Wisconsin Unemployment Rate Forecast Revisited

Size: px
Start display at page:

Download "Wisconsin Unemployment Rate Forecast Revisited"

Transcription

1 Wisconsin Unemploymen Rae Forecas Revisied Forecas in Lecure Wisconsin unemploymen November 06 was 4.% Forecass Poin Forecas 50% Inerval 80% Inerval Forecas Forecas December % (4.0%, 4.0%) (3.95%, 4.05%) January % (4.0%, 4.%) (3.9%, 4.%) February % (3.9%, 4.%) (3.8%, 4.%) Realizaions December 06: 4.% January 07: 3.9%

2 Regression wih Correlaed Errors y α + βx + e In some regression models, he errors are correlaed Pure rend Models Pure Seasonaliy Models In hese models he errors can be correlaed Classical and robus sandard errors are no appropriae

3 Example: Sock Volume w 960w 970w 980w 990w 000w 00w Residuals lvolume Fied values Auocorrelaions of e Lag Barle's formula for MA(q) 95% confidence bands 950w 960w 970w 980w 990w 000w 00w

4 Leas-Squares Variance Formula Recall for v x var ( ˆ β ) When he v are uncorrelaed var var v e var a ~ ( ) a ˆ var( v ) β ~ var v [ var( x )] ( v ) var( v ) [ var( x )]

5 General Formula Define f var var v ( v ) When he v are uncorrelaed f, oherwise no. hen var β ( ) a ˆ var( x ) e ~ [ var( x )] f

6 Adjusmen Facor he asympoic variance of leas-squares is he convenional, muliplied by an adjusmen facor for he serial correlaion var β ( ) a ˆ var( x ) e ~ [ var( x )] f

7 Auocovariance of v We wan a useful formula for Since E(v )0, hen E E( v ) ( ) var v ( v v ) cov( v v ) γ ( j) he auocovariance of v j f var var j v ( v )

8 Variance of sum of correlaed v ( ) ( ) j j j j j j v v E v v E v E v var γ

9 Adjusmen Facor Where he (-j) are he auocorrelaions of v ( ) ( ) j j v v f var var

10 his double sum is he sum of all he elemens in he marix here are of he (0) (-) of he () (-) of he () ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) j j j +

11 Adjusmen Facor Dividing by If is large ( ) ( ) j j j f j j + ( ) + j f j f

12 Summary: Leas-Squares Variance When he errors are correlaed var β ( ) a ˆ var( x e ) ~ [ var( x )] f f + j ( j) he convenional formula is muliplied by an adjusmen for auocorrelaion

13 HAC Esimaion Esimaion of f For variances and sandard errors under auocorrelaion Called heeroskedasiciy and auocorrelaion consisen (HAC) variance esimaion Muliply convenional variance esimaes by esimaes of f

14 HAC Esimaion he adjusmen is f + j ( j) where (j) are he auocorrelaions of v x e Esimae (j) by sample auocorrelaions using leas-squares residuals Bu in a sample of lengh we canno esimae all auocorrelaions well

15 Unweighed HAC Esimaor For some runcaion parameer m, Original proposal fˆ + j L. Hansen, Hodrick (978) Hal Whie (98) m ˆ ( j)

16 Lars Hansen Professor Lars Hansen, U Chicago Invened Generalized Mehod of Momens, he leading esimaion mehod for applied economerics Inroduced unweighed HAC esimaor for muli-sep regression models 03 Nobel Prize in economics

17 Deficiencies of Unweighed Esimaor fˆ he esimaor is no smooh in he runcaion parameer he sample esimae can be negaive Example of negaive esimae when m fˆ + ˆ Negaive if ()<-/ + ( ) m j ˆ ( j)

18 Example: Liquor Sales ake monhly growh raes Regress on Seasonal Dummies o obain seasonal paern Liquor Sales, Monhly Growh Rae Seasonal y Fied values m 995m 000m 005m 00m 05m ime 06m 06m4 06m7 06m0 07m ime

19 Auocorrelaion of Residual he firs auocorrelaion is less han -/ Auocorrelaions of e Liquor Sales, Monhly Growh Rae, Auocorrelaion Lag Barle's formula for MA(q) 95% confidence bands

20 Weighed HAC Esimaor Called Newey-Wes variance esimaor Whiney Newey, Ken Wes (987) his weighed esimaor is always posiive Smoohly changes in runcaion parameer m ( ) + m j j m j m f ˆ ˆ

21 Whiney Newey and Ken Wes Professor Whiney Newey, MI Leading economeric heoris Professor Ken Wes, Wisconsin Macroeconomis & economerician Forecas evaluaion and comparison Join paper in 987 Weighed HAC esimaor One of he mos referenced papers in economerics

22 Compuaion In SAA, replace regress command wih newey command.newey y x, lag(m) You supply he runcaion parameer m Similar o regression wih robus sandard errors hese are idenical.newey y x, lag(0).reg y x, r

23 Example: Liquor Sales. regress y b.m, r Linear regression Number of obs 99 F(, 87) Prob > F R-squared Roo MSE.0333 Robus y Coef. Sd. Err. P> [95% Conf. Inerval] m _cons

24 Wih Newey-Wes sandard errors. newey y b.m, lag() Regression wih Newey-Wes sandard errors Number of obs 99 maximum lag: F(, 87) Prob > F Newey-Wes y Coef. Sd. Err. P> [95% Conf. Inerval] m _cons

25 runcaion Parameer m should be large when auocorrelaion is large Sophisical daa-dependen mehods o pick m have been developed, bu are no in SAA Sock-Wason defaul (explanaory x s) m 0.75 rend/seasonal defaul m.4 /3 /3

26 Derivaion of Defauls Due o Donald Andrews (99) he opimal m minimizes he mean-squared error of he esimae of f When v is an AR() wih coefficien, Andrews found he opimal m is m C C /3 6 ( ) /3

27 Donald Andrews Leading economeric heoris Conribuions o ime-series Opimal selecion of runcaion parameer ess for srucural change

28 Defaul Values m C C /3 6 ( ) Sock-Wason If boh x and e are AR() wih coef ½, hen v x e has AR() coefficien.5. Plug his in, and C.75 rend-seasonal If x is rend and/or seasonal and e are AR() wih coef ½, hen v x e has AR() coefficien.5. Plug his in, and C.4 /3

29 Liquor Sales again. dis.4*e(n)^(/3) newey y b.m, lag(9) Regression wih Newey-Wes sandard errors Number of obs 99 maximum lag: 9 F(, 87) 8.7 Prob > F Newey-Wes y Coef. Sd. Err. P> [95% Conf. Inerval] m _cons

30 Example: Men s Labor Force Paricipaion Rae, rend Model m 960m 970m 980m 990m 000m 00m 00m ime Civilian Labor Force Paricipaion Rae: 0 years and over, Men Fied values

31 . reg men ime, r Linear regression Number of obs 89 F(, 87) Prob > F R-squared Roo MSE.9307 Robus men Coef. Sd. Err. P> [95% Conf. Inerval] ime _cons dis.4*e(n)^(/3) newey men ime, lag(3) Regression wih Newey-Wes sandard errors Number of obs 89 maximum lag: 3 F(, 87) Prob > F Newey-Wes men Coef. Sd. Err. P> [95% Conf. Inerval] ime _cons

32 Summary In one-sep-ahead forecas regressions If he errors are serially uncorrelaed Use Robus sandard errors reg wih r opion If he errors are correlaed Use Newey-Wes sandard errors newey y x, lag(m) In pure rend or seasonaliy models Se m.4 /3 In dynamic regression Se m.75 /3

33 h-sep-ahead forecass In he AR() Model he opimal h-sep forecasing regression akes he form he error u is a correlaed MA(h-) Unless β0 e y y + + β α h h h h e e e e u u y y β β β β α

34 h-sep-ahead models In any h-sep model he variable v y -h e is generally serially correlaed Generally MA(h-) y + u α + βy h Correc adjusmen erm f + h j ( j)

35 Newey-Wes Sandard Errors Sandard errors can be esimaed using he Newey-Wes mehod runcaion parameer se o forecas horizon mh fˆ + h j h h j ˆ ( j)

36 Example: Unemploymen Rae -monh-ahead forecas wih 4 AR lags Robus sandard errors:. reg ur L (/5).ur, r Linear regression Number of obs 84 F(4, 809) 0.69 Prob > F R-squared 0.58 Roo MSE.785 Robus ur Coef. Sd. Err. P> [95% Conf. Inerval] ur L L L L _cons

37 Example: Unemploymen Rae Newey-Wes sandard errors: Sandard errors on lag 3 and 4 decrease by half Sandard error on consan more han doubles. newey ur L(/5).ur, lag() Regression wih Newey-Wes sandard errors Number of obs 84 maximum lag: F( 4, 809) 3.83 Prob > F Newey-Wes ur Coef. Sd. Err. P> [95% Conf. Inerval] ur L L L L _cons

38 newey and forecasing predic works afer newey command, bu no wih sdf opion newey no appropriae for ieraed forecass Use newey o assess model and examine coefficiens Use reg o compue ou-of-sample forecas inervals

39 Summary In one-sep-ahead forecas regressions If he errors are serially uncorrelaed, use r opion If he errors are correlaed Use newey for sandard errors In pure rend or seasonaliy models se m.4 /3 In dynamic regression se m.75 /3 n Use reg and predic sf, sdf for forecas inervals, or ieraed forecass wih forecas In h-sep-ahead forecas regressions Use newey wih mh for sandard errors Use reg and predic sf, sdf for forecas inervals

40 Join ess y α β β + + y + + p y p How do we assess if a subse of coefficiens are joinly zero? Example: 3 rd +4 h lags. reg gdp L(/4).gdp, r Linear regression Number of obs 75 F(4, 70) 9.86 Prob > F R-squared Roo MSE e Robus gdp Coef. Sd. Err. P> [95% Conf. Inerval] gdp L L L L _cons

41 Join Hypohesis his is a join es of β his can be done wih an F es β In SAA, afer regress (reg) or newey.es L3.gdp L4.gdp Lis variables whose coefficiens are esed for zero.

42 Join ess F es named afer R.A. Fisher (890-96) A founder of modern saisical heory Modern form known as a Wald es, named afer Abraham Wald (90-950) Early conribuor o economerics

43 F es compuaion. es L3.gdp L4.gdp ( ) L3.gdp 0 ( ) L4.gdp 0 F(, 70).09 Prob > F You need o lis each variable separaely SAA describes he hypohesis he value of F is he F-saisic Prob>F is he p-value Small p-values cause rejecion of hypohesis of zero coefficiens Convenionally, rejec hypohesis if p-value < 0.05

44 Example: -sep-ahead GDP AR(4). newey gdp L(/5).gdp, lag() Regression wih Newey-Wes sandard errors Number of obs 74 maximum lag: F( 4, 69) 3.33 Prob > F 0.00 Newey-Wes gdp Coef. Sd. Err. P> [95% Conf. Inerval] gdp L L L L _cons es L3.gdp L4.gdp L5.gdp ( ) L3.gdp 0 ( ) L4.gdp 0 ( 3) L5.gdp 0 F( 3, 69).3 Prob > F

45 esing afer Esimaion he commands predic and es are applied o he mos recenly esimaed model he command es uses he sandard error mehod specified by he esimaion command reg y x : classical F es reg r x, r: heeroskedasiciy-robus F es newey y x, lag(m): correlaion-robus F es (he robus ess are acually Wald saisics)

46 Assignmens Read Wooldridge Chaper. and.5 An elecronic copy is in files a Learn@UW Forecasing Projec Projec Descripion (3/8) Read Chaper 8 from he Signal and he Noise Reading Reflecion hursday (3/30)

Distribution of Least Squares

Distribution of Least Squares Disribuion of Leas Squares In classic regression, if he errors are iid normal, and independen of he regressors, hen he leas squares esimaes have an exac normal disribuion, no jus asympoic his is no rue

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

GDP Advance Estimate, 2016Q4

GDP Advance Estimate, 2016Q4 GDP Advance Esimae, 26Q4 Friday, Jan 27 Real gross domesic produc (GDP) increased a an annual rae of.9 percen in he fourh quarer of 26. The deceleraion in real GDP in he fourh quarer refleced a downurn

More information

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting Chaper 15 Time Series: Descripive Analyses, Models, and Forecasing Descripive Analysis: Index Numbers Index Number a number ha measures he change in a variable over ime relaive o he value of he variable

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

Regression with Time Series Data

Regression with Time Series Data Regression wih Time Series Daa y = β 0 + β 1 x 1 +...+ β k x k + u Serial Correlaion and Heeroskedasiciy Time Series - Serial Correlaion and Heeroskedasiciy 1 Serially Correlaed Errors: Consequences Wih

More information

Stationary Time Series

Stationary Time Series 3-Jul-3 Time Series Analysis Assoc. Prof. Dr. Sevap Kesel July 03 Saionary Time Series Sricly saionary process: If he oin dis. of is he same as he oin dis. of ( X,... X n) ( X h,... X nh) Weakly Saionary

More information

Forecasting optimally

Forecasting optimally I) ile: Forecas Evaluaion II) Conens: Evaluaing forecass, properies of opimal forecass, esing properies of opimal forecass, saisical comparison of forecas accuracy III) Documenaion: - Diebold, Francis

More information

Stability. Coefficients may change over time. Evolution of the economy Policy changes

Stability. Coefficients may change over time. Evolution of the economy Policy changes Sabiliy Coefficiens may change over ime Evoluion of he economy Policy changes Time Varying Parameers y = α + x β + Coefficiens depend on he ime period If he coefficiens vary randomly and are unpredicable,

More information

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum.

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum. January 01 Final Exam Quesions: Mark W. Wason (Poins/Minues are given in Parenheses) (15) 1. Suppose ha y follows he saionary AR(1) process y = y 1 +, where = 0.5 and ~ iid(0,1). Le x = (y + y 1 )/. (11)

More information

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T

Smoothing. Backward smoother: At any give T, replace the observation yt by a combination of observations at & before T Smoohing Consan process Separae signal & noise Smooh he daa: Backward smooher: A an give, replace he observaion b a combinaion of observaions a & before Simple smooher : replace he curren observaion wih

More information

Components Model. Remember that we said that it was useful to think about the components representation

Components Model. Remember that we said that it was useful to think about the components representation Componens Model Remember ha we said ha i was useful o hink abou he componens represenaion = T S C Suppose ha C is an AR(p) process Wha model does his impl for? TrendCcle Model For simplici, we sar wih

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Cointegration and Implications for Forecasting

Cointegration and Implications for Forecasting Coinegraion and Implicaions for Forecasing Two examples (A) Y Y 1 1 1 2 (B) Y 0.3 0.9 1 1 2 Example B: Coinegraion Y and coinegraed wih coinegraing vecor [1, 0.9] because Y 0.9 0.3 is a saionary process

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1 Modeling and Forecasing Volailiy Auoregressive Condiional Heeroskedasiciy Models Anhony Tay Slide 1 smpl @all line(m) sii dl_sii S TII D L _ S TII 4,000. 3,000.1.0,000 -.1 1,000 -. 0 86 88 90 9 94 96 98

More information

Wednesday, November 7 Handout: Heteroskedasticity

Wednesday, November 7 Handout: Heteroskedasticity Amhers College Deparmen of Economics Economics 360 Fall 202 Wednesday, November 7 Handou: Heeroskedasiciy Preview Review o Regression Model o Sandard Ordinary Leas Squares (OLS) Premises o Esimaion Procedures

More information

Dynamic Models, Autocorrelation and Forecasting

Dynamic Models, Autocorrelation and Forecasting ECON 4551 Economerics II Memorial Universiy of Newfoundland Dynamic Models, Auocorrelaion and Forecasing Adaped from Vera Tabakova s noes 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing

More information

Exponential Smoothing

Exponential Smoothing Exponenial moohing Inroducion A simple mehod for forecasing. Does no require long series. Enables o decompose he series ino a rend and seasonal effecs. Paricularly useful mehod when here is a need o forecas

More information

Lecture 10 Estimating Nonlinear Regression Models

Lecture 10 Estimating Nonlinear Regression Models Lecure 0 Esimaing Nonlinear Regression Models References: Greene, Economeric Analysis, Chaper 0 Consider he following regression model: y = f(x, β) + ε =,, x is kx for each, β is an rxconsan vecor, ε is

More information

Econ Autocorrelation. Sanjaya DeSilva

Econ Autocorrelation. Sanjaya DeSilva Econ 39 - Auocorrelaion Sanjaya DeSilva Ocober 3, 008 1 Definiion Auocorrelaion (or serial correlaion) occurs when he error erm of one observaion is correlaed wih he error erm of any oher observaion. This

More information

Lecture 3: Exponential Smoothing

Lecture 3: Exponential Smoothing NATCOR: Forecasing & Predicive Analyics Lecure 3: Exponenial Smoohing John Boylan Lancaser Cenre for Forecasing Deparmen of Managemen Science Mehods and Models Forecasing Mehod A (numerical) procedure

More information

STAD57 Time Series Analysis. Lecture 5

STAD57 Time Series Analysis. Lecture 5 STAD57 Time Series Analysis Lecure 5 1 Exploraory Daa Analysis Check if given TS is saionary: µ is consan σ 2 is consan γ(s,) is funcion of h= s If no, ry o make i saionary using some of he mehods below:

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

STAD57 Time Series Analysis. Lecture 17

STAD57 Time Series Analysis. Lecture 17 STAD57 Time Series Analysis Lecure 17 1 Exponenially Weighed Moving Average Model Consider ARIMA(0,1,1), or IMA(1,1), model 1 s order differences follow MA(1) X X W W Y X X W W 1 1 1 1 Very common model

More information

STAD57 Time Series Analysis. Lecture 17

STAD57 Time Series Analysis. Lecture 17 STAD57 Time Series Analysis Lecure 17 1 Exponenially Weighed Moving Average Model Consider ARIMA(0,1,1), or IMA(1,1), model 1 s order differences follow MA(1) X X W W Y X X W W 1 1 1 1 Very common model

More information

Volatility. Many economic series, and most financial series, display conditional volatility

Volatility. Many economic series, and most financial series, display conditional volatility Volailiy Many economic series, and mos financial series, display condiional volailiy The condiional variance changes over ime There are periods of high volailiy When large changes frequenly occur And periods

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Solutions: Wednesday, November 14

Solutions: Wednesday, November 14 Amhers College Deparmen of Economics Economics 360 Fall 2012 Soluions: Wednesday, November 14 Judicial Daa: Cross secion daa of judicial and economic saisics for he fify saes in 2000. JudExp CrimesAll

More information

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests Ouline Ouline Hypohesis Tes wihin he Maximum Likelihood Framework There are hree main frequenis approaches o inference wihin he Maximum Likelihood framework: he Wald es, he Likelihood Raio es and he Lagrange

More information

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing M Business Forecasing Mehods Exponenial moohing Mehods ecurer : Dr Iris Yeung Room No : P79 Tel No : 788 8 Types of Exponenial moohing Mehods imple Exponenial moohing Double Exponenial moohing Brown s

More information

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance Lecure 5 Time series: ECM Bernardina Algieri Deparmen Economics, Saisics and Finance Conens Time Series Modelling Coinegraion Error Correcion Model Two Seps, Engle-Granger procedure Error Correcion Model

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information

( ) ln ( ) is a new random error term. Mathematically, the vt. behave according to

( ) ln ( ) is a new random error term. Mathematically, the vt. behave according to Time series observaions, which are drawn sequenially, usually embody a srucure where ime is an imporan componen. If you are unable o compleely model his srucure in he regression funcion iself, hen he remainder

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Choice of Spectral Density Estimator in Ng-Perron Test: A Comparative Analysis

Choice of Spectral Density Estimator in Ng-Perron Test: A Comparative Analysis Inernaional Economeric Review (IER) Choice of Specral Densiy Esimaor in Ng-Perron Tes: A Comparaive Analysis Muhammad Irfan Malik and Aiq-ur-Rehman Inernaional Islamic Universiy Islamabad and Inernaional

More information

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions Business School, Brunel Universiy MSc. EC5501/5509 Modelling Financial Decisions and Markes/Inroducion o Quaniaive Mehods Prof. Menelaos Karanasos (Room SS269, el. 01895265284) Lecure Noes 6 1. Diagnosic

More information

1. Joint stationarity and long run effects in a simple ADL(1,1) Suppose Xt, Y, also is stationary?

1. Joint stationarity and long run effects in a simple ADL(1,1) Suppose Xt, Y, also is stationary? HG Third lecure - 9. Jan. 04. Join saionariy and long run effecs in a simple ADL(,) Suppose X, Y are wo saionary ime series. Does i follow ha he sum, X Y, also is saionary? The answer is NO in general.

More information

Linear Combinations of Volatility Forecasts for the WIG20 and Polish Exchange Rates

Linear Combinations of Volatility Forecasts for the WIG20 and Polish Exchange Rates Eliza Buszkowska Universiy of Poznań, Poland Linear Combinaions of Volailiy Forecass for he WIG0 and Polish Exchange Raes Absrak. As is known forecas combinaions may be beer forecass hen forecass obained

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size.

Methodology. -ratios are biased and that the appropriate critical values have to be increased by an amount. that depends on the sample size. Mehodology. Uni Roo Tess A ime series is inegraed when i has a mean revering propery and a finie variance. I is only emporarily ou of equilibrium and is called saionary in I(0). However a ime series ha

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

Solutions to Exercises in Chapter 12

Solutions to Exercises in Chapter 12 Chaper in Chaper. (a) The leas-squares esimaed equaion is given by (b)!i = 6. + 0.770 Y 0.8 R R = 0.86 (.5) (0.07) (0.6) Boh b and b 3 have he expeced signs; income is expeced o have a posiive effec on

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H.

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H. ACE 564 Spring 2006 Lecure 7 Exensions of The Muliple Regression Model: Dumm Independen Variables b Professor Sco H. Irwin Readings: Griffihs, Hill and Judge. "Dumm Variables and Varing Coefficien Models

More information

A note on spurious regressions between stationary series

A note on spurious regressions between stationary series A noe on spurious regressions beween saionary series Auhor Su, Jen-Je Published 008 Journal Tile Applied Economics Leers DOI hps://doi.org/10.1080/13504850601018106 Copyrigh Saemen 008 Rouledge. This is

More information

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates)

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates) ECON 48 / WH Hong Time Series Daa Analysis. The Naure of Time Series Daa Example of ime series daa (inflaion and unemploymen raes) ECON 48 / WH Hong Time Series Daa Analysis The naure of ime series daa

More information

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1 Chaper 5 Heerocedasic Models Inroducion o ime series (2008) 1 Chaper 5. Conens. 5.1. The ARCH model. 5.2. The GARCH model. 5.3. The exponenial GARCH model. 5.4. The CHARMA model. 5.5. Random coefficien

More information

5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models

5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models 5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models General form of nonlinear or linear regression models: y = h(x,β) + ε, ε iid N(0,σ ). Assume ha he x and ε sochasically independen. his assumpion

More information

Solutions to Odd Number Exercises in Chapter 6

Solutions to Odd Number Exercises in Chapter 6 1 Soluions o Odd Number Exercises in 6.1 R y eˆ 1.7151 y 6.3 From eˆ ( T K) ˆ R 1 1 SST SST SST (1 R ) 55.36(1.7911) we have, ˆ 6.414 T K ( ) 6.5 y ye ye y e 1 1 Consider he erms e and xe b b x e y e b

More information

(a) Set up the least squares estimation procedure for this problem, which will consist in minimizing the sum of squared residuals. 2 t.

(a) Set up the least squares estimation procedure for this problem, which will consist in minimizing the sum of squared residuals. 2 t. Insrucions: The goal of he problem se is o undersand wha you are doing raher han jus geing he correc resul. Please show your work clearly and nealy. No credi will be given o lae homework, regardless of

More information

Section 4 NABE ASTEF 232

Section 4 NABE ASTEF 232 Secion 4 NABE ASTEF 3 APPLIED ECONOMETRICS: TIME-SERIES ANALYSIS 33 Inroducion and Review The Naure of Economic Modeling Judgemen calls unavoidable Economerics an ar Componens of Applied Economerics Specificaion

More information

Quarterly ice cream sales are high each summer, and the series tends to repeat itself each year, so that the seasonal period is 4.

Quarterly ice cream sales are high each summer, and the series tends to repeat itself each year, so that the seasonal period is 4. Seasonal models Many business and economic ime series conain a seasonal componen ha repeas iself afer a regular period of ime. The smalles ime period for his repeiion is called he seasonal period, and

More information

Exercise: Building an Error Correction Model of Private Consumption. Part II Testing for Cointegration 1

Exercise: Building an Error Correction Model of Private Consumption. Part II Testing for Cointegration 1 Bo Sjo 200--24 Exercise: Building an Error Correcion Model of Privae Consumpion. Par II Tesing for Coinegraion Learning objecives: This lab inroduces esing for he order of inegraion and coinegraion. The

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

NBER Summer Institute Minicourse What s New in Econometrics: Time Series. Lecture 10. July 16, Forecast Assessment

NBER Summer Institute Minicourse What s New in Econometrics: Time Series. Lecture 10. July 16, Forecast Assessment NBER Summer Insiue Minicourse Wha s New in Economerics: ime Series Lecure 0 July 6, 008 Forecas Assessmen Lecure 0, July, 008 Ouline. Why Forecas?. Forecasing basics 3. Esimaing Parameers for forecasing

More information

Chapter 11. Heteroskedasticity The Nature of Heteroskedasticity. In Chapter 3 we introduced the linear model (11.1.1)

Chapter 11. Heteroskedasticity The Nature of Heteroskedasticity. In Chapter 3 we introduced the linear model (11.1.1) Chaper 11 Heeroskedasiciy 11.1 The Naure of Heeroskedasiciy In Chaper 3 we inroduced he linear model y = β+β x (11.1.1) 1 o explain household expendiure on food (y) as a funcion of household income (x).

More information

Lesson 2, page 1. Outline of lesson 2

Lesson 2, page 1. Outline of lesson 2 Lesson 2, page Ouline of lesson 2 Inroduce he Auocorrelaion Coefficien Undersand and define saionariy Discuss ransformaion Discuss rend and rend removal C:\Kyrre\sudier\drgrad\Kurs\series\lecure 02 03022.doc,

More information

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H. ACE 56 Fall 5 Lecure 8: The Simple Linear Regression Model: R, Reporing he Resuls and Predicion by Professor Sco H. Irwin Required Readings: Griffihs, Hill and Judge. "Explaining Variaion in he Dependen

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Testing the Random Walk Model. i.i.d. ( ) r

Testing the Random Walk Model. i.i.d. ( ) r he random walk heory saes: esing he Random Walk Model µ ε () np = + np + Momen Condiions where where ε ~ i.i.d he idea here is o es direcly he resricions imposed by momen condiions. lnp lnp µ ( lnp lnp

More information

The Simple Linear Regression Model: Reporting the Results and Choosing the Functional Form

The Simple Linear Regression Model: Reporting the Results and Choosing the Functional Form Chaper 6 The Simple Linear Regression Model: Reporing he Resuls and Choosing he Funcional Form To complee he analysis of he simple linear regression model, in his chaper we will consider how o measure

More information

Nonstationarity-Integrated Models. Time Series Analysis Dr. Sevtap Kestel 1

Nonstationarity-Integrated Models. Time Series Analysis Dr. Sevtap Kestel 1 Nonsaionariy-Inegraed Models Time Series Analysis Dr. Sevap Kesel 1 Diagnosic Checking Residual Analysis: Whie noise. P-P or Q-Q plos of he residuals follow a normal disribuion, he series is called a Gaussian

More information

CHAPTER 17: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS

CHAPTER 17: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS Basic Economerics, Gujarai and Porer CHAPTER 7: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS 7. (a) False. Economeric models are dynamic if hey porray he ime pah of he dependen

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

Box-Jenkins Modelling of Nigerian Stock Prices Data

Box-Jenkins Modelling of Nigerian Stock Prices Data Greener Journal of Science Engineering and Technological Research ISSN: 76-7835 Vol. (), pp. 03-038, Sepember 0. Research Aricle Box-Jenkins Modelling of Nigerian Sock Prices Daa Ee Harrison Euk*, Barholomew

More information

Chapter 16. Regression with Time Series Data

Chapter 16. Regression with Time Series Data Chaper 16 Regression wih Time Series Daa The analysis of ime series daa is of vial ineres o many groups, such as macroeconomiss sudying he behavior of naional and inernaional economies, finance economiss

More information

Autocorrelation and the AR(1) Process

Autocorrelation and the AR(1) Process Jeeshim and KUCC65 (7/18/006) Auocorrelaion and he AR(1) Process: 1 Auocorrelaion and he AR(1) Process Hun Myoung Park This documen discusses auocorrelaion (or serial correlaion) in linear regression models

More information

Hypothesis Testing in the Classical Normal Linear Regression Model. 1. Components of Hypothesis Tests

Hypothesis Testing in the Classical Normal Linear Regression Model. 1. Components of Hypothesis Tests ECONOMICS 35* -- NOTE 8 M.G. Abbo ECON 35* -- NOTE 8 Hypohesis Tesing in he Classical Normal Linear Regression Model. Componens of Hypohesis Tess. A esable hypohesis, which consiss of wo pars: Par : a

More information

The Overlapping Data Problem

The Overlapping Data Problem Quaniaive and Qualiaive Analysis in Social Sciences Volume 3, Issue 3, 009, 78-115 ISSN: 175-895 The Overlapping Daa Problem Ardian Harri a Mississipi Sae Universiy B. Wade Brorsen b Oklahoma Sae Universiy

More information

TÁMOP /2/A/KMR

TÁMOP /2/A/KMR ECONOMIC STATISTICS ECONOMIC STATISTICS Sonsored by a Gran TÁMOP-4..2-08/2/A/KMR-2009-004 Course Maerial Develoed by Dearmen of Economics, Faculy of Social Sciences, Eövös Loránd Universiy Budaes (ELTE)

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

FORECASTING WITH REGRESSION

FORECASTING WITH REGRESSION FORECASTING WITH REGRESSION MODELS Overview of basic regression echniques. Daa analysis and forecasing using muliple regression analysis. 106 Visualizaion of Four Differen Daa Ses Daa Se A Daa Se B Daa

More information

Empirical Process Theory

Empirical Process Theory Empirical Process heory 4.384 ime Series Analysis, Fall 27 Reciaion by Paul Schrimpf Supplemenary o lecures given by Anna Mikusheva Ocober 7, 28 Reciaion 7 Empirical Process heory Le x be a real-valued

More information

Measurement Error 1: Consequences Page 1. Definitions. For two variables, X and Y, the following hold: Expectation, or Mean, of X.

Measurement Error 1: Consequences Page 1. Definitions. For two variables, X and Y, the following hold: Expectation, or Mean, of X. Measuremen Error 1: Consequences of Measuremen Error Richard Williams, Universiy of Nore Dame, hps://www3.nd.edu/~rwilliam/ Las revised January 1, 015 Definiions. For wo variables, X and Y, he following

More information

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model:

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model: Dynamic Economeric Models: A. Auoregressive Model: Y = + 0 X 1 Y -1 + 2 Y -2 + k Y -k + e (Wih lagged dependen variable(s) on he RHS) B. Disribued-lag Model: Y = + 0 X + 1 X -1 + 2 X -2 + + k X -k + e

More information

Summer Term Albert-Ludwigs-Universität Freiburg Empirische Forschung und Okonometrie. Time Series Analysis

Summer Term Albert-Ludwigs-Universität Freiburg Empirische Forschung und Okonometrie. Time Series Analysis Summer Term 2009 Alber-Ludwigs-Universiä Freiburg Empirische Forschung und Okonomerie Time Series Analysis Classical Time Series Models Time Series Analysis Dr. Sevap Kesel 2 Componens Hourly earnings:

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu)

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu) CH Sean Han QF, NTHU, Taiwan BFS2010 (Join work wih T.-Y. Chen and W.-H. Liu) Risk Managemen in Pracice: Value a Risk (VaR) / Condiional Value a Risk (CVaR) Volailiy Esimaion: Correced Fourier Transform

More information

Applied Time Series Notes White noise: e t mean 0, variance 5 2 uncorrelated Moving Average

Applied Time Series Notes White noise: e t mean 0, variance 5 2 uncorrelated Moving Average Applied Time Series Noes Whie noise: e mean 0, variance 5 uncorrelaed Moving Average Order 1: (Y. ) œ e ) 1e -1 all Order q: (Y. ) œ e ) e â ) e all 1-1 q -q ( 14 ) Infinie order: (Y. ) œ e ) 1e -1 ) e

More information

Variance Bounds Tests for the Hypothesis of Efficient Stock Market

Variance Bounds Tests for the Hypothesis of Efficient Stock Market 67 Variance Bounds Tess of Efficien Sock Marke Hypohesis Vol III(1) Variance Bounds Tess for he Hypohesis of Efficien Sock Marke Marco Maisenbacher * Inroducion The heory of efficien financial markes was

More information

Lecture 15. Dummy variables, continued

Lecture 15. Dummy variables, continued Lecure 15. Dummy variables, coninued Seasonal effecs in ime series Consider relaion beween elecriciy consumpion Y and elecriciy price X. The daa are quarerly ime series. Firs model ln α 1 + α2 Y = ln X

More information

Tourism forecasting using conditional volatility models

Tourism forecasting using conditional volatility models Tourism forecasing using condiional volailiy models ABSTRACT Condiional volailiy models are used in ourism demand sudies o model he effecs of shocks on demand volailiy, which arise from changes in poliical,

More information

Arima Fit to Nigerian Unemployment Data

Arima Fit to Nigerian Unemployment Data 2012, TexRoad Publicaion ISSN 2090-4304 Journal of Basic and Applied Scienific Research www.exroad.com Arima Fi o Nigerian Unemploymen Daa Ee Harrison ETUK 1, Barholomew UCHENDU 2, Uyodhu VICTOR-EDEMA

More information

Nonlinearity Test on Time Series Data

Nonlinearity Test on Time Series Data PROCEEDING OF 3 RD INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION AND EDUCATION OF MATHEMATICS AND SCIENCE YOGYAKARTA, 16 17 MAY 016 Nonlineariy Tes on Time Series Daa Case Sudy: The Number of Foreign

More information

Wednesday, December 5 Handout: Panel Data and Unobservable Variables

Wednesday, December 5 Handout: Panel Data and Unobservable Variables Amhers College Deparmen of Economics Economics 360 Fall 0 Wednesday, December 5 Handou: Panel Daa and Unobservable Variables Preview Taking Sock: Ordinary Leas Squares (OLS) Esimaion Procedure o Sandard

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

4.1 Other Interpretations of Ridge Regression

4.1 Other Interpretations of Ridge Regression CHAPTER 4 FURTHER RIDGE THEORY 4. Oher Inerpreaions of Ridge Regression In his secion we will presen hree inerpreaions for he use of ridge regression. The firs one is analogous o Hoerl and Kennard reasoning

More information

DEPARTMENT OF STATISTICS

DEPARTMENT OF STATISTICS A Tes for Mulivariae ARCH Effecs R. Sco Hacker and Abdulnasser Haemi-J 004: DEPARTMENT OF STATISTICS S-0 07 LUND SWEDEN A Tes for Mulivariae ARCH Effecs R. Sco Hacker Jönköping Inernaional Business School

More information

Forecast Evaluation and Comparison Theory

Forecast Evaluation and Comparison Theory Forecas Evaluaion and Comparison Theory Andrew Paon Deparmen of Economics Duke Universiy OMI-SoFiE Summer School, 2013 Paon (Duke) Forecas Evaluaion Theory OMI-SoFiE Summer School, 2013 1 / 40 Papers o

More information

Elements of Stochastic Processes Lecture II Hamid R. Rabiee

Elements of Stochastic Processes Lecture II Hamid R. Rabiee Sochasic Processes Elemens of Sochasic Processes Lecure II Hamid R. Rabiee Overview Reading Assignmen Chaper 9 of exbook Furher Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A Firs Course

More information

Forecasting. Summary. Sample StatFolio: tsforecast.sgp. STATGRAPHICS Centurion Rev. 9/16/2013

Forecasting. Summary. Sample StatFolio: tsforecast.sgp. STATGRAPHICS Centurion Rev. 9/16/2013 STATGRAPHICS Cenurion Rev. 9/16/2013 Forecasing Summary... 1 Daa Inpu... 3 Analysis Opions... 5 Forecasing Models... 9 Analysis Summary... 21 Time Sequence Plo... 23 Forecas Table... 24 Forecas Plo...

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Forward guidance. Fed funds target during /15/2017

Forward guidance. Fed funds target during /15/2017 Forward guidance Fed funds arge during 2004 A. A wo-dimensional characerizaion of moneary shocks (Gürkynak, Sack, and Swanson, 2005) B. Odyssean versus Delphic foreign guidance (Campbell e al., 2012) C.

More information