Quarterly ice cream sales are high each summer, and the series tends to repeat itself each year, so that the seasonal period is 4.

Size: px
Start display at page:

Download "Quarterly ice cream sales are high each summer, and the series tends to repeat itself each year, so that the seasonal period is 4."

Transcription

1 Seasonal models Many business and economic ime series conain a seasonal componen ha repeas iself afer a regular period of ime. The smalles ime period for his repeiion is called he seasonal period, and is denoed by s. As examples, monhly auo sales and earnings end o decrease during Augus and Sepember because of he changeover o new models, and monhly sales of oys rise every in December. For hese cases, s 12. Quarerly ice cream sales are high each summer, and he series ends o repea iself each year, so ha he seasonal period is 4. 1

2 Seasonal phenomena may sem from facors such as weaher, which affecs many business and economic aciviies like ourism and home building; cusom evens such as Chrismas, which is closely relaed o sales such as jewelry, oys, cards, and samps; graduaion ceremonies in he summer monhs, which are direcly relaed o he labor force saus in hose monhs. 2

3 As an illusraion he figure below shows U.S. monhly employmen figures (in housands) for males aged beween 16 and 19 years of age during he period 1971 o The numbers increase dramaically in he summer monhs, wih peaks in June, and decrease in he fall when schools reopen. 3

4 When a series is seasonal wih a period s, o analyze he daa, i is helpful o arrange he series in a wo-dimensional able according o he period and season, and including he oals and/or averages. 4

5 Nex we consider radiional mehods for analyzing seasonal ime series. Convenionally, ime series have been hough o consis of a mixure of rend or rend-cycle ( T ), seasonal ( S ), and irregular ( e ) componens. If hese componens are independen and addiive, one can wrie he imes series Z as Z T S e Depending on he daa, a muliplicaive model may be used, so ha a linear model is obained afer aking logs. 5

6 In he regression mehod for analyzing such series, one may model T m 0 i 1 iui, where he U i are rend-cycle variables. For example, we may have T m i 0 i 1 i. Similarly, he seasonal componen may be described as a linear combinaion of seasonal dummy (indicaor) variables, or as a linear combinaion of sine-cosine funcions of various frequencies. 6

7 Here we may have S s1 D j1 j j, where D 1 if corresponds o he seasonal j period j, and zero oherwise. Noe ha when he seasonal period equals s, we need only s 1 seasonal dummy variables. 7

8 Alernaively, S can be wrien as S s /2 sin j 1 j j 2 j 2 j cos s s where s/2 is he ineger par of s /2. 8

9 For a given daa se Z and specified values of m and s, he sandard leas squares regression mehod may be used o obain esimaes ˆi, ˆ j, ˆ j and ˆj of he parameers i, j, j and j of he models above. The esimaed componens are hen m Tˆ ˆ ˆ U S, 0 i 1 i i s1 ˆ D or, j1 j j e Z Tˆ Sˆ. ˆ 9

10 In he moving average mehod o modeling seasonal imes series, a variey of moving averages are used o exrac he rend and seasonal componens ha are assumed o be fixed or change slowly. For example, he rend can be esimaed by smoohing using a moving average, and hen he seasonal esimaed by applying a moving average o smooh he de-rended series. The above esimaes may be obained ieraively by repeaedly applying various moving average operaors. 10

11 A successful example of uilizing his moving average procedure is he Census X- 11/12 ARIMA mehod, which has been widely used in governmen and indusry. The series wih seasonal flucuaions removed, i.e. Z ˆ S, is called he seasonally adjused series, and procedures for deermining he seasonal componen are called seasonal adjusmen. 11

12 The mehods presened so far are based on he assumpion ha he seasonal componen is deerminisic and independen of any nonseasonal componens. However, many series are no so well-behaved. More likely, he seasonal componen may be random and correlaed wih nonseasonal componens. We now exend he sochasic ARIMA models o seasonal ime series. 12

13 We have seen ha, for nonseasonal series, i may be possible o obain a parsimonious represenaion of he form d ( B)(1 B) Z ( B) e, p q wih (1 B) d rendering a polynomial rend of order d as fixed so ha (1 B) d Z is saionary. Since we expec observaions ha are s unis apar o be similar, we would expec ha he operaor s 1B Z Z Z s migh be useful in modeling. 13

14 As saed earlier, i is of value o hink of a seasonal series as being se down in he form of a able conaining s columns. This represenaion makes i clear ha here are wo inervals of imporance in such daa. In he case of monhly daa, hese inervals would be monhs and years. Specifically, we would expec relaionships o occur (a) beween observaions for successive monhs in a paricular year and (b) beween observaions in he same monh in successive years. 14

15 The siuaion is somewha like ha in a woway analysis of variance model, where similariies can be expeced beween observaions in he same column and beween observaions in he same row. Suppose ha he h observaion Z is for he monh of April. We may be able o link Z o observaions in previous Aprils by a model of he form s s D s ( B ) 1 B Z ( B ), P Q where s ( B ) and ( s B ) are polynomials P Q s in B of degrees P and Q, respecively, and saisfying causal and inveribiliy condiions. 15

16 Similarly, a model D s s s ( B ) 1 B Z ( B ) 1 1 P Q migh be used o link he curren behavior for March wih previous March observaions, and so on, for each of he welve monhs. Moreover, i would usually be reasonable o assume ha he parameers of and would be approximaely he same for each monh. (If no, a differen model should be used). P Q 16

17 The value for April of his year would likely be relaed o values in March, February, ec. of his year as well, and hus we would expec he error componens, 1, 2 ec. o be relaed. Therefore, o ake care of such relaionships, we could inroduce a second model d ( B)(1 B) ( B) e, (1) p q where now e is a whie noise process, and ( B ) and ( B) are polynomials in B of p q degrees p and q, respecively, and again saisfying causal and inveribiliy condiions. 17

18 We hen have P s s ( B ) 1B Z Q s ( B ) D, and muliplying hrough by ( B )(1 B ) d p and using (1) we obain a muliplicaive model d s s s ( B) ( B ) 1B 1 B Z ( B) ( B ) e. p P q Q D The resuling muliplicaive process will be said o be a seasonal ARIMA model of order pdq,, PDQ,,. s 18

19 The seasonal and nonseasonal polynomials are assumed o have no common roos. A similar argumen can be used o obain models o ake care of muliple seasonaliies. The mos famous of such models is he 0,1,1 0,1,1 model called he airline 12 model B B Z B B e, so called because i was used o model naural logarihms of he number of monhly airline passengers in inernaional air ravel. 19

20 We now compue he auocovariance and auocorrelaion funcions of W B B Z is 20

21 Below are 150 simulaed values from he 0,1,1 0,1,1 model B B Z B B e. 21

22 The ACF of Z is large and decays slowly, whereas he PACF has a large spike a lag 1. These indicae ha he series is nonsaionary and ha differencing is called for. 22

23 To remove he nonsaionariy, he series is differenced, and he sample ACF and PACF of he differenced series B Z are shown in he nex figure. 1 23

24 The fac ha he ACF decays very slowly a muliples of he seasonal period 4 implies ha a seasonal differencing is also needed o achieve saionariy. I is known ha he ACF of a 0,0,1 0,0,1 model is zero excep a lags 4 1,3,4, and 5, and hus he sample ACF of he figure indicaes ha a 4 4 1B 1B Z 1 B 1B e model is appropriae for he original series. 24

25 One modificaion of he muliplicaive model menioned by Box and Jenkins (1976) is o allow a general moving average operaor * ( B) o replace he muliplicaive operaor s ( B) ( B ), and alernaively, or in addiion, o replace he muliplicaive auoregressive s operaor ( B) ( B ) by a more general operaor * ( B). 25

26 A few ips on fiing seasonal ARIMA models: In idenifying a seasonal model, he firs sep is o deermine wheher or no a seasonal difference is needed, in addiion o or perhaps insead of a non-seasonal difference. You should look a ime series plos and ACF and PACF plos for all possible combinaions of 0 and 1 non-seasonal difference and 0 or 1 seasonal difference. Don ever use more han one seasonal difference, nor more han wo oal differences (non-seasonal and seasonal combined). 26

27 If he seasonal paern is boh srong and sable over ime (e.g. high in he summer and low in he winer, or vice versa), hen you probably should use a seasonal difference regardless of wheher you use a non-seasonal difference, since his will preven he seasonal paern from dying ou in he longerm forecass. Noe ha we could fi a model wih fixed seasonaliy, if ha makes sense for a daa se. 27

28 Periodically correlaed sequences A ime series Z is called periodically correlaed wih minimal period T if he period T if is he smalles posiive ineger such ha E Z u E Z u T E Z Z E Z Z. u v ut vt A wide-sense saionary sequence is a special case of a PC sequence since i saisfies he definiion of a PC sequence wih period T 1 28

29 PC sequences have a lo of he properies of saionary sequences, bu are in general nonsaionary in a very simple manner ha can be useful for modeling. PC sequences have been used as models in meeorology, radio physics, and communicaions engineering. Due o he periodic naure of heir nonsaionariy, PC processes have been called cyclosaonary, periodically saionary, periodic nonsaionary, and processes wih periodic srucure. 29

30 Now we consider some simple models for generaing a PC sequence from a saionary Y. saionary sequence Lemma: Le C be a periodic deerminisic funcion wih period T, and Y and saionary sequence. Then he sequence C Z is PC wih periodic T. Proof: 30

31 Noe ha whereas here he mean and covariance funcions are periodic wih period T, T need no be he minimal period. For example, le T be even, Y have mean zero for all, and C C T /2 C has period T,. Whereas /2 /2 E Z Z EC s T Y C T Y st/2 T/2 st/2 T/2 E Z Z. s 31

32 Lemma: Le C and Y be as in he previous lemma. Then he sequence C Y is PC wih periodic T. Proof: 32

33 The period T of a PC sequence may be esimaed in several ways. One is o use a funcion of he sample auocovariances (Tian 1988). Marin (1990) poined ou problems wih his mehod, and gave an esimaion procedure ha worked in cases when he mehod above gave he wrong esimae. The mehod was based on he average magniude difference funcion 1 N j k1 s j Z Z N j for various values of j. k 33

34 Why use a PC model insead of an ARMA model? Several auhors have discussed he consequences of fiing a saionary ARMA model o a ime series ha has periodic auocorrelaion. These include forecasing inefficiency, inconsisen parameer esimaes, spurious seasonal facors in he auoregressive operaor, and overspecificaion of model orders. 34

35 Why use a PC model insead of a seasonal ARIMA model? In seasonal ARIMA models, an assumpion is made ha he correlaion srucure of he series a fixed lags is consan across he series, and ha aking seasonal differences (possibly along wih a nonseasonal differences), renders he series saionary. 35

36 However, for some seasonal ime series ha is no he case. For example, Vecchia and Ballerini gave examples of ime series Homesead, Florida rainfall daa and monly sreamflow for he Fraser River in Hope, Briish Columbia) ha were adjused for a esimaes of he periodic mean and variance of he series, i.e. Y Z ˆ, ˆ where Y sill displayed periodic behavior in is auocovariance funcion. They developed a es for periodic auocorrelaion based on large sample properies of a Fourier-ransformed version of he esimaed periodic auocorrelaion funcion. 36

37 Marin (1999) developed a es for periodic auocorrelaion based on zero-crossings, he number of imes a series crosses he x-axis. The es was applied o wo daa ses, area average precipiaion in he US over 1990 o 1992, and he number of ornadoes in he US from 1953 o Zero-crossings were used because of heir simpliciy and drasic daa reducion. 37

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

STAD57 Time Series Analysis. Lecture 17

STAD57 Time Series Analysis. Lecture 17 STAD57 Time Series Analysis Lecure 17 1 Exponenially Weighed Moving Average Model Consider ARIMA(0,1,1), or IMA(1,1), model 1 s order differences follow MA(1) X X W W Y X X W W 1 1 1 1 Very common model

More information

STAD57 Time Series Analysis. Lecture 17

STAD57 Time Series Analysis. Lecture 17 STAD57 Time Series Analysis Lecure 17 1 Exponenially Weighed Moving Average Model Consider ARIMA(0,1,1), or IMA(1,1), model 1 s order differences follow MA(1) X X W W Y X X W W 1 1 1 1 Very common model

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Stationary Time Series

Stationary Time Series 3-Jul-3 Time Series Analysis Assoc. Prof. Dr. Sevap Kesel July 03 Saionary Time Series Sricly saionary process: If he oin dis. of is he same as he oin dis. of ( X,... X n) ( X h,... X nh) Weakly Saionary

More information

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing M Business Forecasing Mehods Exponenial moohing Mehods ecurer : Dr Iris Yeung Room No : P79 Tel No : 788 8 Types of Exponenial moohing Mehods imple Exponenial moohing Double Exponenial moohing Brown s

More information

Summer Term Albert-Ludwigs-Universität Freiburg Empirische Forschung und Okonometrie. Time Series Analysis

Summer Term Albert-Ludwigs-Universität Freiburg Empirische Forschung und Okonometrie. Time Series Analysis Summer Term 2009 Alber-Ludwigs-Universiä Freiburg Empirische Forschung und Okonomerie Time Series Analysis Classical Time Series Models Time Series Analysis Dr. Sevap Kesel 2 Componens Hourly earnings:

More information

- The whole joint distribution is independent of the date at which it is measured and depends only on the lag.

- The whole joint distribution is independent of the date at which it is measured and depends only on the lag. Saionary Processes Sricly saionary - The whole join disribuion is indeenden of he dae a which i is measured and deends only on he lag. - E y ) is a finie consan. ( - V y ) is a finie consan. ( ( y, y s

More information

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting Chaper 15 Time Series: Descripive Analyses, Models, and Forecasing Descripive Analysis: Index Numbers Index Number a number ha measures he change in a variable over ime relaive o he value of he variable

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

Section 4 NABE ASTEF 232

Section 4 NABE ASTEF 232 Secion 4 NABE ASTEF 3 APPLIED ECONOMETRICS: TIME-SERIES ANALYSIS 33 Inroducion and Review The Naure of Economic Modeling Judgemen calls unavoidable Economerics an ar Componens of Applied Economerics Specificaion

More information

STAD57 Time Series Analysis. Lecture 5

STAD57 Time Series Analysis. Lecture 5 STAD57 Time Series Analysis Lecure 5 1 Exploraory Daa Analysis Check if given TS is saionary: µ is consan σ 2 is consan γ(s,) is funcion of h= s If no, ry o make i saionary using some of he mehods below:

More information

Exponential Smoothing

Exponential Smoothing Exponenial moohing Inroducion A simple mehod for forecasing. Does no require long series. Enables o decompose he series ino a rend and seasonal effecs. Paricularly useful mehod when here is a need o forecas

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Wisconsin Unemployment Rate Forecast Revisited

Wisconsin Unemployment Rate Forecast Revisited Wisconsin Unemploymen Rae Forecas Revisied Forecas in Lecure Wisconsin unemploymen November 06 was 4.% Forecass Poin Forecas 50% Inerval 80% Inerval Forecas Forecas December 06 4.0% (4.0%, 4.0%) (3.95%,

More information

Box-Jenkins Modelling of Nigerian Stock Prices Data

Box-Jenkins Modelling of Nigerian Stock Prices Data Greener Journal of Science Engineering and Technological Research ISSN: 76-7835 Vol. (), pp. 03-038, Sepember 0. Research Aricle Box-Jenkins Modelling of Nigerian Sock Prices Daa Ee Harrison Euk*, Barholomew

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

Distribution of Least Squares

Distribution of Least Squares Disribuion of Leas Squares In classic regression, if he errors are iid normal, and independen of he regressors, hen he leas squares esimaes have an exac normal disribuion, no jus asympoic his is no rue

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T Smoohing Consan process Separae signal & noise Smooh he daa: Backward smooher: A an give, replace he observaion b a combinaion of observaions a & before Simple smooher : replace he curren observaion wih

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Forecasting optimally

Forecasting optimally I) ile: Forecas Evaluaion II) Conens: Evaluaing forecass, properies of opimal forecass, esing properies of opimal forecass, saisical comparison of forecas accuracy III) Documenaion: - Diebold, Francis

More information

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates)

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates) ECON 48 / WH Hong Time Series Daa Analysis. The Naure of Time Series Daa Example of ime series daa (inflaion and unemploymen raes) ECON 48 / WH Hong Time Series Daa Analysis The naure of ime series daa

More information

ST4064. Time Series Analysis. Lecture notes

ST4064. Time Series Analysis. Lecture notes ST4064 Time Series Analysis ST4064 Time Series Analysis Lecure noes ST4064 Time Series Analysis Ouline I II Inroducion o ime series analysis Saionariy and ARMA modelling. Saionariy a. Definiions b. Sric

More information

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size.

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size. Mehodology. Uni Roo Tess A ime series is inegraed when i has a mean revering propery and a finie variance. I is only emporarily ou of equilibrium and is called saionary in I(0). However a ime series ha

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Forecasting. Summary. Sample StatFolio: tsforecast.sgp. STATGRAPHICS Centurion Rev. 9/16/2013

Forecasting. Summary. Sample StatFolio: tsforecast.sgp. STATGRAPHICS Centurion Rev. 9/16/2013 STATGRAPHICS Cenurion Rev. 9/16/2013 Forecasing Summary... 1 Daa Inpu... 3 Analysis Opions... 5 Forecasing Models... 9 Analysis Summary... 21 Time Sequence Plo... 23 Forecas Table... 24 Forecas Plo...

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Chapter 16. Regression with Time Series Data

Chapter 16. Regression with Time Series Data Chaper 16 Regression wih Time Series Daa The analysis of ime series daa is of vial ineres o many groups, such as macroeconomiss sudying he behavior of naional and inernaional economies, finance economiss

More information

Solutions to Odd Number Exercises in Chapter 6

Solutions to Odd Number Exercises in Chapter 6 1 Soluions o Odd Number Exercises in 6.1 R y eˆ 1.7151 y 6.3 From eˆ ( T K) ˆ R 1 1 SST SST SST (1 R ) 55.36(1.7911) we have, ˆ 6.414 T K ( ) 6.5 y ye ye y e 1 1 Consider he erms e and xe b b x e y e b

More information

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance Lecure 5 Time series: ECM Bernardina Algieri Deparmen Economics, Saisics and Finance Conens Time Series Modelling Coinegraion Error Correcion Model Two Seps, Engle-Granger procedure Error Correcion Model

More information

NCSS Statistical Software. , contains a periodic (cyclic) component. A natural model of the periodic component would be

NCSS Statistical Software. , contains a periodic (cyclic) component. A natural model of the periodic component would be NCSS Saisical Sofware Chaper 468 Specral Analysis Inroducion This program calculaes and displays he periodogram and specrum of a ime series. This is someimes nown as harmonic analysis or he frequency approach

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information

Lesson 2, page 1. Outline of lesson 2

Lesson 2, page 1. Outline of lesson 2 Lesson 2, page Ouline of lesson 2 Inroduce he Auocorrelaion Coefficien Undersand and define saionariy Discuss ransformaion Discuss rend and rend removal C:\Kyrre\sudier\drgrad\Kurs\series\lecure 02 03022.doc,

More information

DYNAMIC ECONOMETRIC MODELS vol NICHOLAS COPERNICUS UNIVERSITY - TORUŃ Józef Stawicki and Joanna Górka Nicholas Copernicus University

DYNAMIC ECONOMETRIC MODELS vol NICHOLAS COPERNICUS UNIVERSITY - TORUŃ Józef Stawicki and Joanna Górka Nicholas Copernicus University DYNAMIC ECONOMETRIC MODELS vol.. - NICHOLAS COPERNICUS UNIVERSITY - TORUŃ 996 Józef Sawicki and Joanna Górka Nicholas Copernicus Universiy ARMA represenaion for a sum of auoregressive processes In he ime

More information

BOX-JENKINS MODEL NOTATION. The Box-Jenkins ARMA(p,q) model is denoted by the equation. pwhile the moving average (MA) part of the model is θ1at

BOX-JENKINS MODEL NOTATION. The Box-Jenkins ARMA(p,q) model is denoted by the equation. pwhile the moving average (MA) part of the model is θ1at BOX-JENKINS MODEL NOAION he Box-Jenkins ARMA(,q) model is denoed b he equaion + + L+ + a θ a L θ a 0 q q. () he auoregressive (AR) ar of he model is + L+ while he moving average (MA) ar of he model is

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

Cointegration and Implications for Forecasting

Cointegration and Implications for Forecasting Coinegraion and Implicaions for Forecasing Two examples (A) Y Y 1 1 1 2 (B) Y 0.3 0.9 1 1 2 Example B: Coinegraion Y and coinegraed wih coinegraing vecor [1, 0.9] because Y 0.9 0.3 is a saionary process

More information

How to Deal with Structural Breaks in Practical Cointegration Analysis

How to Deal with Structural Breaks in Practical Cointegration Analysis How o Deal wih Srucural Breaks in Pracical Coinegraion Analysis Roselyne Joyeux * School of Economic and Financial Sudies Macquarie Universiy December 00 ABSTRACT In his noe we consider he reamen of srucural

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Department of Economics East Carolina University Greenville, NC Phone: Fax:

Department of Economics East Carolina University Greenville, NC Phone: Fax: March 3, 999 Time Series Evidence on Wheher Adjusmen o Long-Run Equilibrium is Asymmeric Philip Rohman Eas Carolina Universiy Absrac The Enders and Granger (998) uni-roo es agains saionary alernaives wih

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

2 Univariate Stationary Processes

2 Univariate Stationary Processes Univariae Saionary Processes As menioned in he inroducion, he publicaion of he exbook by GEORGE E.P. BOX and GWILYM M. JENKINS in 97 opened a new road o he analysis of economic ime series. This chaper

More information

Y, where. 1 Estimate St.error

Y, where. 1 Estimate St.error 1 HG Feb 2014 ECON 5101 Exercises III - 24 Feb 2014 Exercise 1 In lecure noes 3 (LN3 page 11) we esimaed an ARMA(1,2) for daa) for he period, 1978q2-2013q2 Le Y ln BNP ln BNP (Norwegian Model: Y Y, where

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

Solutions to Exercises in Chapter 12

Solutions to Exercises in Chapter 12 Chaper in Chaper. (a) The leas-squares esimaed equaion is given by (b)!i = 6. + 0.770 Y 0.8 R R = 0.86 (.5) (0.07) (0.6) Boh b and b 3 have he expeced signs; income is expeced o have a posiive effec on

More information

I. Return Calculations (20 pts, 4 points each)

I. Return Calculations (20 pts, 4 points each) Universiy of Washingon Spring 015 Deparmen of Economics Eric Zivo Econ 44 Miderm Exam Soluions This is a closed book and closed noe exam. However, you are allowed one page of noes (8.5 by 11 or A4 double-sided)

More information

Chapter 3, Part IV: The Box-Jenkins Approach to Model Building

Chapter 3, Part IV: The Box-Jenkins Approach to Model Building Chaper 3, Par IV: The Box-Jenkins Approach o Model Building The ARMA models have been found o be quie useful for describing saionary nonseasonal ime series. A parial explanaion for his fac is provided

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model:

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model: Dynamic Economeric Models: A. Auoregressive Model: Y = + 0 X 1 Y -1 + 2 Y -2 + k Y -k + e (Wih lagged dependen variable(s) on he RHS) B. Disribued-lag Model: Y = + 0 X + 1 X -1 + 2 X -2 + + k X -k + e

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

THE UNIVERSITY OF TEXAS AT AUSTIN McCombs School of Business

THE UNIVERSITY OF TEXAS AT AUSTIN McCombs School of Business THE UNIVERITY OF TEXA AT AUTIN McCombs chool of Business TA 7.5 Tom hively CLAICAL EAONAL DECOMPOITION - MULTIPLICATIVE MODEL Examples of easonaliy 8000 Quarerly sales for Wal-Mar for quarers a l e s 6000

More information

Why is Chinese Provincial Output Diverging? Joakim Westerlund, University of Gothenburg David Edgerton, Lund University Sonja Opper, Lund University

Why is Chinese Provincial Output Diverging? Joakim Westerlund, University of Gothenburg David Edgerton, Lund University Sonja Opper, Lund University Why is Chinese Provincial Oupu Diverging? Joakim Weserlund, Universiy of Gohenburg David Edgeron, Lund Universiy Sonja Opper, Lund Universiy Purpose of his paper. We re-examine he resul of Pedroni and

More information

TIME SERIES ANALYSIS. Page# 1

TIME SERIES ANALYSIS. Page# 1 FORECASTING: When esimaes of fuure condiions are made on a sysemaic basis, he process is referred o as forecasing and he figure and he saemen obained is known as a forecas. Forecasing is a service whose

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

Dynamic Models, Autocorrelation and Forecasting

Dynamic Models, Autocorrelation and Forecasting ECON 4551 Economerics II Memorial Universiy of Newfoundland Dynamic Models, Auocorrelaion and Forecasing Adaped from Vera Tabakova s noes 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H.

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H. ACE 564 Spring 2006 Lecure 7 Exensions of The Muliple Regression Model: Dumm Independen Variables b Professor Sco H. Irwin Readings: Griffihs, Hill and Judge. "Dumm Variables and Varing Coefficien Models

More information

Use of Unobserved Components Model for Forecasting Non-stationary Time Series: A Case of Annual National Coconut Production in Sri Lanka

Use of Unobserved Components Model for Forecasting Non-stationary Time Series: A Case of Annual National Coconut Production in Sri Lanka Tropical Agriculural Research Vol. 5 (4): 53 531 (014) Use of Unobserved Componens Model for Forecasing Non-saionary Time Series: A Case of Annual Naional Coconu Producion in Sri Lanka N.K.K. Brinha, S.

More information

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H. ACE 56 Fall 5 Lecure 8: The Simple Linear Regression Model: R, Reporing he Resuls and Predicion by Professor Sco H. Irwin Required Readings: Griffihs, Hill and Judge. "Explaining Variaion in he Dependen

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Modeling Rainfall in Dhaka Division of Bangladesh Using Time Series Analysis.

Modeling Rainfall in Dhaka Division of Bangladesh Using Time Series Analysis. Journal of Mahemaical Modelling and Applicaion 01, Vol. 1, No.5, 67-73 ISSN: 178-43 67 Modeling Rainfall in Dhaka Division of Bangladesh Using Time Series Analysis. Md. Mahsin Insiue of Saisical Research

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

Y 0.4Y 0.45Y Y to a proper ARMA specification.

Y 0.4Y 0.45Y Y to a proper ARMA specification. HG Jan 04 ECON 50 Exercises II - 0 Feb 04 (wih answers Exercise. Read secion 8 in lecure noes 3 (LN3 on he common facor problem in ARMA-processes. Consider he following process Y 0.4Y 0.45Y 0.5 ( where

More information

A New Unit Root Test against Asymmetric ESTAR Nonlinearity with Smooth Breaks

A New Unit Root Test against Asymmetric ESTAR Nonlinearity with Smooth Breaks Iran. Econ. Rev. Vol., No., 08. pp. 5-6 A New Uni Roo es agains Asymmeric ESAR Nonlineariy wih Smooh Breaks Omid Ranjbar*, sangyao Chang, Zahra (Mila) Elmi 3, Chien-Chiang Lee 4 Received: December 7, 06

More information

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions Business School, Brunel Universiy MSc. EC5501/5509 Modelling Financial Decisions and Markes/Inroducion o Quaniaive Mehods Prof. Menelaos Karanasos (Room SS269, el. 01895265284) Lecure Noes 6 1. Diagnosic

More information

Fourier Transformation on Model Fitting for Pakistan Inflation Rate

Fourier Transformation on Model Fitting for Pakistan Inflation Rate Fourier Transformaion on Model Fiing for Pakisan Inflaion Rae Anam Iqbal (Corresponding auhor) Dep. of Saisics, Gov. Pos Graduae College (w), Sargodha, Pakisan Tel: 92-321-603-4232 E-mail: anammughal343@gmail.com

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Volatility. Many economic series, and most financial series, display conditional volatility

Volatility. Many economic series, and most financial series, display conditional volatility Volailiy Many economic series, and mos financial series, display condiional volailiy The condiional variance changes over ime There are periods of high volailiy When large changes frequenly occur And periods

More information

TÁMOP /2/A/KMR

TÁMOP /2/A/KMR ECONOMIC STATISTICS ECONOMIC STATISTICS Sonsored by a Gran TÁMOP-4..2-08/2/A/KMR-2009-004 Course Maerial Develoed by Dearmen of Economics, Faculy of Social Sciences, Eövös Loránd Universiy Budaes (ELTE)

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

LONG MEMORY AT THE LONG-RUN AND THE SEASONAL MONTHLY FREQUENCIES IN THE US MONEY STOCK. Guglielmo Maria Caporale. Brunel University, London

LONG MEMORY AT THE LONG-RUN AND THE SEASONAL MONTHLY FREQUENCIES IN THE US MONEY STOCK. Guglielmo Maria Caporale. Brunel University, London LONG MEMORY AT THE LONG-RUN AND THE SEASONAL MONTHLY FREQUENCIES IN THE US MONEY STOCK Guglielmo Maria Caporale Brunel Universiy, London Luis A. Gil-Alana Universiy of Navarra Absrac In his paper we show

More information

DEPARTMENT OF STATISTICS

DEPARTMENT OF STATISTICS A Tes for Mulivariae ARCH Effecs R. Sco Hacker and Abdulnasser Haemi-J 004: DEPARTMENT OF STATISTICS S-0 07 LUND SWEDEN A Tes for Mulivariae ARCH Effecs R. Sco Hacker Jönköping Inernaional Business School

More information

Nonstationarity-Integrated Models. Time Series Analysis Dr. Sevtap Kestel 1

Nonstationarity-Integrated Models. Time Series Analysis Dr. Sevtap Kestel 1 Nonsaionariy-Inegraed Models Time Series Analysis Dr. Sevap Kesel 1 Diagnosic Checking Residual Analysis: Whie noise. P-P or Q-Q plos of he residuals follow a normal disribuion, he series is called a Gaussian

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

BOOTSTRAP PREDICTION INTERVALS FOR TIME SERIES MODELS WITH HETROSCEDASTIC ERRORS. Department of Statistics, Islamia College, Peshawar, KP, Pakistan 2

BOOTSTRAP PREDICTION INTERVALS FOR TIME SERIES MODELS WITH HETROSCEDASTIC ERRORS. Department of Statistics, Islamia College, Peshawar, KP, Pakistan 2 Pak. J. Sais. 017 Vol. 33(1), 1-13 BOOTSTRAP PREDICTIO ITERVAS FOR TIME SERIES MODES WITH HETROSCEDASTIC ERRORS Amjad Ali 1, Sajjad Ahmad Khan, Alamgir 3 Umair Khalil and Dos Muhammad Khan 1 Deparmen of

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Regression with Time Series Data

Regression with Time Series Data Regression wih Time Series Daa y = β 0 + β 1 x 1 +...+ β k x k + u Serial Correlaion and Heeroskedasiciy Time Series - Serial Correlaion and Heeroskedasiciy 1 Serially Correlaed Errors: Consequences Wih

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature On Measuring Pro-Poor Growh 1. On Various Ways of Measuring Pro-Poor Growh: A Shor eview of he Lieraure During he pas en years or so here have been various suggesions concerning he way one should check

More information

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand

Excel-Based Solution Method For The Optimal Policy Of The Hadley And Whittin s Exact Model With Arma Demand Excel-Based Soluion Mehod For The Opimal Policy Of The Hadley And Whiin s Exac Model Wih Arma Demand Kal Nami School of Business and Economics Winson Salem Sae Universiy Winson Salem, NC 27110 Phone: (336)750-2338

More information

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91

ADDITIONAL PROBLEMS (a) Find the Fourier transform of the half-cosine pulse shown in Fig. 2.40(a). Additional Problems 91 ddiional Problems 9 n inverse relaionship exiss beween he ime-domain and freuency-domain descripions of a signal. Whenever an operaion is performed on he waveform of a signal in he ime domain, a corresponding

More information

The Simple Linear Regression Model: Reporting the Results and Choosing the Functional Form

The Simple Linear Regression Model: Reporting the Results and Choosing the Functional Form Chaper 6 The Simple Linear Regression Model: Reporing he Resuls and Choosing he Funcional Form To complee he analysis of he simple linear regression model, in his chaper we will consider how o measure

More information

Økonomisk Kandidateksamen 2005(II) Econometrics 2. Solution

Økonomisk Kandidateksamen 2005(II) Econometrics 2. Solution Økonomisk Kandidaeksamen 2005(II) Economerics 2 Soluion his is he proposed soluion for he exam in Economerics 2. For compleeness he soluion gives formal answers o mos of he quesions alhough his is no always

More information

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1 Chaper 5 Heerocedasic Models Inroducion o ime series (2008) 1 Chaper 5. Conens. 5.1. The ARCH model. 5.2. The GARCH model. 5.3. The exponenial GARCH model. 5.4. The CHARMA model. 5.5. Random coefficien

More information