Energy and Power (and explosions!)

Size: px
Start display at page:

Download "Energy and Power (and explosions!)"

Transcription

1 Energy and Power (and explosions!) It s hard to say what energy is: we know it when we see it. Feynmann: Ul8mately, energy is the ability to exert a force over some distance. Energy is a conserved quan8ty. This does not sound right to most people. We speak of using energy (like using it up). Actually, we just change its form from useful kinds to less useful kinds. Energy of mo8on, gravita8onal poten8al energy, electrical poten8al energy, many types of chemical energy, nuclear energy are usually very useful. Heat can olen be less useful. (Unless something is out of equilibrium.) One way people think of the end of the universe is when all the useful energy is converted to uniform heat. This may not even be correct, but if it is, it is very far in the future. Do not copy this down. It is online at hop://

2 Units Energy can be measured, and there are many different units. Physicists use the joule named aler James PrescoO Joule. Joule was amazing! It s worth reading about him just to see how such brilliant people change the world.

3 James Prescott Joule FRS (24 December October 1889) was an English physicist and brewer. Joule studied the nature of heat, and discovered its relationship to mechanical work (see energy). This led to the theory of conservation of energy, which led to the development of the first law of thermodynamics. The SI derived unit of energy, the joule, is named after him. He worked with Lord Kelvin to develop the absolute scale of temperature, made observations on magnetostriction, and found the relationship between the current through a resistance and the heat dissipated, now called Joule's law. [Wikipedia]

4 Units Since energy represents the ability to exert a force over some distance, its units must be the same as force 8mes distance. Many engineers use foot-pounds for the units of energy. Similarly, a joule is one newton-meter. They are close. One foot-pound is only slightly bigger than a joule. 1 L-lb = J. Just call it even, or 1.4 if you want to be closer. Physicists olen deal with 8ny liole atoms, and need a unit of energy that is very small. We use the electron-volt for that. One electron-volt is approximately the strength of the bonds between atoms in normal crystals. 1 J = 6,242,000,000,000,000,000 ev. (That s 6 quin8llion.)

5 calories calories are a unit of energy usually used to measure heat. A calorie is the amount of heat it takes to heat one gram of water by one degree C. Note, there are 5 grams of water in one teaspoon, so it would take 5 calories to heat one teaspoon of water by 1 degree C. Joule established the equivalence and found the conversion from newtonmeters to calories! (He was the son of a brewer, aler all.) One calorie = joules. Just call it 4.2, or even 4, for rough calcula8ons.

6 calories vs Calories In thermodynamics, one calorie (lower case) is the heat to raise one gram of water by one degree C. Unfortunately, the chemical energy in food is measured in units called Calories. This is unfortunate, because the only apparent difference is the capital C, but the meaning is VERY different. 1 Calorie = 1000 calories Some8mes, food-calories are called kcal (kilocalories). This is a great idea! 1 Calorie (kcal) = 4184 J. (Call it 4000.) Engineers olen use something called the BTU (Bri8sh Thermal Unit). 1 Calorie (kcal) = BTU. (Call it 4.) So, 1 BTU 1000 J.

7 There is a LOT of energy in food! One half ounce of pecans has 100 kcal of energy. (100 food Calories if you like.) That s only about 5 pecans! (10 halves) 1 calorie will raise the temperature of 1 gram of water by 1 degree C. So, 1 kcal (Cal) will raise the temperature of 1000 grams (1 liter) of water by 1 degree C. So 5 pecans has enough energy to raise the temperature of 1 kg of water by 100 degrees C! You could burn half an ounce of vegetable oil and release the same amount of energy, but you would never capture it well enough to heat a quart of water by 100 degrees! Your body is incredibly efficient at capturing the chemical energy in food.

8 A useful unit of energy The jelly donut is a very useful unit of energy: 1 jelly donut = 250 kcal = 1 MJ This is the energy needed to accelerate a car (1 ton) to 100 mph. It is the energy needed to lil a 100 kg man to a height of 1 km. It is the energy needed to run a 100 wao light bulb for 3 hours

9 Comparison of energy sources

10 Power Just as velocity is the rate of change of posi8on (meters per second), power is the rate of change of energy (joules per second). Of course, it depends on where the energy is going to or coming from, but power is always a measure of energy per 8me. 1 wao = 1 joule per second. This is very important. You would never confuse miles per hour with miles, so don t confuse power and energy. Meaningless: How many miles per hour is it to Houston? Just as meaningless: How many waos did you burn on the treadmill?

11 Explosions Ques8on: If TNT has less energy per gram than chocolate chip cookies, or vegetable oil, why is its explosion so more destruc8ve? Answer: Because the energy is released so much quicker. The power is far higher. Consider 1 gram of alcohol burned in 10 seconds. P = (7 Calories)/(10 seconds) = (30 k-joules)/(10 seconds) = 3 kilowaos Consider 1 gram of TNT detonated in 1 microsecond P = (0.7 Calories)( seconds) = 3 gigawaos! (for a very short 8me)

12 DetonaIon vs DelflgraIon Detona8on: Supersonic wave (faster than the signals can be transmioed into the explosive ahead - explosive has no idea its coming). Propagates through shock compression of the explosive. Shock wave heats the explosive, ignites the chemical reac8ons, large energy release. Energy pushes the shock wave on into next bit of explosive. Examples: High explosives. Deflagra8on: Subsonic wave (slower than signals move into the explosive ahead - explosive knows the wave is coming and can adjust to it). Propagates by heat conduc8on. Mass diffusion from the hot burnt products of the chemical reac8on and the cold explosive ahead. Examples: gasoline engines, gunpowder. hops://

13 kilo wal hours Since one wao is one joule per second, you can imagine that one joule is the amount of energy expended when you exert one wao of power for one second. 1 J = 1 Ws (1 joule is one wao-second.) This is like saying 1 mile is 1 mile-per-hour for one hour. Similarly, 3600 J = 1 Wh (one wao-hour) Similarly, 3,600,000 = 1 kwh (one kilowao-hour) KilowaOs are units of power (energy per 8me) KilowaO-hours are units of energy (power 8mes 8me)

14

15 Burn Calories, Not Kilowatts Take the stairs!

16 Burn calories, not kilowatts.

17 People use language loosely. ScienIsts must be precise. This can be a dangerous mixture. For example, consider some interdisciplinary research between an economist, a philosopher, and a physicist. The economist says: 8me is money. We write down T = M The philosopher says: knowledge is power. We write down K = P The physicists says: power is work over 8me. We write down P = W/T We can eliminate T by subs8tu8ng M and get: We can eliminate P by subs8tu8ng K and get: P = W/M K = W/M Now we can flip the equa8on and get: M = W/K That is, for any finite amount of work, money tends to infinity as knowledge tends to zero. J

18 Other units of power A horsepower is a very common unit. Surprisingly, horsepower was introduced by James WaO who the wao is named aler. He found that a horse could turn a mill wheel 144 8mes in an hour. This worked out to about 540 foot-lbs per hour. So, one horsepower is 540 foot-lbs per hour. Other conversion: 1 hp = 746 waos. It s easy to round this to 750, or even 1000.

19 Comparison of power scales

20 Electric cars Typical energy efficiency is a liole beoer than 4 miles per kwh. Note that this is miles per kwh instead of miles per gallon. My car gets about 4.3 miles per kwh, but it depends on the wind, air condi8oning, driving style, etc. Compare: gasoline 40 miles gallon versus electric 4 miles kwh Recall that gasoline was about 10 calories per gram. Actually, using precise values this works out to 127 MJ/gallon. Remember 1 kwh is 3,600,000 joules, so gasoline contains 35.3 kwh/gallon. So: 4 miles kwh x 35.3 kwh gallon =140 miles gallon (equivalent)

21 First thing we note: Electric motors are FAR more efficient than gasoline engines! (Somewhere between a factor of three and a factor of four.)

22 Second note: But wait! There is a cheat here. You always have to watch for the cheat. That electricity did not get magically stored into the car baoery. The process of charging a rechargeable baoery is not perfectly efficient. For my car, it is about 80% efficient. So for every one kwh my car baoery supplies to the motors, I had to purchase 1.25 kwh from the electric company. So 140 miles per gallon (equivalent) for the electric car is really more like 115 (that is, 140/1.25). Gasoline does not work that way. You don t lose much gas between the nozzle at the pump and your engine. When you take it all into account, figure a car that gets 40 mpg with gasoline would get about 115 mpg (equivalent) from electric motors.

23 Third note: Recall that one gallon of gas had 34 kwh of energy. But in an electric car, you have to pay for 1.25 kwh for every kwh you use. So, let s compare the price of one gallon of gasoline to 43 kwh of electricity. Roughly, one gallon of gasoline is about $2.50, and 43 kwh of electricity is about $4.70. (YMMV.) So, gasoline is WAY cheaper than electricity. But is it enough to make up for the efficiency of electric motors? Gasoline: Electric: 4 40 miles gallon x1gallon $2.5 miles 1.25 kwh x1 kwh $0.11 =16 miles $ = 29 miles $ Electric cars can be cheaper at todays prices

24 Diet and Exercise Here is a useful conversion: 50 waos 1000 kcal/day If you eat 2000 kcal each day (as I do) then on the average your body consumes 100 waos. This includes exercise and rest. It s the total work you do plus the heat you generate. (You also lose energy by radia8ng (that means glowing) in the infrared, but this is very small.) How much energy do you use in exercise? Remember, one horsepower was 750 waos. Only a highly trained athlete can come close to this. For example, a Tour de France rider will average waos for a four-hour stage.

25 Be careful if you work out in a gym!

26 This can t be right? 565 kcal in 61:45 is 637 waos. That s 0.85 hp! For more than an hour! On the ellip8cal, I can make it say 800 kcal in an hour. That s 930 waos! That s 1.2 hp! For more than an hour! I m a 60 year-old man. I cannot exert 0.8 hp for an hour, much less 1.2 hp. If my body averages 2000 calories in a day, there is no way I can burn 800 in a single hour. Conclusion: the machines are lying! (Why?) Always be willing to ques8on what you are told. Some8mes you won t care, or some8mes you won t be able to tell. Be skep8cal!

27 Recap Force causes mass to accelerate 1 pound 4 newtons (actually 4.45) Energy means a force can act over a distance 1 joule = 1 newton-meter 1 foot-pound 1 kcal 4000 joules (actually, 4184) 1 kwh (kilo-wao-hour) = 3,600,000 joules 1000 kcal Power is rate energy changes or moves 1 wao = 1 joule per second 1000 waos = 1 kwh per hour 1 horsepower 750 waos

Physics of Energy. Premise of this course in order to come up with such a solution, we need to understand how energy works?

Physics of Energy. Premise of this course in order to come up with such a solution, we need to understand how energy works? Physics of Energy As we discussed. Our society needs to find a sustainable energy solution that Fulfills global energy needs in the long term. Doesn t degrade the environment. Premise of this course in

More information

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER Objectives Explain the relationship between power and work. Explain the relationship between power, force, and speed for an object in translational motion. Calculate a device s efficiency in terms of the

More information

The Laws of Thermodynamics and Information and Economics

The Laws of Thermodynamics and Information and Economics The Laws of Thermodynamics and Information and Economics By: William Antonio Boyle, PhD Prince George s Community College Largo, Maryland, USA 17 October 2017 Thermodynamics Began as the study of steam

More information

Chapter 7: Work, Power & Energy

Chapter 7: Work, Power & Energy Chapter 7: Work, Power & Energy WORK My family owned at one point a Paletria in Tucson, AZ. As many already know, it is very hot in Tucson (usually have 100+ days over 100 o F or 40 o C) and therefore,

More information

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson I August 29, 2017

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson I August 29, 2017 Conceptual Physics Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson I August 29, 2017 https://arxiv.org/abs/1711.07445 L. A. Anchordoqui (CUNY)

More information

Equation Sheet for Physics 103 Midterm 1 W = F D. E pot = M g h. E kin = _ M v 2

Equation Sheet for Physics 103 Midterm 1 W = F D. E pot = M g h. E kin = _ M v 2 Equation Sheet for Physics 103 Midterm 1 Efficiency = Useful Energy Out Total Energy In Efficiency F = M a F = M g s = D t Work Eff = Work out in G M1 M F = 2 D W = F D E pot = M g h E kin = _ M v 2 2

More information

Power. Power is the rate at which energy is transformed from one type to another: Average power: Power is a scalar quantity. Unit:

Power. Power is the rate at which energy is transformed from one type to another: Average power: Power is a scalar quantity. Unit: Power Power is the rate at which energy is transformed from one type to another: Average power: Power is a scalar quantity. Unit: Alternative expression for power: if F is parallel to Δx. Example problem:

More information

Physics Energy On This World and Elsewhere - Fall 2013 Problem Set #2 with solutions

Physics Energy On This World and Elsewhere - Fall 2013 Problem Set #2 with solutions Problem Set #2 with solutions When doing unit conversions, for full credit, you must explicitly show how units cancel. Also, you may need to look up certain equivalence relations on the internet. Show

More information

The SI unit for Energy is the joule, usually abbreviated J. One joule is equal to one kilogram meter squared per second squared:

The SI unit for Energy is the joule, usually abbreviated J. One joule is equal to one kilogram meter squared per second squared: Chapter 2 Energy Energy is an extremely loaded term. It is used in everyday parlance to mean a number of different things, many of which bear at most a passing resemblance to the term as used in physical

More information

October 5 A. Bell Work B. Have 4.2 Notes I Out for a stamp C. Today we will work on 4.2 Notes II D. Homework: 4.2 Notes II (due tomorrow end of

October 5 A. Bell Work B. Have 4.2 Notes I Out for a stamp C. Today we will work on 4.2 Notes II D. Homework: 4.2 Notes II (due tomorrow end of October 5 A. Bell Work B. Have 4.2 Notes I Out for a stamp C. Today we will work on 4.2 Notes II D. Homework: 4.2 Notes II (due tomorrow end of class) Read 4.3 and take notes (due Monday) 4.2 Key Concept:

More information

Energy and the Environment

Energy and the Environment Energy and the Environment Energy physics definition the capacity to do work and conjunction used to connect grammatically coordinate words, phrases, or clauses the Environment the aggregate of surrounding

More information

Energy Background Energy Forms and Transformations Integrated Science 4 Honors Name: Per:

Energy Background Energy Forms and Transformations Integrated Science 4 Honors Name: Per: Energy Background Energy Forms and Transformations Integrated Science 4 Honors Name: Per: Humans use energy for a variety of purposes, some that are necessary and some that are not. To address the questions

More information

PE = mgh. Potential energy. What is g here? Let s pick up where we left off last time..the topic was gravitational potential energy

PE = mgh. Potential energy. What is g here? Let s pick up where we left off last time..the topic was gravitational potential energy Let s pick up where we left off last time..the topic was gravitational potential energy Now, let s talk about a second form of energy Potential energy Imagine you are standing on top of half dome in Yosemite

More information

Simple machines. ( Fxd) input. = (Fxd) output

Simple machines. ( Fxd) input. = (Fxd) output Announcements l LON-CAPA #5 and Mastering Physics Chapters 15 and 18 due Tuesday Feb. 18 l Average for exam 1 is 28/40 l The course will be graded on a curve with the average about 3.0, so if you received

More information

Materials and Energy Balance in Metallurgical Processes. Prof. S. C. Koria. Department of Materials Science and Engineering

Materials and Energy Balance in Metallurgical Processes. Prof. S. C. Koria. Department of Materials Science and Engineering Materials and Energy Balance in Metallurgical Processes Prof. S. C. Koria Department of Materials Science and Engineering Indian Institute of Technology, Kanpur Module No. # 01 Lecture No. # 02 Measurement

More information

Chapter 2: Approaches to Problem Solving Lecture notes Math 1030 Section B

Chapter 2: Approaches to Problem Solving Lecture notes Math 1030 Section B Section B.1: Standardized Unit Systems: U.S. and Metric Different system of standardized units There are different systems of standardized units: the international metric system, called SI (from the French

More information

An Introduction to Electricity and Circuits

An Introduction to Electricity and Circuits An Introduction to Electricity and Circuits Materials prepared by Daniel Duke 4 th Sept 2013. This document may be copied and edited freely with attribution. This course has been designed to introduce

More information

Chemistry 104 Chapter Two PowerPoint Notes

Chemistry 104 Chapter Two PowerPoint Notes Measurements in Chemistry Chapter 2 Physical Quantities Measurable physical properties such as height, volume, and temperature are called Physical quantity. A number and a unit of defined size is required

More information

Now, consider the actual molecules reacting with each other:

Now, consider the actual molecules reacting with each other: Lecture Notes: Stoichiometry I. What is stoichiometry? a. Technically, stoichiometry is the measurement of chemical quantities. b. However, in this course stoichiometry will usually refer to the use of

More information

Ch06. Energy. Thermochemistry, understanding energy, heat & work. version 1.5

Ch06. Energy. Thermochemistry, understanding energy, heat & work. version 1.5 Ch06 Energy Thermochemistry, understanding energy, heat & work. version 1.5 Nick DeMello, PhD. 2007-2016 Ch06 Accounting for Energy Energy Definitions Classifications Units Kinetic, Potential, Thermal

More information

Physics 115 Future Physics Midterm Review Exam will be closed book; no calculators; no computers.

Physics 115 Future Physics Midterm Review Exam will be closed book; no calculators; no computers. Physics 115 Future Physics Midterm Review 2016 Exam will be closed book; no calculators; no computers. You can bring a 3 x 5 index card with whatever notes and equations you want written on ONE SIDE ONLY.

More information

Chapter 5: Thermochemistry. Problems: , , 5.100, 5.106, 5.108, , 5.121, 5.126

Chapter 5: Thermochemistry. Problems: , , 5.100, 5.106, 5.108, , 5.121, 5.126 Chapter 5: Thermochemistry Problems: 5.1-5.95, 5.97-98, 5.100, 5.106, 5.108, 5.118-5.119, 5.121, 5.126 Energy: Basic Concepts and Definitions energy: capacity to do work or to produce heat thermodynamics:

More information

Motion. Ifitis60milestoRichmondandyouaretravelingat30miles/hour, itwilltake2hourstogetthere. Tobecorrect,speedisrelative. Ifyou. time.

Motion. Ifitis60milestoRichmondandyouaretravelingat30miles/hour, itwilltake2hourstogetthere. Tobecorrect,speedisrelative. Ifyou. time. Motion Motion is all around us. How something moves is probably the first thing we notice about some process. Quantifying motion is the were we learn how objects fall and thus gravity. Even our understanding

More information

To determine the work and power required to walk and then run through one floor stairs. To determine the energy burned during that exercise

To determine the work and power required to walk and then run through one floor stairs. To determine the energy burned during that exercise Essentials of Physics: WORK AND POWER Purpose To determine the work and power required to walk and then run through one floor stairs. To determine the energy burned during that exercise Theory In this

More information

Physical Science Chapter 5 Cont2. Temperature & Heat

Physical Science Chapter 5 Cont2. Temperature & Heat Physical Science Chapter 5 Cont2 Temperature & Heat What are we going to study? Temperature Heat Specific Heat and Latent Heat Heat Transfer Phases of Matter The Kinetic Theory of Gases Thermodynamics

More information

Start Part 2. Tro's "Introductory Chemistry", Chapter 3

Start Part 2. Tro's Introductory Chemistry, Chapter 3 Start Part 2 1 Separation of Mixtures Separate mixtures based on different physical properties of the components. Physical change. Different Physical Property Boiling point State of matter (solid/liquid/gas)

More information

Circuit Playground: J is for Joule

Circuit Playground: J is for Joule Circuit Playground: J is for Joule Created by Collin Cunningham Last updated on 2016-08-26 08:29:05 PM UTC Guide Contents Guide Contents Video Transcript Learn More How to calculate Joules James Prescott

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

Watch:

Watch: Physics 106 Everyday Physics Fall 2013 Energy and Power Prelab Media links are provided in each section. If the link doesn t work, copy and paste URL into your browser window. Be patient with the ads you

More information

Lecture 9: Kinetic Energy and Work 1

Lecture 9: Kinetic Energy and Work 1 Lecture 9: Kinetic Energy and Work 1 CHAPTER 6: Work and Kinetic Energy The concept of WORK has a very precise definition in physics. Work is a physical quantity produced when a Force moves an object through

More information

Conservation of Energy 1 of 8

Conservation of Energy 1 of 8 Conservation of Energy 1 of 8 Conservation of Energy The important conclusions of this chapter are: If a system is isolated and there is no friction (no non-conservative forces), then KE + PE = constant

More information

Chapter 1 (Part 2) Measurements in Chemistry 1.6 Physical Quantities

Chapter 1 (Part 2) Measurements in Chemistry 1.6 Physical Quantities Chapter 1 (Part 2) Measurements in Chemistry 1.6 Physical Quantities This is a property that can by physically measured. It consists of a number and a unit of measure. (e.g. ) Units Units are very important.

More information

Energy in Chemical Reaction Reaction Rates Chemical Equilibrium. Chapter Outline. Energy 6/29/2013

Energy in Chemical Reaction Reaction Rates Chemical Equilibrium. Chapter Outline. Energy 6/29/2013 Energy in Chemical Reaction Reaction Rates Chemical Equilibrium Chapter Outline Energy change in chemical reactions Bond dissociation energy Reaction rate Chemical equilibrium, Le Châtelier s principle

More information

Ch. 3 Notes---Scientific Measurement

Ch. 3 Notes---Scientific Measurement Ch. 3 Notes---Scientific Measurement Qualitative vs. Quantitative Qualitative measurements give results in a descriptive nonnumeric form. (The result of a measurement is an describing the object.) *Examples:,,

More information

Homework Assignment Scientific Notation, Unit Conversions, and Radiation Units IEER Workshop 2007

Homework Assignment Scientific Notation, Unit Conversions, and Radiation Units IEER Workshop 2007 Homework Assignment Scientific Notation, Unit Conversions, and Radiation Units IEER Workshop 2007 This is an optional exercise that will get you on your technical toes for the IEER workshop. IEER board

More information

BASIC MATHEMATICAL CONCEPTS

BASIC MATHEMATICAL CONCEPTS CHAPTER 1 BASIC MATHEMATICAL CONCEPTS Introduction Science and Technology rely on accurate measurements and calculations. In order to acquire mastery in mathematical operations, it is important to have

More information

Gay E. Canough Solar Math. PV Installer s Class: Units and Math

Gay E. Canough Solar Math. PV Installer s Class: Units and Math Gay E. Canough 1.1--Solar Math October 2012 PV Installer s Class: Units and Math 1 Units Electricity Fluid KW, a unit of power Horsepower, a unit of power KWh, a unit of energy BTU, a unit of energy Voltage

More information

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219 Previously Remember From Page 218 Forces are pushes and pulls that can move or squash objects. An object s speed is the distance it travels every second; if its speed increases, it is accelerating. Unit

More information

Lecture 3: Electrical Power and Energy

Lecture 3: Electrical Power and Energy Lecture 3: Electrical Power and Energy Recall from Lecture 2 E (V) I R E Voltage Similar to water pressure Unit: Volts (V) I Current Similar to water flow Unit: Amperes (A) R Resistance Similar to water

More information

Energy. On the ground, the ball has no useful poten:al or kine:c energy. It cannot do anything.

Energy. On the ground, the ball has no useful poten:al or kine:c energy. It cannot do anything. Energy What is energy? It can take many forms but a good general defini:on is that energy is the capacity to perform work or transfer heat. In other words, the more energy something has, the more things

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

ENERGY. Unit 12: IPC

ENERGY. Unit 12: IPC ENERGY Unit 12: IPC WHAT IS ENERGY? Energy- is the ability to do work. Energy is the ability to cause a change. Energy can change an object s: motion shape temperature color THERMAL internal motion of

More information

Chapter 1 (Part 2) Measurements in Chemistry

Chapter 1 (Part 2) Measurements in Chemistry Chapter 1 (Part 2) Measurements in Chemistry 1.7 Physical Quantities English Units Those of us who were raised in the US are very accustomed to these. Elsewhere in the world, these are very confusing.

More information

F=ma. Exam 1. Today. Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 20th.

F=ma. Exam 1. Today. Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 20th. Today Exam 1 Announcements: The average on the first exam was 31/40 Exam extra credit is due by 8:00 am Friday February 0th. F=ma Electric Force Work, Energy and Power Number 60 50 40 30 0 10 0 17 18 0

More information

Energy and Work. What is energy? What is work? What is power? What is efficiency? Unit 02 Energy Slide 1

Energy and Work. What is energy? What is work? What is power? What is efficiency? Unit 02 Energy Slide 1 Energy and Work What is energy? What is work? What is power? What is efficiency? Unit 02 Energy Slide 1 Energy and Work Energy The ability to do work Work How we chance energy from one form to another

More information

BRCC CHM 101 Class Notes Chapter 1 Page 1 of 7

BRCC CHM 101 Class Notes Chapter 1 Page 1 of 7 BRCC CHM 101 Class Notes Chapter 1 Page 1 of 7 Chemistry - the study of matter, its behavior and interactions. matter - anything that takes up space and has mass mass - the substance which makes up the

More information

Unit 5: Energy (Part 2)

Unit 5: Energy (Part 2) SUPERCHARGED SCIENCE Unit 5: Energy (Part 2) www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-15 hours, depending on how many activities you do! We covered

More information

T m / A. Table C2 Submicroscopic Masses [2] Symbol Meaning Best Value Approximate Value

T m / A. Table C2 Submicroscopic Masses [2] Symbol Meaning Best Value Approximate Value APPENDIX C USEFUL INFORMATION 1247 C USEFUL INFORMATION This appendix is broken into several tables. Table C1, Important Constants Table C2, Submicroscopic Masses Table C3, Solar System Data Table C4,

More information

The First Law of Thermodynamics *

The First Law of Thermodynamics * OpenStax-CNX module: m42232 1 The First Law of Thermodynamics * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract Dene the rst law

More information

PHYSICS. Chapter 9 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 9 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 9 Lecture RANDALL D. KNIGHT Chapter 9 Work and Kinetic Energy IN THIS CHAPTER, you will begin your study of how energy is transferred

More information

Table of Contents. Chapter: Energy. Section 1: The Nature of Energy. Section 2: Conservation of Energy

Table of Contents. Chapter: Energy. Section 1: The Nature of Energy. Section 2: Conservation of Energy Table of Contents Chapter: Energy Section 1: The Nature of Energy Section 2: 1 The Nature of Energy What is energy? Wherever you are sitting as you read this, changes are taking place lightbulbs are heating

More information

oz ounce (mass) = L = cm 3

oz ounce (mass) = L = cm 3 Memorize relationships shown in each box! NOTE: Exact quantities are specified as exact. Also, consider 1 as exact. mass (M) Common unit abbreviations (singular) 1 kg = 2.20462 lb m = 35.27392 oz L liter

More information

Agenda. Chapter 10, Problem 26. All matter is made of atoms. Atomic Structure 4/8/14. What is the structure of matter? Atomic Terminology

Agenda. Chapter 10, Problem 26. All matter is made of atoms. Atomic Structure 4/8/14. What is the structure of matter? Atomic Terminology Agenda Today: HW Quiz, Thermal physics (i.e., heat) Thursday: Finish thermal physics, atomic structure (lots of review from chemistry!) Chapter 10, Problem 26 A boy reaches out of a window and tosses a

More information

Lesson: Energetically Challenged

Lesson: Energetically Challenged Drexel-SDP GK-12 LESSON Lesson: Energetically Challenged Subject Area(s) Data Analysis & Probability, Measurement, Number & Operations, Physical Science, Problem Solving, Science and Technology Associated

More information

Engineering Units in the Process Heating Workplace How handy are they to visualize and use? Arthur Holland, Holland Technical Skills

Engineering Units in the Process Heating Workplace How handy are they to visualize and use? Arthur Holland, Holland Technical Skills Engineering Units in the Process Heating Workplace How handy are they to visualize and use? Arthur Holland, Holland Technical Skills Whether you are designing, specifying or operating a process you will

More information

Unit 4: Energy (Part 1)

Unit 4: Energy (Part 1) SUPERCHARGED SCIENCE Unit 4: Energy (Part 1) www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-15 hours, depending on how many activities you do! Energy

More information

Energy, Heat and Temperature. Introduction

Energy, Heat and Temperature. Introduction Energy, Heat and Temperature Introduction 3 basic types of energy: Potential (possibility of doing work because of composition or position) Kinetic (moving objects doing work) Radiant (energy transferred

More information

ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A

ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A PART 1: KEY TERMS AND SYMBOLS IN THERMOCHEMISTRY System and surroundings When we talk about any kind of change, such as a chemical

More information

Figure 5.1: Force is the only action that has the ability to change motion. Without force, the motion of an object cannot be started or changed.

Figure 5.1: Force is the only action that has the ability to change motion. Without force, the motion of an object cannot be started or changed. 5.1 Newton s First Law Sir Isaac Newton, an English physicist and mathematician, was one of the most brilliant scientists in history. Before the age of thirty he had made many important discoveries in

More information

Reference Guide. Science Reference 9/25/ Copyright 1996 Gary Lewis Revisions 2007 by John Pratte

Reference Guide. Science Reference 9/25/ Copyright 1996 Gary Lewis Revisions 2007 by John Pratte Reference Guide Contents...1 1. General Scientific Terminology...2 2. Types of Errors...3 3. Scientific Notation...4 4. Significant Figures...6 5. Graphs...7 6. Making Measurements...8 7. Units...9 8.

More information

Unit Conversions, Important Constants and Relationships

Unit Conversions, Important Constants and Relationships NOTE: Exact quantities are specified as exact. Consider 1 as exact! mass (M) 1 kg = 2.20462 lb m = 35.27392 oz 1 lb m = 16 oz (exact)= 453.593 g length (L) 1 m = 10 10 (exact) angstroms (Å) = 100 cm =

More information

Formulas & Constants

Formulas & Constants Formulas & Constants Net Force F = Fnet The sum of all forces acting on an object is called the net force on the object. The direction of each force must be taken into consideration when summing forces

More information

Chapter 11 Heat Engines and The Second Law of Thermodynamics

Chapter 11 Heat Engines and The Second Law of Thermodynamics Chapter 11 Heat Engines and The Second Law of Thermodynamics Heat Engines Heat engines use a temperature difference involving a high temperature (T H ) and a low temperature (T C ) to do mechanical work.

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 8: TEMPERATURE, HEAT, AND THERMODYNAMICS This lecture will help you understand: Temperature Absolute Zero Internal Energy Heat Quantity of Heat The Laws of Thermodynamics

More information

Pre Comp Review Questions 7 th Grade

Pre Comp Review Questions 7 th Grade Pre Comp Review Questions 7 th Grade Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin K Fahrenheit

More information

Rocket propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras. Lecture 09 Theory of Nozzles

Rocket propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras. Lecture 09 Theory of Nozzles Rocket propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture 09 Theory of Nozzles (Refer Slide Time: 00:14) Good morning. We will develop the

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Tools for Mathematical Modeling

Tools for Mathematical Modeling Tools for Mathematical Modeling Dan Flath November 3, 2018 1 Modeling The world is a complicated place. There are so many more details than humans can assimilate that you might wonder how we can function

More information

Thermodynamics Introduction. Created/Edited by Schweitzer

Thermodynamics Introduction. Created/Edited by Schweitzer Thermodynamics Introduction Created/Edited by Schweitzer 3-7-05 Objectives: What is energy? Why do reactions gain or lose energy? How much is entering/leaving a reaction How would I calculate this? How

More information

Joy of Science Discovering the matters and the laws of the universe

Joy of Science Discovering the matters and the laws of the universe November 12, 2012 Joy of Science Discovering the matters and the laws of the universe Key Words Universe, Energy, Quantum mechanics, Chemical reaction, Structure of matter (Earth, Evolution of life, Ecosystem,

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

Chapter 2. Measurements and Calculations

Chapter 2. Measurements and Calculations Chapter 2 Measurements and Calculations Section 2.1 Scientific Notation Measurement Quantitative observation. Has 2 parts number and unit. Number tells comparison. Unit tells scale. If something HAS a

More information

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13 Solving two-body problems with Newton s Second Law You ll get multiple equations from the x and y directions, these equations can be solved simultaneously to find unknowns 1. Draw a separate free body

More information

Length is the distance from one point to another. Length has standard units of measurement such as inches or centimeters.

Length is the distance from one point to another. Length has standard units of measurement such as inches or centimeters. Page 1 Measurements are a standard set by different cultures to address their own needs. In the United States, we use the U. S. Customary system of units. However, the metric system is used worldwide.

More information

1. Of all the topics we have covered in unit 2, what has stood out to you as something most relevant to your life? Explain why.

1. Of all the topics we have covered in unit 2, what has stood out to you as something most relevant to your life? Explain why. v1 Math 54 Practice Exam 2 Name THIS IS NOT THE REAL TEST. THE PURPOSE OF THIS PRACTICE EXAM IS TO REFRESH YOUR MEMORY ABOUT THE CONCEPTS DISCUSSED IN UNIT 2, AND GIVE YOU AN IDEA OF THE LENGTH AND LEVEL

More information

Measurements and Units

Measurements and Units 1 Activity 1 Objective Measurements and Units Recognize the importance of units and identify common units of measurement. Getting Started As chemists we deal with numbers every day. For example, numbers

More information

This Week. 6/2/2015 Physics 214 Summer

This Week. 6/2/2015 Physics 214 Summer This Week Heat and Temperature Water and Ice Our world would be different if water didn t expand Engines We can t use all the energy! Why is a diesel engine more efficient? Geysers: You have to be faithful

More information

If you notice any errors in this set of lecture notes, please let me know by . Thanks =10 5

If you notice any errors in this set of lecture notes, please let me know by  . Thanks =10 5 U4735 Environmental Science for Policy Makers Recitation 1 Section Notes 1 If you notice any errors in this set of lecture notes, please let me know by email. Thanks. Exponents 10 2 =10 10 2 3 =2 2 2 In

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 8: TEMPERATURE, HEAT, AND THERMODYNAMICS This lecture will help you understand: Temperature Absolute Zero Internal Energy Heat Quantity of Heat The Laws of Thermodynamics

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

Unit #5- Chapter #6. Types of chemical reactions. Energy: its forms 10/15/2013. Thermodynamics

Unit #5- Chapter #6. Types of chemical reactions. Energy: its forms 10/15/2013. Thermodynamics Unit #5- Chapter #6 Thermodynamics Types of chemical reactions PRODUCT-FAVORED: when the reaction converts reactants to products completely-it may take a small amount of activation energy but releases

More information

Name Date Class MEASUREMENTS AND THEIR UNCERTAINTY

Name Date Class MEASUREMENTS AND THEIR UNCERTAINTY 3.1 MEASUREMENTS AND THEIR UNCERTAINTY Section Review Objectives Convert measurements to scientific notation Distinguish among the accuracy, precision, and error of a measurement Identify the number of

More information

Lecture 6 Examples and Problems

Lecture 6 Examples and Problems Lecture 6 Examples and Problems Heat capacity of solids & liquids Thermal diffusion Thermal conductivity Irreversibility Hot Cold Random Walk and Particle Diffusion Counting and Probability Microstates

More information

Lesson 3A Energy, Work and Power

Lesson 3A Energy, Work and Power Physics 30 Lesson 3A Energy, Work and Power I. Energy and its forms The idea of Energy is the most fundamental principle in all of science. Everything in the universe is a manifestation or form of Energy.

More information

2,000-gram mass of water compared to a 1,000-gram mass.

2,000-gram mass of water compared to a 1,000-gram mass. 11.2 Heat To change the temperature, you usually need to add or subtract energy. For example, when it s cold outside, you turn up the heat in your house or apartment and the temperature goes up. You know

More information

Chapter 01 Introduction

Chapter 01 Introduction Chapter 01 Introduction Multiple Choice Questions 1. A student of physics watching the Star Wars films knows that according to the laws of physics A. the Rebel heroes can see the flash of an explosion

More information

Physics Year 11 Term 1 Week 7

Physics Year 11 Term 1 Week 7 Physics Year 11 Term 1 Week 7 Energy According to Einstein, a counterpart to mass An enormously important but abstract concept Energy can be stored (coal, oil, a watch spring) Energy is something moving

More information

the energy of motion!

the energy of motion! What are the molecules of matter doing all the time?! Heat and Temperature! Notes! All matter is composed of continually jiggling atoms or molecules! The jiggling is! If something is vibrating, what kind

More information

Mathematics in Contemporary Society Chapter 10

Mathematics in Contemporary Society Chapter 10 City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College Fall 2015 Mathematics in Contemporary Society Chapter 10 Patrick J. Wallach Queensborough

More information

3.2 Units of Measurement > Chapter 3 Scientific Measurement. 3.2 Units of Measurement. 3.1 Using and Expressing Measurements

3.2 Units of Measurement > Chapter 3 Scientific Measurement. 3.2 Units of Measurement. 3.1 Using and Expressing Measurements Chapter 3 Scientific Measurement 3.1 Using and Expressing Measurements 3.2 Units of Measurement 3.3 Solving Conversion Problems 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

More information

Contents Decimals Averages Percentages Metric Units Scientific Notation Dimensional Analysis

Contents Decimals Averages Percentages Metric Units Scientific Notation Dimensional Analysis This year in APES you will hear the two words most dreaded by high school students NO CALCULATORS! That s right, you cannot use a calculator on the AP Environmental Science exam. Since the regular tests

More information

What is Energy? The ability to do work or cause change.

What is Energy? The ability to do work or cause change. What is Energy? The ability to do work or cause change. Two Categories of Energy Kinetic Energy energy of motion. The faster it moves, the more kinetic energy it has. Potential Energy stored energy due

More information

SUMMARY OF PROPERTIES OF MATTER State Shape Volume Particles Compressibility Solid Definite Definite Densely packed Very slight

SUMMARY OF PROPERTIES OF MATTER State Shape Volume Particles Compressibility Solid Definite Definite Densely packed Very slight MATTER & ITS FORMS Matter is defined as anything that has mass and occupies space. Matter can be classified by its states: solid, liquid, and gas. Solid: Densely packed matter with definite shape and volume.

More information

Chapter 1: The Prime Movers

Chapter 1: The Prime Movers What is force? Chapter 1: The Prime Movers Force is a push or pull. It is a vector, meaning that it has a magnitude and direction. A vector is a physical quantity that has both magnitude and direction

More information

Chapter 8 Energy Flow and Systems

Chapter 8 Energy Flow and Systems Conceptual Physics/ PEP Name: Date: Chapter 8 Energy Flow and Systems Section Review 8.1 1. In an experiment, you learn that the total energy at the end is a little less than it was at the beginning. Explain

More information

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance)

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance) Chapter 4 Energy In This Chapter: Work Kinetic Energy Potential Energy Conservation of Energy Work Work is a measure of the amount of change (in a general sense) that a force produces when it acts on a

More information

SCIENCE STUDENT BOOK. 12th Grade Unit 3

SCIENCE STUDENT BOOK. 12th Grade Unit 3 SCIENCE STUDENT BOOK 12th Grade Unit 3 Unit 3 WORK AND ENERGY SCIENCE 1203 WORK AND ENERGY INTRODUCTION 3 1. TYPE AND SOURCES OF ENERGY 5 MECHANICAL ENERGY 6 FORMS OF ENERGY 9 SELF TEST 1 12 2. CONSERVATION

More information

New feature on the course website

New feature on the course website New feature on the course website The goal of this is not to try to provide a comprehensive energy news service - you can find these online. I ll try to post a new article on some interestng topic the

More information

Physics 20 Lesson 26 Energy, Work and Power

Physics 20 Lesson 26 Energy, Work and Power Physics 20 Lesson 26 Energy, Work and Power Let us recap what we have learned in Physics 20 so far. At the beginning of the course we learned about kinematics which is the description of how objects move

More information