( ) ln ( ) is a new random error term. Mathematically, the vt. behave according to

Size: px
Start display at page:

Download "( ) ln ( ) is a new random error term. Mathematically, the vt. behave according to"

Transcription

1 Time series observaions, which are drawn sequenially, usually embody a srucure where ime is an imporan componen. If you are unable o compleely model his srucure in he regression funcion iself, hen he remainder spills over ino he unobserved componen of your model (is error) and his causes he errors of he saisical model o be correlaed wih one anoher. In he following example consider is one wih a lag in he error erm. Below is a supply response for an agriculural crop modeled in log-log form: planed (acres) depends on price. ln ( ) ln ( ) A = β + β P + e 2 The error of he model depends on he previous period s error and whie noise. In ime series analysis i is common o refer o independenly disribued random errors as whie noise. e = ρ e + v where ρ (rho) is a parameer ha describes he dependence of e on e and v is a new random error erm. Mahemaically, he v behave according o E v = v = σ v v = s 2 ( ) 0 var( ) v cov(, s ) 0 for For sabiliy (and saionariy) of he model, we also require < ρ <. As is demonsraed in your ex, he e will be correlaed wih one anoher and are herefore said o be auocorrelaed. Hins In order o use Saa, you ll have o creae a ime variable and declare he daase o be a imeseries. The simples way is gen ime = _n This generaes a new variable ha conains he observaion number. This works because _n is undersood by Saa o mean he observaion number. Then, change he srucure of your daa o a ime series using he sse command sse ime, yearly Now, generae he logarihms of acreage and price, run he regression, and save he residuals gen lp = log(p) gen la = log(a) regress la lp predic eha, residual Now, use he woway(scaer eha ime) o generae a graph of he leas squares residuals.

2 2 woway (scaer eha ime) From he graph here is some indicaion of posiive auocorrelaion; posiive errors end o follow oher posiive errors and negaive errors follow oher negaive ones. Compuing he correlaion beween e ˆ and eˆ will give you numerical verificaion of wha you see in he graph. Firs, generae lagged values of he residuals. This can be done in several ways. The firs uses Saa s subscriping funcion. Individual elemens of variables and marices may be referred o by subscriping. For insance, he 0 h observaion of he variable x would be referred o as x[0]. The subscrip refers o he observaion number and i is pu inside of square brackes ha follow he variable. To refer o lagged values of he variable eha, you can use he subscrip _n- as in gen eha_ = eha[_n-] The subscrip uses he observaion number (_n) and subracs one from i. So, eha[_n-] poins o e ˆ which i sores in he new variable called eha_. The preferred mehod for generaing lagged values uses Saa s buil in lag funcion. The synax for he lag funcion consiss of a capial leer L followed by he desired lag number (e.g.,, 2, or 3) and a period. This is used as prefix for he variable o be lagged (e.g., L#.varname). For insance, L.gnp refers o he one period lagged value of variable gnp. To lag gnp wo periods, you d use L2.gnp. The lag funcion can be used only if he daa are declared o be ime series or as a panel. The synax o lag eha one period is gen eha_ = L.eha For one period lags (L.varname) he number can be omied (e.g., L.varname). There are oher ime series operaors o ake differences (D.), leads (F.), and seasonal differences (S.) ha use he same synax srucure. The Saa documenaion ha describes how o use hese is cleverly hidden in he online help sysem and can be revealed by yping help svarlis on he command line.

3 Dynamic Models 3 Finally, o obain he correlaion beween e ˆ and eˆ : correlae eha eha_ which yields eha eha_ eha.0000 eha_ ESTIMATING AN AR() MODEL When he errors follow an AR() model e = ρ e + v, he leas squares assumpion MR4, cov( e, e s ) = 0 for s is violaed. Leas squares is unbiased and consisen, bu no longer efficien. Also, he usual sandard errors are no longer correc, leading o saisically invalid hypohesis ess and confidence inervals. Leas squares and HAC sandard errors Alhough he usual leas squares sandard errors are no correc, we can compue consisen sandard errors jus as we did in heeroskedasic models using an esimaor proposed by Newey and Wes. Newey-Wes sandard errors (also known as HAC (heeroskedasiciy and auocorrelaion consisen) sandard errors are analogous o he heeroskedasiciy consisen sandard errors inroduced earlier in he course. They have he advanage of being consisen in models ha have higher order auocorrelaed errors. Also, hey do no require explici specificaion of he dynamic model of he errors ha would oherwise be needed o esimae he parameers more precisely. HAC is no quie as auomaic as he heeroskedasiciy robus sandard error esimaor. To be robus wih respec o auocorrelaion one has o specify how far away in ime he auocorrelaion is likely o be significan. Essenially, he auocorrelaed errors over he chosen ime window are averaged in he compuaion of HAC; you have o specify how many periods over which o average and how much weigh o assign each residual in ha average. The weighed average is called a kernel and he number of errors o average is called bandwidh. To be quie hones, hese erms shed no ligh on heir meaning for he average user. Jus hink of he kernel as anoher name for weighed average and bandwidh as he erm for number of erms o average. In Saa, you have no conrol over he kernel, bu you can pick a bandwidh. Implicily here is a rade-off o consider. A larger bandwidh reduces bias (good), bu increases variance (bad). A smaller bandwidh excludes more relevan auocorrelaions. While his reduces variance, i increases bias. The radeoff leads o a Goldilocks prescripion o choose he bandwidh ha is jus righ! Unforunaely, where his lies is generally no known and his makes he HAC less aracive in pracice han is heeroskedasicicy robus equivalen. Tha is no o say ha people haven ried o find an opimal bandwidh. Several mehods have been proposed o compue one based on sample size. One mehods uses B = 0.75N /3. The

4 4 larger your sample, N, he larger he bandwidh is. Anoher popular choice is B= 4 (N/00) 2/9. This one appears o be he defaul in oher programs like EViews and i is he one used here o obain he resuls in he ex. To compue his one in Saa use: scalar B = round(4*(e(n)/00)^(2/9)) scalar lis B This reurns he value 3. The resul is rounded using he round funcion because you have o give Saa a whole number o specify he number of lags o use in he HAC s compuaion. Then, o esimae he model wih leas squares wih Newey-Wes sandard errors use he following command newey la lp, lag(3) The dialog o esimae his model is found by selecing Saisics > Time series > Regression wih Newey-Wes sd. errors. This brings up he newey dialog box shown below. Selec he dependen and independen variables. Then click he radio buon o selec he bandwidh, choosing 3. Click OK and you ll obain he resuls from your ex. Noe, Saa compues he 95% confidence inervals by defaul. If you wish o change α you can do so from he Reporing ab in he dialog. Finally, if you choose he No auocorrelaion srucure in his dialog, you ll ge he usual Whie s sandard errors ha are robus o heeroskedasiciy only. Therefore, if you have auocorrelaion, hen you mus ell Saa he maximum lag o consider. Nonlinear Leas Squares As you can see, HAC sandard errors suffer a leas wo disadvanages: ) hey are no auomaic since hey require specificaion of a bandwidh and 2) hey are larger han sandard errors of more efficien esimaors. In his secion, nonlinear leas squares is used o efficienly esimae he parameers of he AR() model. In your ex book he auhors sar wih he AR() regression model and, using a lile algebra, arrive a y = β ( ρ ) + β x + ρy ρβ x + v 2 2 This model is nonlinear in he parameers, bu has an addiive whie noise error. These feaures make he model suiable for nonlinear leas squares esimaion. Nonlinear leas squares uses numerical mehods o find he values of he parameers ha minimize he sum of squared errors. Saa can do his easily using he nl command. Unforunaely, he nl command canno use Saa s buil in ime series operaors (e.g., L.var, D.var) so you will have o use he generae command o ake he lags of he dependen and independen variables, y and x. These lines use he L. operaor o generae lags of ln(p) and ln(a).

5 Dynamic Models 5 gen la_ = L.la gen lp_ = L.lp Once hese are defined, he nl command o esimae he model is nl (la = {b}*(-{rho}) + {b2}*lp_+ {rho}*la_ - {rho}*{b2}*(lp_)), variables(lp la la_ lp_) This should be yped on a single line, eiher in a do-file or in he command window. The synax is fairly simple, bu requires some explanaion. The basic synax is: nl (depvar=<sexp>) [if] [in] [weigh] [, opions] Inside he firs se of parenheses you ype in he sysemaic porion of your model. Parameers mus be enclosed in braces {}. You can use he if, in, and weigh saemens jus as you do in a linear regression. However, because you are using variables ha have been lagged, you will now have missing values for he lagged variables in he daa se. For nl o work you mus limi he sample o he complee observaions, i.e., he ones for which nohing is missing. There are wo ways o do his. Firs, you could use (depvar=<sexp>) in 2/34. Or, you can lis he variables as we have done here using he opion variables(lp la la_ lp_). A More General Model A more general form of he model is considered y = δ + δ x + δ x + θ y + v 0 which is linear in he parameers and can be esimaed by linear regression. This model is relaed o he previous model by he relaionships δ = β( ρ) δ 0 = β2 δ = ρβ2 θ = ρ The linear model can be esimaed by (linear) leas squares and a hypohesis es of he implied resricion can be conduced. The null hypohesis implied by he resricion is H : δ = θ δ agains he alernaive ha i is no equal. 0 0 DETECTING AUTOCORRELATION Several mehods are used o deermine he presence or exen of auocorrelaion. The firs is o ake a look a he residual correlogram. A residual correlogram is a graph ha plos series of correlaions beween e ˆ and eˆ j agains he ime inerval beween he observaions, j=,2,, m. So, he firs hing o do ge he residual correlogram is o esimae he model using leas squares and hen save he residuals.

6 6 regress la lp predic eha, residual Once you have he residuals, use he command ac eha o graph he correlogram. Each do on he correlogram represens he esimaed correlaion beween observaions j periods apar and he shaded area is he 95% confidence bounds. So, in his case he firs auocorrelaion lies ouside of he boundary and is herefore significanly differen from zero a he 5% level. The ohers lie inside he bounds and are no significan. Anoher way o es for auocorrelaion is o use he oupu from nonlinear leas squares, which yields an esimae of ρ and is sandard error. The esimaor of ρ is approximaely normally disribued which means ha you can use is -raio in he usual way. Finally, you can es wheher residuals are correlaed wih one anoher using an LM (Lagrange muliplier) es. For auocorrelaion, his es is based on an auxiliary regression where you regress leas squares residuals on lagged leas squares residuals and he original regressors. If he regressors, which include e ˆ, explain sufficien variaion in e ˆ hen here mus be auocorrelaion due o e ˆ. For a regression model y = β + β x + e, 2 esimae he parameers using leas squares and save he residuals, e ˆ. Lag he residuals o ge e ˆ. Then esimae a second auxiliary regression wih e ˆ as he dependen variable and he lagged value e ˆ as an independen variable. Include all of he oher independen variables from he original regression as well. For a simple linear regression he auxiliary regression is eˆ = γ + γ x + ρ eˆ + residual 2 NR 2 from his regression has a χ 2 () disribuion if he null hypohesis of no auocorrelaion is rue, where N is he number of observaions in he auxiliary regression. Rejecion leads you o conclude here is significan auocorrelaion. If you suspec higher order auocorrelaion, include addiional lags of he residuals. NR 2 from hese regressions has a χ 2 (p) disribuion if he null hypohesis is rue and p is he number of lagged residuals included in he model. Ineresingly, Saa has a buil in command o do his es. I is a pos-esimaion command, which uses esa bgodfrey: regress la lp esa bgodfrey lags(/3)

7 Dynamic Models 7 bgodfrey sands for Breusch-Godfrey, he las names of he wo economericians credied wih his paricular varian of he es. This command gives he same resul as he manual mehod above. The lags opion specifies which lagged residuals o include in he LM es. AUTOREGRESSIVE MODELS Auoregressive models include lags of he dependen variable as regressors. The AR(p) model is y = δ + θ y + θ y + L + θ y + v 2 2 p p which has p lags of y as regressors. This model is simple o esimae in Saa since i is linear in he parameers. In his example we use he inflaion.da daase and esimae an AR(3) model of he inflaion rae. Firs, load he inflaion daa, clearing he memory of any exising daa. use inflaion, clear You ll noice ha in his daase here are variables for year and monh. These wo variables can be combined o make a ime variable ha we will call. To do his use a funcion called ym (which sands for year/monh) as shown below. gen = ym(year,monh) sse, monhly Since he daa are recorded monhly, we used he monhly opion in declaring o be a ime series wih sse. Once he daa have been declared ime series you can use he buil in ime series operaors (L., L2., L3., ec) o specify lags for variables in he model. The regression is regress infln L.infln L2.infln L3.infln FINITE DISTRIBUTED LAG MODELS Finie disribued lag models conain independen variables and heir lags as regressors. y = α + β 0x + β x + β 2x 2 + L + β qx q + v, = q +, K, T In his example he y is he inflaion rae and i is modeled as a funcion of he percenage change in wages, x, for he curren and hree periods lagged. In erms of he general model, q=3. In Saa he model is linear and esimaed using leas squares

8 8 regress infln pcwage L.pcwage L2.pcwage L3.pcwage AUTOREGRESSIVE DISTRIBUTED LAG MODELS Finally, we consider an auoregressive model ha also conains a finie disribued lag. This is he so-called auoregressive disribued lag model (ARDL). The ARDL(p,q) model has he general form y = δ + δ x + δ x + L + δ x + θ y + L + θ y + v 0 q q p p I has p lags of he dependen variable, y, and q lags of he independen variable, x. The ARDL(2,3) model of inflaion can be esimaed using leas squares regress infln pcwage L.pcwage L2.pcwage L3.pcwage L.infln L2.infln QUESTION Use he bangla.da daase o esimae he area response model on page using leas squares wih he wrong sandard errors. Plo he residuals agains ime. Plo he correlogram and deermine he likely exen of auocorrelaion. Resesimae he model using leas squares wih HAC sandard errors. QUESTION 2 Esimae he model using assuming firs order auocorrelaion using nonlinear leas squares. Tes he null hypohesis of no auocorrelaion agains firs order auocorrelaion using he nonlinear leas squares resul. If here is higher order auocorrelaion presen, how would you deec i and wha would you do o model i? Use he esnl command o es he nonlinear resricions implied by he NLS esimaor relaive o he more general model on page 5 QUESTION 3 Using he inflaion.da daa esimae he finie disribued lag model and he ARDL model. Plo he correlogram of he residuals from each. Do he errors appear o be correlaed? Using he appropriae Breusch-Godfrey es o es no auocorrelaion agains a suiable alernaive. If furher consideraion of he model s specificaion is warraned, how would you proceed?

9 Dynamic Models 9

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Dynamic Models, Autocorrelation and Forecasting

Dynamic Models, Autocorrelation and Forecasting ECON 4551 Economerics II Memorial Universiy of Newfoundland Dynamic Models, Auocorrelaion and Forecasing Adaped from Vera Tabakova s noes 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing

More information

Econ Autocorrelation. Sanjaya DeSilva

Econ Autocorrelation. Sanjaya DeSilva Econ 39 - Auocorrelaion Sanjaya DeSilva Ocober 3, 008 1 Definiion Auocorrelaion (or serial correlaion) occurs when he error erm of one observaion is correlaed wih he error erm of any oher observaion. This

More information

Distribution of Least Squares

Distribution of Least Squares Disribuion of Leas Squares In classic regression, if he errors are iid normal, and independen of he regressors, hen he leas squares esimaes have an exac normal disribuion, no jus asympoic his is no rue

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Regression with Time Series Data

Regression with Time Series Data Regression wih Time Series Daa y = β 0 + β 1 x 1 +...+ β k x k + u Serial Correlaion and Heeroskedasiciy Time Series - Serial Correlaion and Heeroskedasiciy 1 Serially Correlaed Errors: Consequences Wih

More information

Solutions to Odd Number Exercises in Chapter 6

Solutions to Odd Number Exercises in Chapter 6 1 Soluions o Odd Number Exercises in 6.1 R y eˆ 1.7151 y 6.3 From eˆ ( T K) ˆ R 1 1 SST SST SST (1 R ) 55.36(1.7911) we have, ˆ 6.414 T K ( ) 6.5 y ye ye y e 1 1 Consider he erms e and xe b b x e y e b

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Wisconsin Unemployment Rate Forecast Revisited

Wisconsin Unemployment Rate Forecast Revisited Wisconsin Unemploymen Rae Forecas Revisied Forecas in Lecure Wisconsin unemploymen November 06 was 4.% Forecass Poin Forecas 50% Inerval 80% Inerval Forecas Forecas December 06 4.0% (4.0%, 4.0%) (3.95%,

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Stationary Time Series

Stationary Time Series 3-Jul-3 Time Series Analysis Assoc. Prof. Dr. Sevap Kesel July 03 Saionary Time Series Sricly saionary process: If he oin dis. of is he same as he oin dis. of ( X,... X n) ( X h,... X nh) Weakly Saionary

More information

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions Business School, Brunel Universiy MSc. EC5501/5509 Modelling Financial Decisions and Markes/Inroducion o Quaniaive Mehods Prof. Menelaos Karanasos (Room SS269, el. 01895265284) Lecure Noes 6 1. Diagnosic

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

Wednesday, November 7 Handout: Heteroskedasticity

Wednesday, November 7 Handout: Heteroskedasticity Amhers College Deparmen of Economics Economics 360 Fall 202 Wednesday, November 7 Handou: Heeroskedasiciy Preview Review o Regression Model o Sandard Ordinary Leas Squares (OLS) Premises o Esimaion Procedures

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

Solutions to Exercises in Chapter 12

Solutions to Exercises in Chapter 12 Chaper in Chaper. (a) The leas-squares esimaed equaion is given by (b)!i = 6. + 0.770 Y 0.8 R R = 0.86 (.5) (0.07) (0.6) Boh b and b 3 have he expeced signs; income is expeced o have a posiive effec on

More information

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model:

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model: Dynamic Economeric Models: A. Auoregressive Model: Y = + 0 X 1 Y -1 + 2 Y -2 + k Y -k + e (Wih lagged dependen variable(s) on he RHS) B. Disribued-lag Model: Y = + 0 X + 1 X -1 + 2 X -2 + + k X -k + e

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

DEPARTMENT OF STATISTICS

DEPARTMENT OF STATISTICS A Tes for Mulivariae ARCH Effecs R. Sco Hacker and Abdulnasser Haemi-J 004: DEPARTMENT OF STATISTICS S-0 07 LUND SWEDEN A Tes for Mulivariae ARCH Effecs R. Sco Hacker Jönköping Inernaional Business School

More information

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests Ouline Ouline Hypohesis Tes wihin he Maximum Likelihood Framework There are hree main frequenis approaches o inference wihin he Maximum Likelihood framework: he Wald es, he Likelihood Raio es and he Lagrange

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H. ACE 56 Fall 5 Lecure 8: The Simple Linear Regression Model: R, Reporing he Resuls and Predicion by Professor Sco H. Irwin Required Readings: Griffihs, Hill and Judge. "Explaining Variaion in he Dependen

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

Testing the Random Walk Model. i.i.d. ( ) r

Testing the Random Walk Model. i.i.d. ( ) r he random walk heory saes: esing he Random Walk Model µ ε () np = + np + Momen Condiions where where ε ~ i.i.d he idea here is o es direcly he resricions imposed by momen condiions. lnp lnp µ ( lnp lnp

More information

Chapter 11. Heteroskedasticity The Nature of Heteroskedasticity. In Chapter 3 we introduced the linear model (11.1.1)

Chapter 11. Heteroskedasticity The Nature of Heteroskedasticity. In Chapter 3 we introduced the linear model (11.1.1) Chaper 11 Heeroskedasiciy 11.1 The Naure of Heeroskedasiciy In Chaper 3 we inroduced he linear model y = β+β x (11.1.1) 1 o explain household expendiure on food (y) as a funcion of household income (x).

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

Chapter 16. Regression with Time Series Data

Chapter 16. Regression with Time Series Data Chaper 16 Regression wih Time Series Daa The analysis of ime series daa is of vial ineres o many groups, such as macroeconomiss sudying he behavior of naional and inernaional economies, finance economiss

More information

Innova Junior College H2 Mathematics JC2 Preliminary Examinations Paper 2 Solutions 0 (*)

Innova Junior College H2 Mathematics JC2 Preliminary Examinations Paper 2 Solutions 0 (*) Soluion 3 x 4x3 x 3 x 0 4x3 x 4x3 x 4x3 x 4x3 x x 3x 3 4x3 x Innova Junior College H Mahemaics JC Preliminary Examinaions Paper Soluions 3x 3 4x 3x 0 4x 3 4x 3 0 (*) 0 0 + + + - 3 3 4 3 3 3 3 Hence x or

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

A note on spurious regressions between stationary series

A note on spurious regressions between stationary series A noe on spurious regressions beween saionary series Auhor Su, Jen-Je Published 008 Journal Tile Applied Economics Leers DOI hps://doi.org/10.1080/13504850601018106 Copyrigh Saemen 008 Rouledge. This is

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

y = β 1 + β 2 x (11.1.1)

y = β 1 + β 2 x (11.1.1) Chaper 11 Heeroskedasiciy 11.1 The Naure of Heeroskedasiciy In Chaper 3 we inroduced he linear model y = β 1 + β x (11.1.1) o explain household expendiure on food (y) as a funcion of household income (x).

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information

STAD57 Time Series Analysis. Lecture 5

STAD57 Time Series Analysis. Lecture 5 STAD57 Time Series Analysis Lecure 5 1 Exploraory Daa Analysis Check if given TS is saionary: µ is consan σ 2 is consan γ(s,) is funcion of h= s If no, ry o make i saionary using some of he mehods below:

More information

Nonlinearity Test on Time Series Data

Nonlinearity Test on Time Series Data PROCEEDING OF 3 RD INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION AND EDUCATION OF MATHEMATICS AND SCIENCE YOGYAKARTA, 16 17 MAY 016 Nonlineariy Tes on Time Series Daa Case Sudy: The Number of Foreign

More information

3.1 More on model selection

3.1 More on model selection 3. More on Model selecion 3. Comparing models AIC, BIC, Adjused R squared. 3. Over Fiing problem. 3.3 Sample spliing. 3. More on model selecion crieria Ofen afer model fiing you are lef wih a handful of

More information

Hypothesis Testing in the Classical Normal Linear Regression Model. 1. Components of Hypothesis Tests

Hypothesis Testing in the Classical Normal Linear Regression Model. 1. Components of Hypothesis Tests ECONOMICS 35* -- NOTE 8 M.G. Abbo ECON 35* -- NOTE 8 Hypohesis Tesing in he Classical Normal Linear Regression Model. Componens of Hypohesis Tess. A esable hypohesis, which consiss of wo pars: Par : a

More information

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H.

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H. ACE 564 Spring 2006 Lecure 7 Exensions of The Muliple Regression Model: Dumm Independen Variables b Professor Sco H. Irwin Readings: Griffihs, Hill and Judge. "Dumm Variables and Varing Coefficien Models

More information

(a) Set up the least squares estimation procedure for this problem, which will consist in minimizing the sum of squared residuals. 2 t.

(a) Set up the least squares estimation procedure for this problem, which will consist in minimizing the sum of squared residuals. 2 t. Insrucions: The goal of he problem se is o undersand wha you are doing raher han jus geing he correc resul. Please show your work clearly and nealy. No credi will be given o lae homework, regardless of

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

Forecasting optimally

Forecasting optimally I) ile: Forecas Evaluaion II) Conens: Evaluaing forecass, properies of opimal forecass, esing properies of opimal forecass, saisical comparison of forecas accuracy III) Documenaion: - Diebold, Francis

More information

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1 Modeling and Forecasing Volailiy Auoregressive Condiional Heeroskedasiciy Models Anhony Tay Slide 1 smpl @all line(m) sii dl_sii S TII D L _ S TII 4,000. 3,000.1.0,000 -.1 1,000 -. 0 86 88 90 9 94 96 98

More information

Department of Economics East Carolina University Greenville, NC Phone: Fax:

Department of Economics East Carolina University Greenville, NC Phone: Fax: March 3, 999 Time Series Evidence on Wheher Adjusmen o Long-Run Equilibrium is Asymmeric Philip Rohman Eas Carolina Universiy Absrac The Enders and Granger (998) uni-roo es agains saionary alernaives wih

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

The Simple Linear Regression Model: Reporting the Results and Choosing the Functional Form

The Simple Linear Regression Model: Reporting the Results and Choosing the Functional Form Chaper 6 The Simple Linear Regression Model: Reporing he Resuls and Choosing he Funcional Form To complee he analysis of he simple linear regression model, in his chaper we will consider how o measure

More information

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting Chaper 15 Time Series: Descripive Analyses, Models, and Forecasing Descripive Analysis: Index Numbers Index Number a number ha measures he change in a variable over ime relaive o he value of he variable

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Solutions: Wednesday, November 14

Solutions: Wednesday, November 14 Amhers College Deparmen of Economics Economics 360 Fall 2012 Soluions: Wednesday, November 14 Judicial Daa: Cross secion daa of judicial and economic saisics for he fify saes in 2000. JudExp CrimesAll

More information

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature On Measuring Pro-Poor Growh 1. On Various Ways of Measuring Pro-Poor Growh: A Shor eview of he Lieraure During he pas en years or so here have been various suggesions concerning he way one should check

More information

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1 Chaper 5 Heerocedasic Models Inroducion o ime series (2008) 1 Chaper 5. Conens. 5.1. The ARCH model. 5.2. The GARCH model. 5.3. The exponenial GARCH model. 5.4. The CHARMA model. 5.5. Random coefficien

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

NCSS Statistical Software. , contains a periodic (cyclic) component. A natural model of the periodic component would be

NCSS Statistical Software. , contains a periodic (cyclic) component. A natural model of the periodic component would be NCSS Saisical Sofware Chaper 468 Specral Analysis Inroducion This program calculaes and displays he periodogram and specrum of a ime series. This is someimes nown as harmonic analysis or he frequency approach

More information

The Multiple Regression Model: Hypothesis Tests and the Use of Nonsample Information

The Multiple Regression Model: Hypothesis Tests and the Use of Nonsample Information Chaper 8 The Muliple Regression Model: Hypohesis Tess and he Use of Nonsample Informaion An imporan new developmen ha we encouner in his chaper is using he F- disribuion o simulaneously es a null hypohesis

More information

Quarterly ice cream sales are high each summer, and the series tends to repeat itself each year, so that the seasonal period is 4.

Quarterly ice cream sales are high each summer, and the series tends to repeat itself each year, so that the seasonal period is 4. Seasonal models Many business and economic ime series conain a seasonal componen ha repeas iself afer a regular period of ime. The smalles ime period for his repeiion is called he seasonal period, and

More information

Cointegration and Implications for Forecasting

Cointegration and Implications for Forecasting Coinegraion and Implicaions for Forecasing Two examples (A) Y Y 1 1 1 2 (B) Y 0.3 0.9 1 1 2 Example B: Coinegraion Y and coinegraed wih coinegraing vecor [1, 0.9] because Y 0.9 0.3 is a saionary process

More information

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates)

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates) ECON 48 / WH Hong Time Series Daa Analysis. The Naure of Time Series Daa Example of ime series daa (inflaion and unemploymen raes) ECON 48 / WH Hong Time Series Daa Analysis The naure of ime series daa

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T Smoohing Consan process Separae signal & noise Smooh he daa: Backward smooher: A an give, replace he observaion b a combinaion of observaions a & before Simple smooher : replace he curren observaion wih

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j = 1: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME Moving Averages Recall ha a whie noise process is a series { } = having variance σ. The whie noise process has specral densiy f (λ) = of

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Y, where. 1 Estimate St.error

Y, where. 1 Estimate St.error 1 HG Feb 2014 ECON 5101 Exercises III - 24 Feb 2014 Exercise 1 In lecure noes 3 (LN3 page 11) we esimaed an ARMA(1,2) for daa) for he period, 1978q2-2013q2 Le Y ln BNP ln BNP (Norwegian Model: Y Y, where

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

Lecture 10 Estimating Nonlinear Regression Models

Lecture 10 Estimating Nonlinear Regression Models Lecure 0 Esimaing Nonlinear Regression Models References: Greene, Economeric Analysis, Chaper 0 Consider he following regression model: y = f(x, β) + ε =,, x is kx for each, β is an rxconsan vecor, ε is

More information

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size.

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size. Mehodology. Uni Roo Tess A ime series is inegraed when i has a mean revering propery and a finie variance. I is only emporarily ou of equilibrium and is called saionary in I(0). However a ime series ha

More information

How to Deal with Structural Breaks in Practical Cointegration Analysis

How to Deal with Structural Breaks in Practical Cointegration Analysis How o Deal wih Srucural Breaks in Pracical Coinegraion Analysis Roselyne Joyeux * School of Economic and Financial Sudies Macquarie Universiy December 00 ABSTRACT In his noe we consider he reamen of srucural

More information

The Overlapping Data Problem

The Overlapping Data Problem Quaniaive and Qualiaive Analysis in Social Sciences Volume 3, Issue 3, 009, 78-115 ISSN: 175-895 The Overlapping Daa Problem Ardian Harri a Mississipi Sae Universiy B. Wade Brorsen b Oklahoma Sae Universiy

More information

THE UNIVERSITY OF TEXAS AT AUSTIN McCombs School of Business

THE UNIVERSITY OF TEXAS AT AUSTIN McCombs School of Business THE UNIVERITY OF TEXA AT AUTIN McCombs chool of Business TA 7.5 Tom hively CLAICAL EAONAL DECOMPOITION - MULTIPLICATIVE MODEL Examples of easonaliy 8000 Quarerly sales for Wal-Mar for quarers a l e s 6000

More information

Lecture 4. Classical Linear Regression Model: Overview

Lecture 4. Classical Linear Regression Model: Overview Lecure 4 Classical Linear Regression Model: Overview Regression Regression is probably he single mos imporan ool a he economerician s disposal. Bu wha is regression analysis? I is concerned wih describing

More information

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing M Business Forecasing Mehods Exponenial moohing Mehods ecurer : Dr Iris Yeung Room No : P79 Tel No : 788 8 Types of Exponenial moohing Mehods imple Exponenial moohing Double Exponenial moohing Brown s

More information

CHAPTER 9. Exercise Solutions

CHAPTER 9. Exercise Solutions CHAPTER 9 Exercise Soluions Chaper 9, Exercise Soluions, Principles of Economerics, 3e EXERCISE 9. From he equaion for he AR() error model e = ρ e + v, we have from which we ge and hence ( e ) =ρ ( e )

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

DEPARTMENT OF ECONOMICS

DEPARTMENT OF ECONOMICS ISSN 0819-6 ISBN 0 730 609 9 THE UNIVERSITY OF MELBOURNE DEPARTMENT OF ECONOMICS RESEARCH PAPER NUMBER 95 NOVEMBER 005 INTERACTIONS IN REGRESSIONS by Joe Hirschberg & Jenny Lye Deparmen of Economics The

More information

Stability. Coefficients may change over time. Evolution of the economy Policy changes

Stability. Coefficients may change over time. Evolution of the economy Policy changes Sabiliy Coefficiens may change over ime Evoluion of he economy Policy changes Time Varying Parameers y = α + x β + Coefficiens depend on he ime period If he coefficiens vary randomly and are unpredicable,

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

Choice of Spectral Density Estimator in Ng-Perron Test: A Comparative Analysis

Choice of Spectral Density Estimator in Ng-Perron Test: A Comparative Analysis Inernaional Economeric Review (IER) Choice of Specral Densiy Esimaor in Ng-Perron Tes: A Comparaive Analysis Muhammad Irfan Malik and Aiq-ur-Rehman Inernaional Islamic Universiy Islamabad and Inernaional

More information

72 Calculus and Structures

72 Calculus and Structures 72 Calculus and Srucures CHAPTER 5 DISTANCE AND ACCUMULATED CHANGE Calculus and Srucures 73 Copyrigh Chaper 5 DISTANCE AND ACCUMULATED CHANGE 5. DISTANCE a. Consan velociy Le s ake anoher look a Mary s

More information

Wednesday, December 5 Handout: Panel Data and Unobservable Variables

Wednesday, December 5 Handout: Panel Data and Unobservable Variables Amhers College Deparmen of Economics Economics 360 Fall 0 Wednesday, December 5 Handou: Panel Daa and Unobservable Variables Preview Taking Sock: Ordinary Leas Squares (OLS) Esimaion Procedure o Sandard

More information

Forecasting. Summary. Sample StatFolio: tsforecast.sgp. STATGRAPHICS Centurion Rev. 9/16/2013

Forecasting. Summary. Sample StatFolio: tsforecast.sgp. STATGRAPHICS Centurion Rev. 9/16/2013 STATGRAPHICS Cenurion Rev. 9/16/2013 Forecasing Summary... 1 Daa Inpu... 3 Analysis Opions... 5 Forecasing Models... 9 Analysis Summary... 21 Time Sequence Plo... 23 Forecas Table... 24 Forecas Plo...

More information

Granger Causality Among Pre-Crisis East Asian Exchange Rates. (Running Title: Granger Causality Among Pre-Crisis East Asian Exchange Rates)

Granger Causality Among Pre-Crisis East Asian Exchange Rates. (Running Title: Granger Causality Among Pre-Crisis East Asian Exchange Rates) Granger Causaliy Among PreCrisis Eas Asian Exchange Raes (Running Tile: Granger Causaliy Among PreCrisis Eas Asian Exchange Raes) Joseph D. ALBA and Donghyun PARK *, School of Humaniies and Social Sciences

More information

Box-Jenkins Modelling of Nigerian Stock Prices Data

Box-Jenkins Modelling of Nigerian Stock Prices Data Greener Journal of Science Engineering and Technological Research ISSN: 76-7835 Vol. (), pp. 03-038, Sepember 0. Research Aricle Box-Jenkins Modelling of Nigerian Sock Prices Daa Ee Harrison Euk*, Barholomew

More information

Økonomisk Kandidateksamen 2005(II) Econometrics 2. Solution

Økonomisk Kandidateksamen 2005(II) Econometrics 2. Solution Økonomisk Kandidaeksamen 2005(II) Economerics 2 Soluion his is he proposed soluion for he exam in Economerics 2. For compleeness he soluion gives formal answers o mos of he quesions alhough his is no always

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED 0.1 MAXIMUM LIKELIHOOD ESTIMATIO EXPLAIED Maximum likelihood esimaion is a bes-fi saisical mehod for he esimaion of he values of he parameers of a sysem, based on a se of observaions of a random variable

More information

Ensamble methods: Bagging and Boosting

Ensamble methods: Bagging and Boosting Lecure 21 Ensamble mehods: Bagging and Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Ensemble mehods Mixure of expers Muliple base models (classifiers, regressors), each covers a differen par

More information

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum.

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum. January 01 Final Exam Quesions: Mark W. Wason (Poins/Minues are given in Parenheses) (15) 1. Suppose ha y follows he saionary AR(1) process y = y 1 +, where = 0.5 and ~ iid(0,1). Le x = (y + y 1 )/. (11)

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information