ocean AUGUST 2005 N O T E S A N D C O R R E S P O N D E N C E 1489 Deep-Water Flow over the Lomonosov Ridge in the Arctic Ocean M.-L. TIMMERMANS, P. WINSOR, AND J. A. WHITEHEAD Woods Hole Oceanographic Institution,

More information

Generation and Separation of Mesoscale Eddies from Surface Ocean Fronts

Generation and Separation of Mesoscale Eddies from Surface Ocean Fronts DECEMBER 2013 M A N U C H A R Y A N A N D T I M M E R M A N S 2545 Generation and Separation of Mesoscale Eddies from Surface Ocean Fronts GEORGY E. MANUCHARYAN AND MARY-LOUISE TIMMERMANS Department of

More information

Large-Scale Circulation with Locally Enhanced Vertical Mixing*

Large-Scale Circulation with Locally Enhanced Vertical Mixing* 712 JOURNAL OF PHYSICAL OCEANOGRAPHY Large-Scale Circulation with Locally Enhanced Vertical Mixing* R. M. SAMELSON Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (Manuscript received 15

More information

PUBLICATIONS. Journal of Geophysical Research: Oceans. An examination of double-diffusive processes in a mesoscale eddy in the Arctic Ocean

PUBLICATIONS. Journal of Geophysical Research: Oceans. An examination of double-diffusive processes in a mesoscale eddy in the Arctic Ocean PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Special Section: Forum for Arctic Modeling and Observing Synthesis (FAMOS): Results and Synthesis of Coordinated Experiments Key Points:

More information

Can Eddies Set Ocean Stratification?

Can Eddies Set Ocean Stratification? 26 JOURNAL OF PHYSICAL OCEANOGRAPHY Can Eddies Set Ocean Stratification? JOHN MARSHALL, HELEN JONES, RICHARD KARSTEN, AND RICHARD WARDLE Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts

More information

Upper ocean control on the solubility pump of CO 2

Upper ocean control on the solubility pump of CO 2 Journal of Marine Research, 61, 465 489, 2003 Upper ocean control on the solubility pump of CO 2 by Takamitsu Ito 1 and Michael J. Follows 1 ABSTRACT We develop and test a theory for the relationship of

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Problem

More information

Changes in the Ventilation of the Southern Oceans, and links to Stratospheric Ozone Depletion

Changes in the Ventilation of the Southern Oceans, and links to Stratospheric Ozone Depletion Changes in the Ventilation of the Southern Oceans, and links to Stratospheric Ozone Depletion Darryn W. Waugh Dept of Earth and Planetary Sciences, Johns Hopkins University Collaborators: Francois Primeau,

More information

Jacob Schewe Potsdam Institute for Climate Impact Research. Ocean circulation under climate change: Examples of qualitative changes

Jacob Schewe Potsdam Institute for Climate Impact Research. Ocean circulation under climate change: Examples of qualitative changes Jacob Schewe Potsdam Institute for Climate Impact Research Ocean circulation under climate change: Examples of qualitative changes Acknowledgments Anders Levermann Potsdam Institute for Climate Impact

More information

Estimating Eddy Stresses by Fitting Dynamics to Observations Using a Residual-Mean Ocean Circulation Model and Its Adjoint

Estimating Eddy Stresses by Fitting Dynamics to Observations Using a Residual-Mean Ocean Circulation Model and Its Adjoint OCTOBER 2005 F E R R E I R A E T A L. 1891 Estimating Eddy Stresses by Fitting Dynamics to Observations Using a Residual-Mean Ocean Circulation Model and Its Adjoint DAVID FERREIRA, JOHN MARSHALL, AND

More information

Traveling planetary-scale Rossby waves in the winter stratosphere: The role of tropospheric baroclinic instability

Traveling planetary-scale Rossby waves in the winter stratosphere: The role of tropospheric baroclinic instability GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl053684, 2012 Traveling planetary-scale Rossby waves in the winter stratosphere: The role of tropospheric baroclinic instability Daniela I. V. Domeisen

More information

Reduction of the usable wind work on the general circulation by forced symmetric instability

Reduction of the usable wind work on the general circulation by forced symmetric instability GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044680, 2010 Reduction of the usable wind work on the general circulation by forced symmetric instability L. N. Thomas 1 and J. R. Taylor 2 Received

More information

ACC transport sensitivity to air-sea fluxes. Matt Mazloff SIO-UCSD

ACC transport sensitivity to air-sea fluxes. Matt Mazloff SIO-UCSD ACC transport sensitivity to air-sea fluxes Matt Mazloff SIO-UCSD Southern Ocean State estimate (SOSE): Adjoint, (4d-var) method optimization non-sequential no nudging J = (obs model) 2-2 solve for IC

More information

Deep Ocean Circulation & implications for Earth s climate

Deep Ocean Circulation & implications for Earth s climate Deep Ocean Circulation & implications for Earth s climate I. Ocean Layers and circulation types 1) Ocean Layers Ocean is strongly Stratified Consists of distinct LAYERS controlled by density takes huge

More information

Vertical Fluxes of Potential Vorticity and the Structure of the Thermocline

Vertical Fluxes of Potential Vorticity and the Structure of the Thermocline 3102 JOURNAL OF PHYSICAL OCEANOGRAPHY Vertical Fluxes of Potential Vorticity and the Structure of the Thermocline DAVID P. MARSHALL Department of Meteorology, University of Reading, Reading, United Kingdom

More information

Laboratory experiments on the effect of baroclinic eddies on a dense plume in a rotating stratified fluid

Laboratory experiments on the effect of baroclinic eddies on a dense plume in a rotating stratified fluid Laboratory experiments on the effect of baroclinic eddies on a dense plume in a rotating stratified fluid Danielle Wain 1 Introduction Eighteen degree water (EDW) is a subtropical mode water of the North

More information

SIO 210 Final examination Wednesday, December 12, :30-2:30 Eckart 227 Name:

SIO 210 Final examination Wednesday, December 12, :30-2:30 Eckart 227 Name: SIO 210 Final examination Wednesday, December 12, 2018 11:30-2:30 Eckart 227 Name: Please put your initials or name on each page, especially if you pull pages apart. Turn off all phones, ipods, etc. and

More information

Eddy-Memory mode of multi-decadal variability in residual-mean ocean circulations with application to the Beaufort Gyre

Eddy-Memory mode of multi-decadal variability in residual-mean ocean circulations with application to the Beaufort Gyre Generated using the official AMS LATEX template two-column layout. FOR AUTHOR USE ONLY, NOT FOR SUBMISSION! J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y Eddy-Memory mode of multi-decadal variability

More information

Mean Climate and Variability of the Atmosphere and Ocean on an Aquaplanet

Mean Climate and Variability of the Atmosphere and Ocean on an Aquaplanet 4270 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 64 Mean Climate and Variability of the Atmosphere and Ocean on an Aquaplanet JOHN MARSHALL, DAVID FERREIRA, J.-M. CAMPIN, AND DANIEL

More information

The Beaufort Gyre Fresh Water Reservoir: state and variability from observations

The Beaufort Gyre Fresh Water Reservoir: state and variability from observations The Beaufort Gyre Fresh Water Reservoir: state and variability from observations Andrey Proshutinsky 1, Richard Krishfield 1, Mary-Louise Timmermans 1, John Toole 1, Eddy Carmack 2, Fiona McLaughlin 2,

More information

Atmospheric conditions associated with oceanic convection in the south-east Labrador Sea

Atmospheric conditions associated with oceanic convection in the south-east Labrador Sea Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L06601, doi:10.1029/2007gl032971, 2008 Atmospheric conditions associated with oceanic convection in the south-east Labrador Sea David

More information

Ocean and Climate I.

Ocean and Climate I. Ocean and Climate I http://www.gerhardriessbeck.de/ Physical Characteristics of the Ocean Surface area: 3.61 10 14 m 2 Mean depth: 3.7 km Ocean volume: 3.2 10 17 m 3 Mean density: 1.035 10 3 kg/m 3 Ocean

More information

Stratification of the Ocean Boundary Surface Layer - year-long observations with gliders

Stratification of the Ocean Boundary Surface Layer - year-long observations with gliders Stratification of the Ocean Boundary Surface Layer - year-long observations with gliders Ayah Lazar 1,2 Andrew Thompson 2 Gillian Damerell 3 Karen Heywood 3 Christian Buckingham 4 Alberto Naveira Garabato

More information

Arctic oceanography; the path of North Atlantic Deep Water

Arctic oceanography; the path of North Atlantic Deep Water Chapter 7 Arctic oceanography; the path of North Atlantic Deep Water The importance of the Southern Ocean for the formation of the water masses of the world ocean poses the question whether similar conditions

More information

Chapter 7: Thermodynamics

Chapter 7: Thermodynamics Chapter 7: Thermodynamics 7.1 Sea surface heat budget In Chapter 5, we have introduced the oceanic planetary boundary layer-the Ekman layer. The observed T and S in this layer are almost uniform vertically,

More information