Are Bayesian Inferences Weak for Wasserman s Example?

Size: px
Start display at page:

Download "Are Bayesian Inferences Weak for Wasserman s Example?"

Transcription

1 Are Bayesian Inferences Weak for Wasserman s Example? Longhai Li longhai@math.usask.ca Department of Mathematics and Statistics University of Saskatchewan Saskatoon, Saskatchewan, S7N 5E6 Canada Quebec City, SSC May 2010

2 Introduction In the textbook by Wasserman (2004), under a Section titled Strengths and Weaknesses of Bayesian Inference (pages ), he used a simple example to demonstrate the weaknesses of Bayesian inferences in high-dimensional and nonparametric problems. I have carried out a simple Bayesian analysis for this example, obtaining a simple Bayes estimate, and used a frequentist method mean square error, to compare with Horwitz-Thompson he suggested to use for this problem. Are Bayesian Inferences Weak for Wasserman s Example? 2/19

3 Wasserman s Example The model in the example may be appropriate for sampling survey problems. Observation Y i is modeled by a mixture distribution of a huge number, B, of Bernoulli distributions, parameterized by θ b, for b = 1,...,B: X i Uniform(1,...,B), (1) Y i X i Bernoulli(θ Xi ). (2) In practice it is possible that some of these Y i are unobserved, for example when those sampled individuals refuse to respond. Let ξ b denote the probability that the individual indexed by b will respond to the question. Then, given X i, the distribution of R i is R i X i Bernoulli(ξ Xi ). (3) In addition, we assume that R i and Y i are independently distributed given X i. Interested Parameter: ϕ = 1 B B b=1 θ b = P(Y i = 1). (4) Are Bayesian Inferences Weak for Wasserman s Example? 3/19

4 Likelihood Function of the Example The likelihood function of θ and ξ based on the data D is the product of the joint distributions of either (X i,r i = 1,Y i ) or (X i,r i = 0), for i = 1,...,n: L(θ,ξ; D) = 1 B n n i=1 ξ R i X i (1 ξ Xi ) 1 R i {i: R i =1} θ Y i X i (1 θ Xi ) 1 Y i (5) Wasserman s argument based on this likelihood function is rephrased as follows: The above likelihood function is relevant to at most n different θ b. Therefore, when B is greatly larger than n, the likelihood function contains information of only a tiny fraction of θ. The posterior distribution of θ is almost equal to the whatever prior distribution, therefore cannot lead to a good inference for the interested parameter, ϕ. Are Bayesian Inferences Weak for Wasserman s Example? 4/19

5 Horwitz-Thompson Estimator Wasswerman suggested the following estimator for ϕ: ˆϕ HT = 1 n R i Y i, (6) n ξ Xi where, when R i = 0, Y i is imaginary and can be assigned arbitrarily. This estimator treats both observed Y i = 0, and sets missing Y i to 0, and count 1/ξ Xi times each observed Y i = 1. Note that he assumes that the parameter ξ is known. i=1 One can easily show that this estimate has mean ϕ, by iterative expectation formula. This estimator is also consistent since its MSE converges to 0 as n : MSE(ˆϕ HT ) = 1 ( ) n Var Ri Y i (7) ξ Xi = 1 ( ( ) Ri Y i E ) ϕ 2 n ξx 2 (8) i ( ) = 1 1 B θ b ϕ 2. (9) n B ξ b b=1 Are Bayesian Inferences Weak for Wasserman s Example? 5/19

6 A Bayesian Analysis Are Bayesian Inferences Weak for Wasserman s Example? 6/19

7 Prior Specification I will assume that θ and ξ are independent given some hyperparameters. The prior for θ: θ 1,...,θ B α T,f IID Beta(θ α T f, α T (1 f)), (10) f,α T Beta(f α F,α F ) π T (α T ). (11) Some properties of the above prior: E(θ b ) = f (12) Var(θ b ) = f(1 f) α T +1 (13) θ b f,α T d Bernoulli(f), as α T (14) The prior for ξ is denoted by π ξ (ξ). We don tneed to specifyit as it will be unrelated to the posterior of θ once we assume that θ and ξ are independent. Similar for π T (α T ). Are Bayesian Inferences Weak for Wasserman s Example? 7/19

8 Posterior Analysis When B is very large, ϕ is very close to f from LLN. I will turn to find the posterior distribution of f given D. I will start with joint distribution of data and parameters: P(D,θ,ξ,f,α T α F ) θ Y i X i (1 θ Xi ) 1 Y i {i R i =1} B [ Beta(θb α T f, α T (1 f)) ] Beta(f α F,α F )π T (α T ) b=1 n i=1 θ R i X i (1 θ Xi ) 1 R i π ξ (ξ) Let I X = {X 1,...,X n }. Since B is greatly larger than n, I will assume that all X i s are distinct for finding an approximate estimate of the posterior of f. Are Bayesian Inferences Weak for Wasserman s Example? 8/19

9 Posterior Analysis (Cont d) I will next integrate θ away from the above joint distribution: (1) Those θ b for b I X can be integrated away from their prior, leading to 1. (2) Those θ b for b I X can be integrated away too, leading to a Bernoulli distribution for Y i : 1 0 θ Y i(b) b (1 θ b ) 1 Y i(b) Beta(θ b α T f,α T (1 f))dθ b = f Yi(b) (1 f) 1 Yi(b). We can also integrate ξ away, leading to an expression unrelated to f. After integrating away ξ and θ, we obtain the joint distribution of data and f: P(D,f α F ) = c {i:r i =1} f Y i (1 f) 1 Y i Beta(f α F,α F ), (15) Are Bayesian Inferences Weak for Wasserman s Example? 9/19

10 Bayes Estimator The posterior distribution of f is therefore a Beta distribution: where P(f D,α F ) = Beta(f n 1 +α F,n 0 +α F ), (16) n 1 = n 0 = n Y i = R i Y i, (17) {i:r i =1} i=1 (1 Y i ) = {i:r i =1} i=1 n R i n 1. (18) The best guess for f that minimizes the expected square loss is the mean of the posterior distribution of f, which leads to the Bayes estimator for f: ˆϕ BS = n 1 +α F n 0 +n 1 +2α F. (19) I will compare ˆϕ HT and ˆϕ BS with criterion of mean square error. Are Bayesian Inferences Weak for Wasserman s Example? 10/19

11 End of Bayesian Analysis Are Bayesian Inferences Weak for Wasserman s Example? 11/19

12 Comparison of MSEs (1) In the first comparison, I set ξ all equal to δ. For each δ, a set of θ are drawn from a transformed normal random numbers: θ b Φ(Z b ), Z b N(0,0.5 2 ),for b = 1,...,B (20) Are Bayesian Inferences Weak for Wasserman s Example? 12/19

13 Comparison of MSEs (1) δ = 0.02 δ = 0.09 δ = H T Bayes δ = 0.23 δ = 0.29 δ = Mean Square Error δ = δ = δ = 0.57 δ = 0.64 δ = 0.71 δ = δ = 0.84 δ = 0.91 δ = ϕ Are Bayesian Inferences Weak for Wasserman s Example? 13/19

14 Comparison of MSEs (2) In the second comparison, I generated pairs of θ and ξ from transformed multivariate normal numbers with different correlations. The MSE with similar ξ and similar correlations (generated from the same parameters) are plotted in a graph against the true values of ϕ: Are Bayesian Inferences Weak for Wasserman s Example? 14/19

15 Comparison of MSEs (2) λ = 0.04, ρ = 0.69 λ = 0.04, ρ = 0 λ = 0.04, ρ = H T Bayes λ = 0.14, ρ = 0.76 λ = 0.14, ρ = 0 λ = 0.14, ρ = Mean Square Error λ = 0.5, ρ = λ = 0.5, ρ = λ = 0.5, ρ = 0.8 λ = 0.86, ρ = 0.76 λ = 0.86, ρ = 0 λ = 0.86, ρ = λ = 0.96, ρ = 0.69 λ = 0.96, ρ = 0 λ = 0.96, ρ = ϕ Are Bayesian Inferences Weak for Wasserman s Example? 15/19

16 Histograms of the Simulated Estimators I generated three pairs of nearly independent θ and ξ with high ϕ values. With each pair, I simulated 5000 values of two estimators, and drew their histograms: Are Bayesian Inferences Weak for Wasserman s Example? 16/19

17 Histograms of the Simulated Estimators λ = 0.09, ϕ = 0.91, ρ = 0.01 Histogram of 5000 Horwitz Thompson samples Histogram of 5000 Bayes samples Density Density ϕ^ λ = 0.5, ϕ = 0.91, ρ = 0 ϕ^ Histogram of 5000 Horwitz Thompson samples Histogram of 5000 Bayes samples Density Density ϕ^ λ = 0.91, ϕ = 0.91, ρ = 0 ϕ^ Histogram of 5000 Horwitz Thompson samples Histogram of 5000 Bayes samples Density Density ϕ^ ϕ^ Are Bayesian Inferences Weak for Wasserman s Example? 17/19

18 Conclusion From my comparisons, the simple Bayes estimator isn t weak for Wasserman s example. Indeed, it is stronger than Horwitz-Thompson estimator for most parameter configurations. Indeed, Bayesian inferences have been applied successfully to many high-dimensional and nonparametric problems. Appropriate Bayesian inferences can avoid overfitting problem of MLE, easily model data with complex structure, naturally use prior knowledge to improve inference, and automatically consider uncertainty in inference. They therefore show superiority in many hard problems. Are Bayesian Inferences Weak for Wasserman s Example? 18/19

19 Thank You! Questions and Comments? Are Bayesian Inferences Weak for Wasserman s Example? 19/19

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

Data Analysis and Uncertainty Part 2: Estimation

Data Analysis and Uncertainty Part 2: Estimation Data Analysis and Uncertainty Part 2: Estimation Instructor: Sargur N. University at Buffalo The State University of New York srihari@cedar.buffalo.edu 1 Topics in Estimation 1. Estimation 2. Desirable

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Bayesian Analysis for Natural Language Processing Lecture 2

Bayesian Analysis for Natural Language Processing Lecture 2 Bayesian Analysis for Natural Language Processing Lecture 2 Shay Cohen February 4, 2013 Administrativia The class has a mailing list: coms-e6998-11@cs.columbia.edu Need two volunteers for leading a discussion

More information

DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling

DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling Due: Tuesday, May 10, 2016, at 6pm (Submit via NYU Classes) Instructions: Your answers to the questions below, including

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 2. Statistical Schools Adapted from slides by Ben Rubinstein Statistical Schools of Thought Remainder of lecture is to provide

More information

Time Series and Dynamic Models

Time Series and Dynamic Models Time Series and Dynamic Models Section 1 Intro to Bayesian Inference Carlos M. Carvalho The University of Texas at Austin 1 Outline 1 1. Foundations of Bayesian Statistics 2. Bayesian Estimation 3. The

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

10. Exchangeability and hierarchical models Objective. Recommended reading

10. Exchangeability and hierarchical models Objective. Recommended reading 10. Exchangeability and hierarchical models Objective Introduce exchangeability and its relation to Bayesian hierarchical models. Show how to fit such models using fully and empirical Bayesian methods.

More information

Probability and Estimation. Alan Moses

Probability and Estimation. Alan Moses Probability and Estimation Alan Moses Random variables and probability A random variable is like a variable in algebra (e.g., y=e x ), but where at least part of the variability is taken to be stochastic.

More information

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics DS-GA 100 Lecture notes 11 Fall 016 Bayesian statistics In the frequentist paradigm we model the data as realizations from a distribution that depends on deterministic parameters. In contrast, in Bayesian

More information

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions

Pattern Recognition and Machine Learning. Bishop Chapter 2: Probability Distributions Pattern Recognition and Machine Learning Chapter 2: Probability Distributions Cécile Amblard Alex Kläser Jakob Verbeek October 11, 27 Probability Distributions: General Density Estimation: given a finite

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Bayesian statistics DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall15 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist statistics

More information

Computational Perception. Bayesian Inference

Computational Perception. Bayesian Inference Computational Perception 15-485/785 January 24, 2008 Bayesian Inference The process of probabilistic inference 1. define model of problem 2. derive posterior distributions and estimators 3. estimate parameters

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

Conjugate Priors, Uninformative Priors

Conjugate Priors, Uninformative Priors Conjugate Priors, Uninformative Priors Nasim Zolaktaf UBC Machine Learning Reading Group January 2016 Outline Exponential Families Conjugacy Conjugate priors Mixture of conjugate prior Uninformative priors

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 8 1 / 11 The Prior Distribution Definition Suppose that one has a statistical model with parameter

More information

Lecture 2: Priors and Conjugacy

Lecture 2: Priors and Conjugacy Lecture 2: Priors and Conjugacy Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de May 6, 2014 Some nice courses Fred A. Hamprecht (Heidelberg U.) https://www.youtube.com/watch?v=j66rrnzzkow Michael I.

More information

Bayesian Methods. David S. Rosenberg. New York University. March 20, 2018

Bayesian Methods. David S. Rosenberg. New York University. March 20, 2018 Bayesian Methods David S. Rosenberg New York University March 20, 2018 David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 March 20, 2018 1 / 38 Contents 1 Classical Statistics 2 Bayesian

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 January 18, 2018 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 18, 2018 1 / 9 Sampling from a Bernoulli Distribution Theorem (Beta-Bernoulli

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Bayesian Model Diagnostics and Checking

Bayesian Model Diagnostics and Checking Earvin Balderama Quantitative Ecology Lab Department of Forestry and Environmental Resources North Carolina State University April 12, 2013 1 / 34 Introduction MCMCMC 2 / 34 Introduction MCMCMC Steps in

More information

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Matthew S. Johnson New York ASA Chapter Workshop CUNY Graduate Center New York, NY hspace1in December 17, 2009 December

More information

Unobservable Parameter. Observed Random Sample. Calculate Posterior. Choosing Prior. Conjugate prior. population proportion, p prior:

Unobservable Parameter. Observed Random Sample. Calculate Posterior. Choosing Prior. Conjugate prior. population proportion, p prior: Pi Priors Unobservable Parameter population proportion, p prior: π ( p) Conjugate prior π ( p) ~ Beta( a, b) same PDF family exponential family only Posterior π ( p y) ~ Beta( a + y, b + n y) Observed

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

(1) Introduction to Bayesian statistics

(1) Introduction to Bayesian statistics Spring, 2018 A motivating example Student 1 will write down a number and then flip a coin If the flip is heads, they will honestly tell student 2 if the number is even or odd If the flip is tails, they

More information

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features Yangxin Huang Department of Epidemiology and Biostatistics, COPH, USF, Tampa, FL yhuang@health.usf.edu January

More information

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides

Probabilistic modeling. The slides are closely adapted from Subhransu Maji s slides Probabilistic modeling The slides are closely adapted from Subhransu Maji s slides Overview So far the models and algorithms you have learned about are relatively disconnected Probabilistic modeling framework

More information

Learning Bayesian network : Given structure and completely observed data

Learning Bayesian network : Given structure and completely observed data Learning Bayesian network : Given structure and completely observed data Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani Learning problem Target: true distribution

More information

Learning with Probabilities

Learning with Probabilities Learning with Probabilities CS194-10 Fall 2011 Lecture 15 CS194-10 Fall 2011 Lecture 15 1 Outline Bayesian learning eliminates arbitrary loss functions and regularizers facilitates incorporation of prior

More information

Lecture 4. Generative Models for Discrete Data - Part 3. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza.

Lecture 4. Generative Models for Discrete Data - Part 3. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. Lecture 4 Generative Models for Discrete Data - Part 3 Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza October 6, 2017 Luigi Freda ( La Sapienza University) Lecture 4 October 6, 2017 1 / 46 Outline

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Parameter Estimation December 14, 2015 Overview 1 Motivation 2 3 4 What did we have so far? 1 Representations: how do we model the problem? (directed/undirected). 2 Inference: given a model and partially

More information

Density Estimation: ML, MAP, Bayesian estimation

Density Estimation: ML, MAP, Bayesian estimation Density Estimation: ML, MAP, Bayesian estimation CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Maximum-Likelihood Estimation Maximum

More information

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 7: Learning Fully Observed BNs Theo Rekatsinas 1 Exponential family: a basic building block For a numeric random variable X p(x ) =h(x)exp T T (x) A( ) = 1

More information

Machine Learning CMPT 726 Simon Fraser University. Binomial Parameter Estimation

Machine Learning CMPT 726 Simon Fraser University. Binomial Parameter Estimation Machine Learning CMPT 726 Simon Fraser University Binomial Parameter Estimation Outline Maximum Likelihood Estimation Smoothed Frequencies, Laplace Correction. Bayesian Approach. Conjugate Prior. Uniform

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Inference for a Population Proportion

Inference for a Population Proportion Al Nosedal. University of Toronto. November 11, 2015 Statistical inference is drawing conclusions about an entire population based on data in a sample drawn from that population. From both frequentist

More information

Model comparison. Christopher A. Sims Princeton University October 18, 2016

Model comparison. Christopher A. Sims Princeton University October 18, 2016 ECO 513 Fall 2008 Model comparison Christopher A. Sims Princeton University sims@princeton.edu October 18, 2016 c 2016 by Christopher A. Sims. This document may be reproduced for educational and research

More information

STAT Advanced Bayesian Inference

STAT Advanced Bayesian Inference 1 / 32 STAT 625 - Advanced Bayesian Inference Meng Li Department of Statistics Jan 23, 218 The Dirichlet distribution 2 / 32 θ Dirichlet(a 1,...,a k ) with density p(θ 1,θ 2,...,θ k ) = k j=1 Γ(a j) Γ(

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Part 2: One-parameter models

Part 2: One-parameter models Part 2: One-parameter models 1 Bernoulli/binomial models Return to iid Y 1,...,Y n Bin(1, ). The sampling model/likelihood is p(y 1,...,y n ) = P y i (1 ) n P y i When combined with a prior p( ), Bayes

More information

Nonparametric Bayes Uncertainty Quantification

Nonparametric Bayes Uncertainty Quantification Nonparametric Bayes Uncertainty Quantification David Dunson Department of Statistical Science, Duke University Funded from NIH R01-ES017240, R01-ES017436 & ONR Review of Bayes Intro to Nonparametric Bayes

More information

Bayesian Inference. p(y)

Bayesian Inference. p(y) Bayesian Inference There are different ways to interpret a probability statement in a real world setting. Frequentist interpretations of probability apply to situations that can be repeated many times,

More information

General Bayesian Inference I

General Bayesian Inference I General Bayesian Inference I Outline: Basic concepts, One-parameter models, Noninformative priors. Reading: Chapters 10 and 11 in Kay-I. (Occasional) Simplified Notation. When there is no potential for

More information

Multiple regression. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar

Multiple regression. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Multiple regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Multiple regression 1 / 36 Previous two lectures Linear and logistic

More information

Probability and Information Theory. Sargur N. Srihari

Probability and Information Theory. Sargur N. Srihari Probability and Information Theory Sargur N. srihari@cedar.buffalo.edu 1 Topics in Probability and Information Theory Overview 1. Why Probability? 2. Random Variables 3. Probability Distributions 4. Marginal

More information

Ages of stellar populations from color-magnitude diagrams. Paul Baines. September 30, 2008

Ages of stellar populations from color-magnitude diagrams. Paul Baines. September 30, 2008 Ages of stellar populations from color-magnitude diagrams Paul Baines Department of Statistics Harvard University September 30, 2008 Context & Example Welcome! Today we will look at using hierarchical

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Generative Models Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

Chapter 5. Bayesian Statistics

Chapter 5. Bayesian Statistics Chapter 5. Bayesian Statistics Principles of Bayesian Statistics Anything unknown is given a probability distribution, representing degrees of belief [subjective probability]. Degrees of belief [subjective

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

STAT 830 Bayesian Estimation

STAT 830 Bayesian Estimation STAT 830 Bayesian Estimation Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Bayesian Estimation STAT 830 Fall 2011 1 / 23 Purposes of These

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Theory of Maximum Likelihood Estimation. Konstantin Kashin

Theory of Maximum Likelihood Estimation. Konstantin Kashin Gov 2001 Section 5: Theory of Maximum Likelihood Estimation Konstantin Kashin February 28, 2013 Outline Introduction Likelihood Examples of MLE Variance of MLE Asymptotic Properties What is Statistical

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Bayesian Classification Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory

Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory Statistical Inference Parametric Inference Maximum Likelihood Inference Exponential Families Expectation Maximization (EM) Bayesian Inference Statistical Decison Theory IP, José Bioucas Dias, IST, 2007

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Introduction to Machine Learning

Introduction to Machine Learning Outline Introduction to Machine Learning Bayesian Classification Varun Chandola March 8, 017 1. {circular,large,light,smooth,thick}, malignant. {circular,large,light,irregular,thick}, malignant 3. {oval,large,dark,smooth,thin},

More information

Intro to Probability. Andrei Barbu

Intro to Probability. Andrei Barbu Intro to Probability Andrei Barbu Some problems Some problems A means to capture uncertainty Some problems A means to capture uncertainty You have data from two sources, are they different? Some problems

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Empirical Bayes, Hierarchical Bayes Mark Schmidt University of British Columbia Winter 2017 Admin Assignment 5: Due April 10. Project description on Piazza. Final details coming

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information

Statistical inference

Statistical inference Statistical inference Contents 1. Main definitions 2. Estimation 3. Testing L. Trapani MSc Induction - Statistical inference 1 1 Introduction: definition and preliminary theory In this chapter, we shall

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

Bayesian Inference for DSGE Models. Lawrence J. Christiano

Bayesian Inference for DSGE Models. Lawrence J. Christiano Bayesian Inference for DSGE Models Lawrence J. Christiano Outline State space-observer form. convenient for model estimation and many other things. Bayesian inference Bayes rule. Monte Carlo integation.

More information

A Discussion of the Bayesian Approach

A Discussion of the Bayesian Approach A Discussion of the Bayesian Approach Reference: Chapter 10 of Theoretical Statistics, Cox and Hinkley, 1974 and Sujit Ghosh s lecture notes David Madigan Statistics The subject of statistics concerns

More information

Study Notes on the Latent Dirichlet Allocation

Study Notes on the Latent Dirichlet Allocation Study Notes on the Latent Dirichlet Allocation Xugang Ye 1. Model Framework A word is an element of dictionary {1,,}. A document is represented by a sequence of words: =(,, ), {1,,}. A corpus is a collection

More information

STAT J535: Chapter 5: Classes of Bayesian Priors

STAT J535: Chapter 5: Classes of Bayesian Priors STAT J535: Chapter 5: Classes of Bayesian Priors David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Spring 2012 The Bayesian Prior A prior distribution must be specified in a Bayesian analysis. The choice

More information

5.2 Expounding on the Admissibility of Shrinkage Estimators

5.2 Expounding on the Admissibility of Shrinkage Estimators STAT 383C: Statistical Modeling I Fall 2015 Lecture 5 September 15 Lecturer: Purnamrita Sarkar Scribe: Ryan O Donnell Disclaimer: These scribe notes have been slightly proofread and may have typos etc

More information

STAB57: Quiz-1 Tutorial 1 (Show your work clearly) 1. random variable X has a continuous distribution for which the p.d.f.

STAB57: Quiz-1 Tutorial 1 (Show your work clearly) 1. random variable X has a continuous distribution for which the p.d.f. STAB57: Quiz-1 Tutorial 1 1. random variable X has a continuous distribution for which the p.d.f. is as follows: { kx 2.5 0 < x < 1 f(x) = 0 otherwise where k > 0 is a constant. (a) (4 points) Determine

More information

10-701/15-781, Machine Learning: Homework 4

10-701/15-781, Machine Learning: Homework 4 10-701/15-781, Machine Learning: Homewor 4 Aarti Singh Carnegie Mellon University ˆ The assignment is due at 10:30 am beginning of class on Mon, Nov 15, 2010. ˆ Separate you answers into five parts, one

More information

Aarti Singh. Lecture 2, January 13, Reading: Bishop: Chap 1,2. Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell

Aarti Singh. Lecture 2, January 13, Reading: Bishop: Chap 1,2. Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell Machine Learning 0-70/5 70/5-78, 78, Spring 00 Probability 0 Aarti Singh Lecture, January 3, 00 f(x) µ x Reading: Bishop: Chap, Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell Announcements Homework

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Nonparametric Estimation of Luminosity Functions

Nonparametric Estimation of Luminosity Functions x x Nonparametric Estimation of Luminosity Functions Chad Schafer Department of Statistics, Carnegie Mellon University cschafer@stat.cmu.edu 1 Luminosity Functions The luminosity function gives the number

More information

Mixture Models and EM

Mixture Models and EM Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

More information

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm IEOR E4570: Machine Learning for OR&FE Spring 205 c 205 by Martin Haugh The EM Algorithm The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is missing.

More information

GAUSSIAN PROCESS REGRESSION

GAUSSIAN PROCESS REGRESSION GAUSSIAN PROCESS REGRESSION CSE 515T Spring 2015 1. BACKGROUND The kernel trick again... The Kernel Trick Consider again the linear regression model: y(x) = φ(x) w + ε, with prior p(w) = N (w; 0, Σ). The

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

K. Nishijima. Definition and use of Bayesian probabilistic networks 1/32

K. Nishijima. Definition and use of Bayesian probabilistic networks 1/32 The Probabilistic Analysis of Systems in Engineering 1/32 Bayesian probabilistic bili networks Definition and use of Bayesian probabilistic networks K. Nishijima nishijima@ibk.baug.ethz.ch 2/32 Today s

More information

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio Estimation of reliability parameters from Experimental data (Parte 2) This lecture Life test (t 1,t 2,...,t n ) Estimate θ of f T t θ For example: λ of f T (t)= λe - λt Classical approach (frequentist

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

Applied Bayesian Statistics STAT 388/488

Applied Bayesian Statistics STAT 388/488 STAT 388/488 Dr. Earvin Balderama Department of Mathematics & Statistics Loyola University Chicago August 29, 207 Course Info STAT 388/488 http://math.luc.edu/~ebalderama/bayes 2 A motivating example (See

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

MODEL COMPARISON CHRISTOPHER A. SIMS PRINCETON UNIVERSITY

MODEL COMPARISON CHRISTOPHER A. SIMS PRINCETON UNIVERSITY ECO 513 Fall 2008 MODEL COMPARISON CHRISTOPHER A. SIMS PRINCETON UNIVERSITY SIMS@PRINCETON.EDU 1. MODEL COMPARISON AS ESTIMATING A DISCRETE PARAMETER Data Y, models 1 and 2, parameter vectors θ 1, θ 2.

More information