Multiferroics for spintronics Manuel Bibes

Size: px
Start display at page:

Download "Multiferroics for spintronics Manuel Bibes"

Transcription

1 Multiferroics for spintronics Manuel Bibes 2 H. Béa 1, M. Gajek 1, X.-H. Zhu 1, S. Fusil 1, G. Herranz 1, M. Basletic 1, B. Warot-Fonrose 3, S. Petit 4, P. Bencok 6, K. Bouzehouane 1, C. Deranlot 1, E. Jacquet 1, A. Barthélémy 1, J. Fontcuberta 5 and A. Fert 1 1 Unité Mixte de Physique CNRS / Thales, Orsay (FRANCE) 2 Institut d Electronique Fondamentale, CNRS, Université Paris-Sud, Orsay (FRANCE) 3 CEMES, CNRS, Toulouse (FRANCE) 4 Laboratoire Léon Brillouin, CEA, Saclay (FRANCE) 5 ICMAB, CSIC, Campus de la UAB, Bellaterra (SPAIN) 6 European Synchrotron Radiation Facility, Grenoble (FRANCE) 1

2 Ferroics and multiferroics Ferromagnetic materials Ferroelectric P E Sensors FeRAM Ferroelastic M H Partially filled d/f shells Magnetic Data Storage Spintronics Switchable parameter : M External stimulus : H 2

3 Ferroics and multiferroics Ferroelectric materials P Lack of inversion symmetry Sensors E FeRAM Ferroelastic Ferromagnetic M H Magnetic Data Storage Spintronics Switchable parameter : P External stimulus : E 3

4 Ferroics and multiferroics Multiferroic materials Ferroelectric P Lack of inversion symmetry Sensors E FeRAM Ferroelastic Ferromagnetic From Spaldin and Fiebig, Science 39, 391 (25) Switchable parameter : M, P External stimulus : H, E M H Partially filled d/f shells Magnetic Data Storage Spintronics Multiple-state memories M switching by E P switching by H 4

5 Insulating oxides : a classification La.1 Bi.9 MnO 3 NiFe 2 O 4 CoFe 2 O 4 EuO BiMnO 3 CoCr 2 O 4 BaTiO 3 PZT PbTiO 3 YMnO 3 Tb Mn 2 O 5 TbMnO 3 BiFeO 3 BiCrO 3 Cr 2 O 3 NiO LaMnO 3 PbZrO 3 LaFeO 3 TiO 2 ZnO SrTiO 3 MgO Magnetically polarizable Ferro(i)magnetic Electrically polarizable Ferro(i)electric Magnetoelectric Derived from Eerenstein, Mathur and Scott, Nature 442, 759 (26) 5

6 Multiferroics - examples of magnetoelectric coupling (Gd,Dy,Tb)MnO 3 : spiral magnets Spiral ordering breaks inversion symmetry (improper) ferroelectricity appears (but no finite magnetization) CoCr 2 O 4 : conical magnet Conical ordering breaks inversion symmetry (improper) ferroelectricity appears (with a finite magnetization) Apply a magnetic field : change magnetic state switch polarization on/off Kimura et al, PRB 71, (25) Flip polarization direction by a magnetic field Yamasaki et al, PRL 96, 2724 (26) 6

7 Insulating oxides : a classification La.1 Bi.9 MnO 3 NiFe 2 O 4 CoFe 2 O 4 EuO BiMnO 3 CoCr 2 O 4 BaTiO 3 PZT PbTiO 3 YMnO 3 Tb Mn 2 O 5 TbMnO 3 BiFeO 3 BiCrO 3 Cr 2 O 3 NiO LaMnO 3 PbZrO 3 LaFeO 3 TiO 2 ZnO SrTiO 3 MgO Magnetically polarizable Ferro(i)magnetic Electrically polarizable Ferro(i)electric Magnetoelectric Derived from Eerenstein, Mathur and Scott, Nature 442, 759 (26) 7

8 BiFeO 3 A room-temperature antiferromagnetic ferroelectric 8

9 BiFeO 3 : bulk properties Rhombohedral Perovskite (R3c) a=3.96å, α=89.4 Ederer et Spaldin, Phys. Rev. B, 71, 641 (R) (25) Neaton et al. Phys. Rev. B, 71, (25) Ferroelectric T C =11K P S =6µC/cm² (197 paper, bad crystal) J. R. Teague et al., Solid State Commun., 8, 173 (197) P S =6µC/cm² (27 paper, good crystal) D. Lebeugle, M. Viret et al, PRB in press Condmat/76.44 G-type Antiferromagnetic T N =64K Canted spins weak FM M S =.1µ B /f.u. Incommensurate cycloidal modulation P. Fisher et al., J. Phys. C,13, 1931 (198) Popov et al. in Magnetoelectric Interaction Phenomena in Crystals (NATO Science Series, 24) p

10 BiFeO 3 : thin films properties Wang et al., Science, 299, 1719 (23) : BFO//STO (1) t BFO =2nm : P S =55µC/cm² t BFO =7nm : M S =15emu/cm 3 (~1µ B /fu) t BFO =4nm : M s =5emu/cm 3 (.3µ B /f.u.) Claim of enhanced polarization and magnetization compared to bulk 1

11 Growth of BiFeO 3 thin films Intensity (counts) B B B B B S S B S t S BFO =7nm B B T dep =58 C B B B B B S S S t S BFO =7nm P= mbar B B B 2θ ( ) B: BiFeO 3, S: SrTiO 3, *: γ-fe 2 O 3, : α-fe 2 O 3, :Bi 2 O 3 75 C 58 C 52 C B B B B Pulsed laser deposition on SrTiO 3 (1) Target : Bi 1.15 FeO 3 Growth conditions : T=58 C, P O2 =6.1-3 mbar Bi much more volatile than Fe : low P or high T (Bi evaporates more than Fe) Fe oxides high P or low T (excess Bi) Bi oxides 11

12 Growth of BiFeO 3 thin films T dep (K) Phase diagram P (mbar) Pure BiFeO 3 Presence of FeO x Presence of BiO x Pure BiFeO 3 obtained in a very narrow region around T dep =58 C and P O2 =6.1-3 mbar Appl. Phys. Lett.,87, 7258 (25) 1-4 1, 1,1 1,2 1,3 1 / T dep (K -1 ) 12

13 Growth of BiFeO 3 thin films Parasitic Fe-rich phases Intensity (counts) B (1) S (1) F (21) X-ray diffraction F (4) B (2) S (2) F (42) B : BFO S : STO 2θ ( ) F : γ-fe 2 O 3 B (3) S (3) F (8) B (4) S (4) T=58 C P O2 =1-4 mbar : 12nm P O2 =1-3 mbar : 1nm 6nm 25nm Intensity (counts) nm 25nm P= mbar θ ( ) Quantification of γ-fe 2 O 3 by XRD : not easily detectable P (mbar) T dep (K) Pure BiFeO 3 Presence of FeO x Presence of BiO x 1, 1,1 1,2 1,3 1 / T dep (K -1 ) 13

14 Growth of BiFeO 3 thin films Parasitic Fe-rich phases M (emu.cm -3 ) P O2 =1-3 mbar : 25nm 6nm 1nm P O2 =1-4 mbar 12nm H (koe) SQUID measurements P O2 =6 1-3 mbar 12nm T dep =58 C SQUID, 1K BFO + γ-fe 2 O 3 : up to M s ~15emu/cm 3 γ-fe 2 O 3 ferrimagnetic (M s =43emu/cm 3 ) Pure BFO : M s ~2emu/cm 3 M (1-5 emu) γ-fe 2 O 3 peak area (u.a.) Magnetic moment comes from γ-fe 2 O 3 Phys. Rev. B, 74, 211R (26) Similar conclusions : Eerenstein et al. Science, a (25) Wang et al., Science, 37, 123b (25) BFO weak bulk-like ferromagnetic moment 14

15 (1) BiFeO 3 films Magnetic properties Neutron diffraction In R3c bulk BFO : [3] * H single peak G-type antiferromagnet [11] * H peak with satellites cycloidal modulation Averaging to zero of the linear ME effect from Sosnowska et al., J. Phys. C, 15, 4835 (1982) In pseudo-cubic notation : [3] * H [½ ½ ½]* C [11] * H [-½-½½]* C Intensity (arb. units) (a) BFO(24nm)//STO (1) da ta fit [½ ½ ½ ]* k= 1.55Å (c) q h =q k =q l q h =q k =-q l Intensity (arb. units) 5 data fit simulated peaks (SP) sum of SP [-½ -½ ½]* k=1.2å -1 G-type antiferromagnetic order as in bulk BFO No cycloidal modulation contrary to bulk BFO Linear magnetoelectric effect allowed Phil. Mag. Lett. 87, 165 (27) (Special issue on multiferroic thin films Eds. N.D. Mathur and MB) 15

16 (1) BiFeO 3 films Ferroelectric properties Polarization loops Piezoelectric loops Polarization (µc/cm²) Voltage (V) Piezoresponse force microscopy d33 (pm/v) Vdc(Volts) 6 nm 2 nm BFO films are ferroelectric with a large polarization (~7 µc/cm²) and piezoelectric with a d 33 coefficient of ~2 pm/v Ferroelectricity is preserved down to 2 nm. Jpn. J. of Appl. Phys., 45, L187 (26) 16

17 Examples of devices Principle : voltage-controlled exchange bias V AF-FE Bottom electrode Binek et Doudin, JPCM, 17, L39 (25) Magnetic tunnel junction with multiferroic barrier (FE and AFM) Spin-valve on top of a multiferroic film (FE and AFM) Electric field control of the junction resistance state Prerequisites : 1. observe robust exchange bias at room-temperature 2. spin-dependent tunneling through multiferroic barrier 3. switch exchange bias direction by E-field (magnetoelectric coupling) 17

18 Exchange bias with BiFeO 3 films Au CoFeB 5nm BFO 35nm CoFeB deposited by sputtering H c =42Oe, H e =-62Oe Appl. Phys. Lett.,89, (26) M (µemu) 5-5 CoFeB//SiO 2 (a) H (Oe) M (µemu) H c (Oe) 5-5 H dep Hmeas AGFM T=3K (e) M (µemu) -5 H (Oe) ( ) (Oe) 5 H dep Hmeas H (Oe) Cycle number AGFM T=3K M (µemu) 5-5 H dep Hmeas H (Oe) AGFM T=3K Robust room temperature exchange bias between BFO and CoFeB With NiFe : J. Dho et al., Adv. Mat., 18, 1445 (26) 18

19 Exchange bias with BiFeO 3 films 22,588 3K Au CoFeB Cu CoFeB BFO R (Ohm) 22,586 22, H (Oe) GMR measured on top of BFO at RT Exchange bias has shifted the GMR curve 19

20 Tunnel junctions with BiFeO 3 barriers O 2 growth pressure : mbar.46 mbar CoO 2.5nm Co 12.5nm BFO 5nm LSMO 15nm R (kohm) S~3x3µm² H (koe) (a) 3K 1mV TMR (%) TMR / TMR 3K (arb. units) (b) T (K) Appl. Phys. Lett., 89, (26) T* (exchange bias due to CoO, not to BFO) Positive TMR up to ~3% rather large value for an AFM barrier positive spin polarization at Co/BFO interface TMR vanishes around 2K : Local deoxygenation of LSMO 2

21 Tunnel junctions with BiFeO 3 barriers R (MOhm) 4,5 4, 3,5 3, 2,5 S~5x5nm² 1mV 3K 1 2, H (koe) Positive TMR up to ~1% larger value than without STO polarization at Co/BFO interface still positive thanks to STO, better quality of the upper LSMO interface see Appl. Phys. Lett., 82, 233 (23) TMR (%) TMR (%) 12 1 O 2 growth pressure : mbar.46 mbar.46 mbar CoO 2.5nm Co 12.5nm BFO 5nm STO 1.6nm LSMO15nm Temperature (K) T * 21

22 Tunnel junctions with BiFeO 3 barriers STO TMR (%) 12 1 TMR (%) LAO V DC (V) Bias (mv) Bias dependence of TMR in LSMO/STO/Co and LSMO/LAO/Co junctions Science 286, 57 (1999) APL 87, (25) TMR is positive and decreases symmetrically with bias voltage Behaviour is completely different from the case of LSMO/STO/Co and LSMO/LAO/Co junctions Possible reasons : oxygen vacancies at LSMO/BFO interface, symmetry filtering, etc 22

23 Magnetoelectric switching Domain structure and magnetoelectric switching AF plane Zhao et al, Nat. Materials (26) P along <111> directions : 8 possible variants When an electric field is applied, P can be switched to different directions Only some of them yield a rotation of the AF plane Important to know and control the ferroelectric domain structure 23

24 (1) BiFeO 3 films Ferroelectric properties Domain structure Piezoresponse force microscopy (PFM) (1) films (111) films (1) film.8 miscut (1) film 4 miscut OP OP IP IP IP IP 8 variants are present only 4 variants are present Das et al., APL, 88, (26) Domain structure can be controlled by playing with the substrate miscut angle and/or orientation. 8 variants are present only 4 variants are present Ideally, one type of domain orientation would be required, with the appropriate polarization switching mechanism (19?) 24

25 (La,Bi)MnO 3 A ferromagnetic ferroelectric 25

26 Ferromagnetic tunnel barriers Ferromagnetic tunnel barriers: the spin-filter effect Non Magn. Ferro. Metal Insulator ϕ Δϕ exch Ferro. Half Metal Parallel Config. large I, low R Since the tunnel transmission depends exponentially on the barrier height, a highly-spin polarized current is generated by the barrier. J e Δϕ 2 exch 1/ 2 ( ϕ ± ) Expected TMR : TMR 2PE PB = 1 P P E B Antiparallel Config. low I, large R P B = J J + J J 26

27 Ferromagnetic tunnel barriers Spin-filters J.S. Moodera et al, PRB 42, 8235 (199) P. LeClair et al, APL 8, 625 (22) Au/EuS/Al spin-filter Superconducting Al is used the spin-analyzer Early spin-filtering experiments focused on Eu chalcogenides Large spin-filtering efficiency (>9%) have been measured Limited by low Tc of EuX compounds Au/EuS/Gd spin-filter Ferromagnetic Gd is used as the spin-analyzer Ferromagnetic oxides 27

28 BiMnO 3 Crystal structure Magnetic ordering c z y x Mn +3 d 4 Unusual orbital ordering resulting from Bi 6s -O 2p interaction Moreira dos Santos et al, PRB (22) Ferromagnetic order T C =15K, M s =3.6 µ B O -2 b Bi +3 Electronic structure a Synthesis at high pressure Distorted perovskite structure (Monoclinic symmetry) Polar structure Ferroelectric (?) Son et al, APL 84, 4971 (24) «Magnetodielectric effect» observed in bulk samples Kimura et al, PRB 67, 1841 (23) Ferromagnetic insulator with E g =.5 ev and E g = 2.6 ev Shishidou et al, JPCM 25 Partial substitution of Bi by La : lower synthesis pressure, stabilization of perovskite phase Troyanchuk et al, Low. Temp. Phys. 28, 569 (22). Growth of BiMnO 3 and La.1 Bi.9 MnO 3 thin films 28

29 La 1-x Bi x MnO 3 thin films Growth by PLD KrF laser at 2 Hz Fluence: 2 J/cm². Single phase films only in a very narrow window La-substitution helps to stabilize the perovskite phase See for details : O 2 Pressure: 1-1 mbar. T dep from 575 C to 7 C PRB 75, (27) JAP (25) M (emu/cm 3 ) K Magnetic properties BMO x= ; 3nm LBMO x=.1 ; 3nm H(kOe) H (koe) M (emu/cm 3 ) LBMO 7 nm BMO films have a reduced moment compared to bulk T C close to bulk (15K) Substitution by La further reduces max. moment and slightly decreases T C (as in bulk) Low magnetic moment likely due to Bi vacancies Very thin films are also ferromagnetic M (emu.cm -3 ) T (K) BMO x= ; 3nm LBMO x=.1 ; 3nm 29

30 La.1 Bi.9 MnO 3 thin films Ferroelectric properties LBMO(3nm)/LSMO 1 PFM image after writing stripes at +/-4V 18 Phase (deg) d 33 (pm.v -1 ) V DC (V) V DC (V) 18 LBMO(2nm)/LSMO LBMO films as thin as 2 nm are still ferroelectric at room temperature Nature Materials 6, 196 (27) 3

31 BiMnO 3 -based junctions Tunnel magnetoresistance R (MΩ) R (MΩ) LSMO / STO (1 nm) / BMO (4 nm) / Au Junction #1 3K 3K 8K TMR ~ 5% 2K I (na) K H (koe) 5 V DC (V) BMO LSMO V DC =1mV, T=3K Junction #2 PRB (R) (25) Thick resist Thin resist BMO (4nm) STO (1nm) Au Au LSMO nanojunction Junctions defined by nano-indentation lithography Nanoletters 3, 1599 (23) I(V) Large TMR at low temperature spin-filtering by the BMO layer Polarization induced by BMO : 22% Spin-filter effect vanishes at T < T C 31

32 LBMO-based junctions Tunnel magnetoresistance LSMO / STO (1 nm) / LBMO (4 nm) / Au R (MΩ) I (µa) mv V DC (V) 4K TMR = 9% Polarization induced by LBMO : 35% TMR decreases rapidly with bias Magnons? Defects? 5 2 mv 5 mv H (koe) JAP 99, 8E54 (26) 32

33 LBMO-based junctions Tunnel electroresistance I (µa) G (1-4 Ω -1 ) E (MV.cm -1 ) (a) (b) LSMO / LBMO (2 nm) / Au I (µa) V DC (V) T=4K V DC (V) TER (%) A ~2% electroresistance effect is observed TheshapeoftheG(V) curvesuggestsdirect tunneling Nature Materials 6, 196 (27) V DC (V) What is the origin of the TER? 33

34 Ferroelectric tunnel barriers Tunneling through a ferroelectric tunnel barrier From Tsymbal and Kohlstedt Science 313, 181 (26) Several mechanisms leading to current modulation upon polarization reversal 34

35 Ferroelectric tunnel barriers Tunneling through a ferroelectric tunnel barrier From Tsymbal and Kohlstedt Science 313, 181 (26) Several mechanisms leading to current modulation upon polarization reversal 35

36 Ferroelectric tunnel barriers Tunneling through a ferroelectric tunnel barrier From Tsymbal and Kohlstedt Science 313, 181 (26) Several mechanisms leading to current modulation upon polarization reversal 36

37 Ferroelectric tunnel barriers Tunneling through a ferroelectric tunnel barrier From Tsymbal and Kohlstedt Science 313, 181 (26) Several mechanisms leading to current modulation upon polarization reversal 37

38 Ferroelectric tunnel barriers Tunneling through a ferroelectric tunnel barrier Φ P Φ + Large average barrier height low tunnel current E F LSMO Au E F LSMO Au P Φ - Low average barrier height large tunnel current LSMO Au Hysteretic I(V) curves are expected An electroresistance effect should occur upon polarization reversal See details in Zhuravlev et al, PRL 94, (25) 38

39 LBMO-based junctions Combination of tunnel electroresistance and magnetoresistance 18 1mV 3K 1 LBMO LSMO 1 Au 3 R (kω) After +2V After -2V H (koe) 2 4 R(kΩ) 2 4 After 1.5V After +1.5V After 1.5V After +1.5V H (koe) H (koe) H (koe) H (koe) R (kω) Demonstration of a 4-resistance state system with a multiferroic barrier Effect was observed on several junctions and is reproducible Nature Materials 6, 196 (27) 39

40 LBMO-based junctions Temperature dependence of TER and TMR TMR (%) T CM 1 1 Bulk BMO T CE TER (%) T (K) Temperature dependence of TER and TMR consistent with an origin related to to ferroelectricity and ferromagnetism, respectively 4

41 Conclusions and perspectives BiFeO 3 Single phase films can be grown in a narrow range of P and T They are G-type antiferromagnetic and ferroelectric at RT LSMO/BFO/Co junctions show a large positive TMR BFO induced exchange bias on CoFeB (La,Bi)MnO 3 based junctions La.1 Bi.9 MnO 3 films are ferromagnetic and ferroelectric LBMO junctions show TMR and electroresistance (4 resistance states) We suggest electroresistance effect due to ferroelectric switching in the barrier Control of the magnetic state by electric field? Perspectives : Magnetization manipulation with an electric field at RT New materials, ideally ferromagnetic multiferroics with high T C s, M S and P are required See review on Oxide Spintronics by M. Bibes and A. Barthélémy, IEEE Trans. Electron Devices 54, 13 (27) Financial support by EU Streps Nanotemplates and MaCoMuFi, EU Marie-Curie program, ESF Thiox program, French ANR program, Spanish Ministry for Research and EGIDE 41

Competing between oxygen tilts and polar shifts in BiFeO 3 thin films

Competing between oxygen tilts and polar shifts in BiFeO 3 thin films Journées Electromagnons Institut Néel Competing between oxygen tilts and polar shifts in BiFeO 3 thin films B. Dkhil Laboratoire Structures, Propriétés et Modélisation des Solides, CNRS-UMR 8580, Ecole

More information

Tunnel magnetoresistance and robust room temperature exchange bias. with multiferroic BiFeO 3 epitaxial thin films

Tunnel magnetoresistance and robust room temperature exchange bias. with multiferroic BiFeO 3 epitaxial thin films Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO 3 epitaxial thin films H. Béa Unité Mixte de Physique CNRS-Thales, Route départementale 128, 91767 Palaiseau,

More information

Multiferroic tunnel junctions

Multiferroic tunnel junctions 1 Multiferroic tunnel junctions Martin Gajek 1,2, Manuel Bibes 3, Stéphane Fusil 1, Karim Bouzehouane 1, Josep Fontcuberta 2, Agnès Barthélémy 1 & Albert Fert 1 1 Unité Mixte de Physique CNRS-Thales, Route

More information

Recent Developments in Magnetoelectrics Vaijayanti Palkar

Recent Developments in Magnetoelectrics Vaijayanti Palkar Recent Developments in Magnetoelectrics Vaijayanti Palkar Department of Condensed Matter Physics & Materials Science Tata Institute of Fundamental Research Mumbai 400 005, India. Tata Institute of Fundamental

More information

Electric field control of magnetism in oxide heterostructures

Electric field control of magnetism in oxide heterostructures Electric field control of magnetism in oxide heterostructures Manuel Bibes Unité Mixte de Physique CNRS / Thales, Palaiseau Université Paris Saclay (FRANCE) http://oxitronics.wordpress.com manuel.bibes@cnrs-thales.fr

More information

Spinel ferrites: old materials bring new opportunities for spintronics

Spinel ferrites: old materials bring new opportunities for spintronics Spinel ferrites: old materials bring new opportunities for spintronics Ulrike Lüders 1,2, Agnès Barthélémy 3 *, Manuel Bibes 4, Karim Bouzehouane 3, Stéphane Fusil 5, Eric Jacquet 3, Jean-Pierre Contour

More information

and polarization. Within the last decade, enormous growth has been made in the understanding of bulk BFO.

and polarization. Within the last decade, enormous growth has been made in the understanding of bulk BFO. SYNOPSIS The term multiferroics has been coined to describe materials in which two or all three ferroic orders, i.e. ferromagnetism, ferroelectricity and ferroelasticity occur in the same phase [1]. Herein,

More information

Nanoxide electronics

Nanoxide electronics Nanoxide electronics Alexey Kalabukhov Quantum Device Physics Laboratory MC2, room D515 Alexei.kalaboukhov@chalmers.se Playing Lego with oxide materials: G. Rijnders, D.H.A. Blank, Nature 433, 369 (2005)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Reversible Electric Control of Exchange Bias in a Multiferroic Field Effect Device S. M. Wu 1, 2, Shane A. Cybart 1, 2, P. Yu 1, 2, M. D. Abrodos 1, J. Zhang 1, R. Ramesh 1, 2

More information

Reduced ferroelectric coercivity in multiferroic Bi Nd FeO 3 thin film

Reduced ferroelectric coercivity in multiferroic Bi Nd FeO 3 thin film JOURNAL OF APPLIED PHYSICS 101, 024106 2007 Reduced ferroelectric coercivity in multiferroic Bi 0.825 Nd 0.175 FeO 3 thin film G. L. Yuan, Siu Wing Or, a and Helen Lai Wa Chan Department of Applied Physics,

More information

Holcomb Group Capabilities

Holcomb Group Capabilities Holcomb Group Capabilities Synchrotron Radiation & Ultrafast Optics West Virginia University mikel.holcomb@mail.wvu.edu The Physicists New Playground The interface is the device. - Herbert Kroemer, beginning

More information

NEW ROUTES TO MULTIFERROICS

NEW ROUTES TO MULTIFERROICS NEW ROUTES TO MULTIFERROICS C. N. R. RAO Jawaharlal Nehru Centre for Advanced Scientific Research & Indian Institute of Science Bangalore, India 1 MULTIFERROICS Ferromagnetic Ferroelectric Ferroelastic

More information

Nanoxide electronics

Nanoxide electronics Nanoxide electronics Alexey Kalabukhov Quantum Device Physics Laboratory MC2, room D515 Alexei.kalaboukhov@chalmers.se Playing Lego with oxide materials: G. Rijnders, D.H.A. Blank, Nature 433, 369 (2005)

More information

Magnetic tunnel junctions based on ferroelectric Hf 0.5Zr 0.5O 2 tunnel barriers

Magnetic tunnel junctions based on ferroelectric Hf 0.5Zr 0.5O 2 tunnel barriers Magnetic tunnel junctions based on ferroelectric Hf 0.5Zr 0.5O 2 tunnel barriers Yingfen Wei 1, Sylvia Matzen 2, *, Guillaume Agnus 2, Mart Salverda 1, Pavan Nukala 1, Thomas Maroutian 2, Qihong Chen 1,

More information

Magnetoelectric effect

Magnetoelectric effect Department of Physics Seminar Magnetoelectric effect The challenge of coupling magnetism and ferroelectricity Luka Vidovič Mentor: prof. dr. Denis Arčon Ljubljana, december 2009 Abstract Magnetism and

More information

Hermann Kohlstedt. Technical Faculty Nanoelectronics

Hermann Kohlstedt. Technical Faculty Nanoelectronics Forschungszentrum Jülich Institut für Festkörperforschung Jülich, Germany Complex Oxide Tunnel Junctions Hermann Kohlstedt Christian-Albrechts-University Kiel Technical Faculty Nanoelectronics Germany

More information

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface Pramod Verma Indian Institute of Science, Bangalore 560012 July 24, 2014 Pramod Verma

More information

Electric field effects on magnetotransport properties of multiferroic Py/YMnO 3 /Pt heterostructures

Electric field effects on magnetotransport properties of multiferroic Py/YMnO 3 /Pt heterostructures Electric field effects on magnetotransport properties of multiferroic Py/YMnO 3 /Pt heterostructures V. Laukhin 1,2, X. Martí 1, V. Skumryev 2,3, D. Hrabovsky 1, F. Sánchez 1, M.V. García-Cuenca 4, C.

More information

Application of density functional theory to real materials problems. Nicola Spaldin Materials Department, UCSB

Application of density functional theory to real materials problems. Nicola Spaldin Materials Department, UCSB Application of density functional theory to real materials problems Nicola Spaldin Materials Department, UCSB From Harry Suhl s lecture notes: In theoretical physics, one obective is to explain what has

More information

Exchange biasing and electric polarization with YMnO 3

Exchange biasing and electric polarization with YMnO 3 Applied Physics Letters, in press Exchange biasing and electric polarization with YMnO 3 X. Martí, F. Sánchez, D. Hrabovsky, L. Fàbrega, A. Ruyter, J. Fontcuberta Institut de Ciència de Materials de Barcelona

More information

Micron 43 (2012) Contents lists available at SciVerse ScienceDirect. Micron. j our na l ho me p age:

Micron 43 (2012) Contents lists available at SciVerse ScienceDirect. Micron. j our na l ho me p age: Micron 43 (2012) 1121 1126 Contents lists available at SciVerse ScienceDirect Micron j our na l ho me p age: www.elsevier.com/locate/micron Direct observation of ferroelectric domain switching in varying

More information

10. Magnetoelectric Switching

10. Magnetoelectric Switching Beyond CMOS computing 10. Magnetoelectric Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Magnetoelectric effect to improve spintronic switching Review of experiments on magnetoelectric switching:

More information

Contents. Acknowledgments

Contents. Acknowledgments MAGNETIC MATERIALS Fundamentals and Applications Second edition NICOLA A. SPALDIN University of California, Santa Barbara CAMBRIDGE UNIVERSITY PRESS Contents Acknowledgments page xiii I Basics 1 Review

More information

Electric field control of magnetization using AFM/FM interfaces. Xiaoshan Xu

Electric field control of magnetization using AFM/FM interfaces. Xiaoshan Xu Electric field control of magnetization using AFM/FM interfaces Xiaoshan Xu Magnetoelectric effects α = μ 0 M E H M H = 0, E = 0 = 0 (General magnetoelectrics) M H = 0, E = 0 0, P H = 0, E = 0 0, (Multiferroics)

More information

Spin-dependent tunneling through high-k LaAlO 3. J.-L. Maurice, E. Jacquet, K. Bouzehouane, J.-P. Contour and A. Barthélémy.

Spin-dependent tunneling through high-k LaAlO 3. J.-L. Maurice, E. Jacquet, K. Bouzehouane, J.-P. Contour and A. Barthélémy. Spin-dependent tunneling through high-k LaAlO 3 V. Garcia Institut des NanoSciences de Paris, Universités Paris 6 et Paris 7, CNRS UMR 7588, 140 rue de Lourmel 75015 Paris, France and Unité Mixte de Physique

More information

Ferroelectric Characterization of La BiFeO3/ Bi0.5(Na0.85K0.15)0.5TiO3 Nano-composite Films

Ferroelectric Characterization of La BiFeO3/ Bi0.5(Na0.85K0.15)0.5TiO3 Nano-composite Films University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2016 Ferroelectric Characterization of La BiFeO3/ Bi0.5(Na0.85K0.15)0.5TiO3

More information

"Oxygen-vacancy effect on structural, magnetic, and ferroelectric properties in multiferroic YMnO3 single crystals"

Oxygen-vacancy effect on structural, magnetic, and ferroelectric properties in multiferroic YMnO3 single crystals University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2012 "Oxygen-vacancy effect on structural, magnetic, and ferroelectric

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

Oxide Junction Devices

Oxide Junction Devices Oxide Junction Devices Harold Y. Hwang Dept. of Applied Physics Geballe Laboratory for Advanced Materials Stanford University Dept. of Photon Science Stanford Institute for Materials and Energy Sciences

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES. J. M. De Teresa

MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES. J. M. De Teresa MAGNETORESISTANCE PHENOMENA IN MAGNETIC MATERIALS AND DEVICES J. M. De Teresa Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Facultad de Ciencias, 50009 Zaragoza, Spain. E-mail:

More information

arxiv: v1 [cond-mat.mtrl-sci] 9 Apr 2007

arxiv: v1 [cond-mat.mtrl-sci] 9 Apr 2007 Electrical transport properties of polar heterointerface between KTaO 3 and SrTiO 3 A. Kalabukhov, 1, R. Gunnarsson, 1 T. Claeson, 1 and D. Winkler 1 arxiv:0704.1050v1 [cond-mat.mtrl-sci] 9 Apr 2007 1

More information

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR) Ferromagnetism and Electronic Transport There are a number of effects that couple magnetization to electrical resistance. These include: Ordinary magnetoresistance (OMR) Anisotropic magnetoresistance (AMR)

More information

University of California, Berkeley, CA 94720, USA PLEASE SCROLL DOWN FOR ARTICLE

University of California, Berkeley, CA 94720, USA PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by:[university of California Berkeley] On: 1 October 2007 Access Details: [subscription number 769844257] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales

More information

Fabrication and Characteristic Investigation of Multifunctional Oxide p-n Heterojunctions

Fabrication and Characteristic Investigation of Multifunctional Oxide p-n Heterojunctions Advances in Science and Technology Vol. 45 (2006) pp. 2582-2587 online at http://www.scientific.net (2006) Trans Tech Publications, Switzerland Fabrication and Characteristic Investigation of Multifunctional

More information

Epitaxial thin films of multiferroic Bi 2 FeCrO 6 with B-site cationic order

Epitaxial thin films of multiferroic Bi 2 FeCrO 6 with B-site cationic order Epitaxial thin films of multiferroic Bi 2 FeCrO 6 with B-site cationic order Riad Nechache 1, Louis-Philippe Carignan 3, Lina Gunawan 2, Catalin Harnagea 1, Gianluigi A. Botton 2, David Ménard 3, and Alain

More information

Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology

Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology MEMS Engineer Forum 2016/5/11 11:50-12:15 Content 1. Introduction 2. Processing 3. Materials Matter Content

More information

Field dependent magnetization of BiFeO 3 in ultrathin La 0.7 Sr 0.3 MnO 3 /BiFeO 3 superlattice

Field dependent magnetization of BiFeO 3 in ultrathin La 0.7 Sr 0.3 MnO 3 /BiFeO 3 superlattice Field dependent magnetization of BiFeO 3 in ultrathin La.7 Sr.3 MnO 3 /BiFeO 3 superlattice Surendra Singh, 1 J. Xiong, 2 A. P. Chen, 2 M R Fitzsimmons, 3 Q. X. Jia 2 1 Solid State Physics Division, Bhabha

More information

Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques

Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques James Vale October 25, 2011 Abstract Multiferroic materials have significant potential for both the scientific

More information

STRUCTURE AND PROPERTIES OF EPITAXIAL THIN FILMS OF Bi 2 FeCrO 6 : A MULTIFERROIC MATERIAL POSTULATED BY AB-INITIO COMPUTATION

STRUCTURE AND PROPERTIES OF EPITAXIAL THIN FILMS OF Bi 2 FeCrO 6 : A MULTIFERROIC MATERIAL POSTULATED BY AB-INITIO COMPUTATION STRUCTURE AND PROPERTIES OF EPITAXIAL THIN FILMS OF Bi 2 FeCrO 6 : A MULTIFERROIC MATERIAL POSTULATED BY AB-INITIO COMPUTATION R. Nechache 1, C. Harnagea 1, L.-P. Carignan 2, D. Ménard 2, and A. Pignolet

More information

La 0.7 Sr 0.3 MnO 3 - based Spintronics

La 0.7 Sr 0.3 MnO 3 - based Spintronics La 0.7 Sr 0.3 MnO 3 - based Spintronics Investigation on fundamental issues and applications Umberto Scotti di Uccio DiMSAT, Università di Cassino CNR Coherentia Napoli MR (%) 0.6 0.4 0.2 0.0-50 0 50 µ

More information

Combining Ferroelectricity, Magnetism, and

Combining Ferroelectricity, Magnetism, and Forschungszentrum Jülich Combining Ferroelectricity, Magnetism, and Superconductivity ty in Tunnel Junctions H. Kohlstedt 1, N. A. Pertsev 2,A. Petraru 1, U. Poppe 1, and R. Waser 1 1 CNI Center of Nanoelectronic

More information

Review Article Multiferroic Memories

Review Article Multiferroic Memories Advances in Condensed Matter Physics Volume 212, Article ID 92629, 12 pages doi:1.1155/212/92629 Review Article Multiferroic Memories Amritendu Roy, 1 Rajeev Gupta, 2 and Ashish Garg 1 1 Department of

More information

Colossal Magnetoresistance Manganites and Related Prototype Devices

Colossal Magnetoresistance Manganites and Related Prototype Devices Colossal Magnetoresistance Manganites and Related Prototype Devices Liu Yukuai( 刘愉快 ), Yin Yuewei( 殷月伟 ) *, and Li Xiaoguang( 李晓光 ) * Hefei National Laboratory for Physical Sciences at Microscale, Department

More information

Complex Ordering Phenomena in Multifunctional Oxides

Complex Ordering Phenomena in Multifunctional Oxides Mitglied der Helmholtz-Gemeinschaft Complex Ordering Phenomena in Multifunctional Oxides Manuel Angst Jülich Centre for Neutron Science JCNS and Peter Grünberg Institut PGI, JARA-FIT, Forschungszentrum

More information

Electric-field control of magnetic domain wall motion and local magnetization reversal

Electric-field control of magnetic domain wall motion and local magnetization reversal Electric-field control of magnetic domain wall motion and local magnetization reversal Tuomas H. E. Lahtinen, Kévin J. A. Franke and Sebastiaan van Dijken* NanoSpin, Department of Applied Physics, Aalto

More information

Recent developments in spintronic

Recent developments in spintronic Recent developments in spintronic Tomas Jungwirth nstitute of Physics ASCR, Prague University of Nottingham in collaboration with Hitachi Cambridge, University of Texas, Texas A&M University - Spintronics

More information

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Spin electronics at the nanoscale Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Principles of spin electronics: ferromagnetic metals spin accumulation Resistivity of homogeneous

More information

Competing Ferroic Orders The magnetoelectric effect

Competing Ferroic Orders The magnetoelectric effect Competing Ferroic Orders The magnetoelectric effect Cornell University I would found an institution where any person can find instruction in any study. Ezra Cornell, 1868 Craig J. Fennie School of Applied

More information

with micrometer wide atomic terraces

with micrometer wide atomic terraces Epitaxial growth and properties of La 0.7 Sr 0.3 MnO 3 thin films with micrometer wide atomic terraces Wei Yuan 1, Yuelei Zhao 1, Chi Tang 2, Tang Su 1, Qi Song 1, Jing Shi 2,a), and Wei Han 1,3,b) 1 International

More information

The exchange interaction between FM and AFM materials

The exchange interaction between FM and AFM materials Chapter 1 The exchange interaction between FM and AFM materials When the ferromagnetic (FM) materials are contacted with antiferromagnetic (AFM) materials, the magnetic properties of FM materials are drastically

More information

Mechanism of Polarization Fatigue in BiFeO 3 : the Role of Schottky Barrier

Mechanism of Polarization Fatigue in BiFeO 3 : the Role of Schottky Barrier Mechanism of Polarization Fatigue in BiFeO 3 : the Role of Schottky Barrier Yang Zhou, 1 Xi Zou, 1 Lu You, 1 Rui Guo, 1 Zhi Shiuh Lim, 1 Lang Chen, 1 Guoliang Yuan, 2,a) and Junling Wang 1,b) 1 School

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Toyo Kazu Yamada Keywords Spin-polarized tunneling current Spin polarization Magnetism 103.1 Principle Spin-polarized scanning tunneling microscopy

More information

Ferroelectric domain scaling and switching in ultrathin BiFeO 3. films deposited on vicinal. substrates

Ferroelectric domain scaling and switching in ultrathin BiFeO 3. films deposited on vicinal. substrates Home Search Collections Journals About Contact us My IOPscience Ferroelectric domain scaling and switching in ultrathin BiFeO 3 films deposited on vicinal substrates This content has been downloaded from

More information

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P

More information

Electrostatic charging and redox effects in oxide heterostructures

Electrostatic charging and redox effects in oxide heterostructures Electrostatic charging and redox effects in oxide heterostructures Peter Littlewood 1,2,3 Nick Bristowe 3 & Emilio Artacho 3,6 Miguel Pruneda 4 and Massimiliano Stengel 5 1 Argonne National Laboratory

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge Ref. p. 59] 1.5. 3d elements and C, Si, Ge, Sn or Pb 7 1.75 1.50 Co Si 0.8 0. 3.50 3.5 Co Si 0.8 0. H cr Magnetic field H [koe] 1.5 1.00 0.75 0.50 0.5 C C IF "A" P Frequency ωγ / e [koe] 3.00.75.50.5.00

More information

Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions

Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions Ryan Stearrett Ryan Stearrett, W. G. Wang, Xiaoming Kou, J. F. Feng, J. M. D. Coey, J. Q. Xiao, and E. R. Nowak, Physical

More information

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory Center for Spintronic Materials, Interfaces, and Novel Architectures Voltage Controlled Antiferromagnetics and Future Spin Memory Maxim Tsoi The University of Texas at Austin Acknowledgments: H. Seinige,

More information

Introduction to Magnetoelectric Multiferroics. Kee Hoon Kim

Introduction to Magnetoelectric Multiferroics. Kee Hoon Kim Introduction to Magnetoelectric Multiferroics Kee oon Kim Center for Strongly Correlated Material Research & School of Physics, Seoul National University, South Korea Outline 1. What is magnetoelectrics

More information

arxiv: v1 [cond-mat.mtrl-sci] 28 Jul 2008

arxiv: v1 [cond-mat.mtrl-sci] 28 Jul 2008 Current induced resistance change of magnetic tunnel junctions with ultra-thin MgO tunnel barriers Patryk Krzysteczko, 1, Xinli Kou, 2 Karsten Rott, 1 Andy Thomas, 1 and Günter Reiss 1 1 Bielefeld University,

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Dresden-Rossendorf, P. O. Box ,Dresden 01314, Germany. Peking University, Beijing , China

Dresden-Rossendorf, P. O. Box ,Dresden 01314, Germany. Peking University, Beijing , China Reduced leakage current in BiFeO 3 thin films with rectifying contacts Yao Shuai, 1 Shengqiang Zhou, 1,2 Stephan Streit, 1 Helfried Reuther, 1 Danilo Bürger, 1 Stefan Slesazeck, 3 Thomas Mikolajick, 3

More information

Active control of magnetoresistance of organic spin valves using. ferroelectricity

Active control of magnetoresistance of organic spin valves using. ferroelectricity Active control of magnetoresistance of organic spin valves using ferroelectricity Dali Sun 2,3,, ǀǀ, Mei Fang 1,, Xiaoshan Xu 2, *,, Lu Jiang 2,3, Hangwen Guo 2,3, Yanmei Wang 1, Wenting Yang 1, Lifeng

More information

What happens if a compass needle is held

What happens if a compass needle is held FEATURE ARTICLE THE HOLY GRAIL OF MULTIFERROIC PHYSICS BY ROGÉRIO DE SOUSA THE CROSS-CORRELATION PROBLEM: IS MAGNETISM CONTROLLABLE BY ELECTRIC FIELDS? What happens if a compass needle is held fixed in

More information

Interface ferromagnetism and orbital reconstruction in BiFeO 3 -

Interface ferromagnetism and orbital reconstruction in BiFeO 3 - Interface ferromagnetism and orbital reconstruction in BiFeO 3 - La 0.7 Sr 0.3 MnO 3 heterostructures P. Yu 1, J. -S. Lee 2, S. Okamoto 3, M. D. Rossell 4, M. Huijben 1,5, C. -H. Yang 1, Q. He 1, J. -X.

More information

Nanoscale Control of Exchange Bias with BiFeO 3 Thin Films

Nanoscale Control of Exchange Bias with BiFeO 3 Thin Films Nanoscale Control of Exchange Bias with BiFeO 3 Thin Films NANO LETTERS 2008 Vol. 8, No. 7 2050-2055 Lane W. Martin,*,, Ying-Hao Chu,,, Mikel B. Holcomb,, Mark Huijben, Pu Yu, Shu-Jen Han, Donkoun Lee,

More information

8 SCIENTIFIC HIGHLIGHT OF THE MONTH: First Principles Studies of Multiferroic Materials. First Principles Studies of Multiferroic Materials

8 SCIENTIFIC HIGHLIGHT OF THE MONTH: First Principles Studies of Multiferroic Materials. First Principles Studies of Multiferroic Materials 8 SCIENTIFIC HIGHLIGHT OF THE MONTH: First Principles Studies of Multiferroic Materials First Principles Studies of Multiferroic Materials Silvia Picozzi 1 and Claude Ederer 2 1 Consiglio Nazionale delle

More information

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Xavier Batlle, A. Labarta, Ò. Iglesias, M. García del Muro and M. Kovylina Goup of Magnetic Nanomaterials

More information

Stabilization of highly polar BiFeO 3 like structure: a new interface design route for enhanced ferroelectricity in artificial perovskite superlattice

Stabilization of highly polar BiFeO 3 like structure: a new interface design route for enhanced ferroelectricity in artificial perovskite superlattice Stabilization of highly polar BiFeO 3 like structure: a new interface design route for enhanced ferroelectricity in artificial perovskite superlattice Speaker: Xifan Wu Temple University Outline Part I.

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

Resonant tunneling magnetoresistance in epitaxial metal-semiconductor heterostructures

Resonant tunneling magnetoresistance in epitaxial metal-semiconductor heterostructures Resonant tunneling magnetoresistance in epitaxial metal-semiconductor heterostructures J. Varalda 1, A. J. A. de Oliveira 1, D. H. Mosca 2, J.-M. George 3, M. Eddrief 4, M. Marangolo 4, V. H. Etgens 4

More information

Colossal electroresistance in metal/ferroelectric/semiconductor. tunnel diodes for resistive switching memories

Colossal electroresistance in metal/ferroelectric/semiconductor. tunnel diodes for resistive switching memories Colossal electroresistance in metal/ferroelectric/semiconductor tunnel diodes for resistive switching memories Zheng Wen, Chen Li, Di Wu*, Aidong Li and Naiben Ming National Laboratory of Solid State Microstructures

More information

Matias Bargheer. Examples of Ultrafast X-ray Diffraction Experimens: Synchrotron vs. Laser-Plasma Sources

Matias Bargheer. Examples of Ultrafast X-ray Diffraction Experimens: Synchrotron vs. Laser-Plasma Sources Matias Bargheer Examples of Ultrafast X-ray Diffraction Experimens: Synchrotron vs. Laser-Plasma Sources Some details of the setup: BESSYII + Plasma VSR Ultrafast heat transport on nm length scale Inhomogeneous

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Epitaxial BiFeO3 multiferroic thin film heterostructures. Author(s) Citation Wang, J.; Neaton, J. B.;

More information

Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures

Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures Valeria Lauter Quantum Condensed Matter Division, Oak Ridge National Laboratory,

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

Funding provided by the Los Alamos National Laboratory Directed Research and Development Program

Funding provided by the Los Alamos National Laboratory Directed Research and Development Program Combining ferroelectricity and magnetism: the low energy electrodynamics Diyar Talbayev Center for Integrated Nanotechnologies Los Alamos National Laboratory Acknowledgements Los Alamos National Laboratory

More information

Realizing Magnetoelectric Coupling with Hydroxide as a Knob J.Y. Ni 1,2, P.S. Wang 1,2, J. L. Lu 1,2, and H. J. Xiang 1,2*

Realizing Magnetoelectric Coupling with Hydroxide as a Knob J.Y. Ni 1,2, P.S. Wang 1,2, J. L. Lu 1,2, and H. J. Xiang 1,2* Realizing Magnetoelectric Coupling with Hydroxide as a Knob J.Y. Ni 1,2, P.S. Wang 1,2, J. L. Lu 1,2, and H. J. Xiang 1,2* 1 Key Laboratory of Computational Physical Sciences (Ministry of Education), State

More information

Magnetic tunnel junctions using Co-based Heusler alloy electrodes

Magnetic tunnel junctions using Co-based Heusler alloy electrodes Magnetic tunnel junctions using Co-based Heusler alloy electrodes 1 Half-metallic Heusler alloy thin films for spintronic devices E F E Energy gap Co 2 YZ: L2 1 structure 2a MgO.5957 nm a Co.5654 2MnSi

More information

Italian School of Magnetism

Italian School of Magnetism Spintronics I 1. Introduction 3. Mott paradigm: two currents model 4. Giant MagnetoResistance: story and basic principles 5. Semiclassical model for CIP GMR Italian School of Magnetism Prof. Riccardo Bertacco

More information

A multilevel nonvolatile magnetoelectric memory based on memtranstor

A multilevel nonvolatile magnetoelectric memory based on memtranstor A multilevel nonvolatile magnetoelectric memory based on memtranstor Jianxin Shen, Junzhuang Cong, Dashan Shang, Yisheng Chai, Shipeng Shen, Kun Zhai, and Young Sun Beijing National Laboratory for Condensed

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24

More information

Ferromagnetism and Anomalous Hall Effect in Graphene

Ferromagnetism and Anomalous Hall Effect in Graphene Ferromagnetism and Anomalous Hall Effect in Graphene Jing Shi Department of Physics & Astronomy, University of California, Riverside Graphene/YIG Introduction Outline Proximity induced ferromagnetism Quantized

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Thickness calibration of PVDF layers using atomic force microscopy. (a-d) Tapping AFM images of 1 L, 2 Ls, 4 Ls and 20 Ls PVDF films, respectively on Au-coated

More information

University of California, Berkeley, CA PLEASE SCROLL DOWN FOR ARTICLE

University of California, Berkeley, CA PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by:[cdl Journals Account] On: 1 October 2007 Access Details: [subscription number 780222585] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012267 TITLE: Exchange Coupling and Spin-Flip Transition of CoFe204/alpha-Fe2O3 Bilayered Films DISTRIBUTION: Approved for public

More information

Ultrafast dynamics in multiferroics HoMnO 3 revealed by fs spectroscopy. Chih Wei Luo ( 羅志偉 )

Ultrafast dynamics in multiferroics HoMnO 3 revealed by fs spectroscopy. Chih Wei Luo ( 羅志偉 ) Ultrafast dynamics in multiferroics HoMnO 3 revealed by fs spectroscopy Chih Wei Luo ( 羅志偉 ) Outline Introduction of femtosecond (fs) laser pulses Ultrafast dynamics in multiferroics HoMnO 3 Summary I

More information

Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

Magneto-Seebeck effect in spin-valve with in-plane thermal gradient Magneto-Seebeck effect in spin-valve with in-plane thermal gradient S. Jain 1, a), D. D. Lam 2, b), A. Bose 1, c), H. Sharma 3, d), V. R. Palkar 1, e), C. V. Tomy 3, f), Y. Suzuki 2, g) 1, h) and A. A.

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

FABRICATION AND PROPERTIES OF NANOSCALE MULTIFERROIC HETEROSTRUCTURES FOR APPLICATION IN MAGNETO-ELECTRIC RANDOM ACCESS MEMORY (MERAM) DEVICES

FABRICATION AND PROPERTIES OF NANOSCALE MULTIFERROIC HETEROSTRUCTURES FOR APPLICATION IN MAGNETO-ELECTRIC RANDOM ACCESS MEMORY (MERAM) DEVICES FABRICATION AND PROPERTIES OF NANOSCALE MULTIFERROIC HETEROSTRUCTURES FOR APPLICATION IN MAGNETO-ELECTRIC RANDOM ACCESS MEMORY (MERAM) DEVICES by GUNWOO KIM ARUNAVA GUPTA, COMMITTEE CHAIR ROBERT W. SCHARSTEIN

More information

Two phase magnetoelectric epitaxial. composite thin films

Two phase magnetoelectric epitaxial. composite thin films Two phase magnetoelectric epitaxial composite thin films Li Yan Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University In partial fulfillment of the requirement

More information

Chapter 8: Magnetic and Electrical Properties

Chapter 8: Magnetic and Electrical Properties Chapter 8: Magnetic and Electrical Properties 1 In solids, properties of individual atoms can interact cooperatively to produce effects not found in fluids. Magnetic Susceptibility: magnetic field produces

More information

Magnetoelectricity and multiferroics. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen.

Magnetoelectricity and multiferroics. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Magnetoelectricity and multiferroics Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen. Introduction : The possibility for a material to be both ferromagnetic and ferroelectric was predicted

More information

Introduction on Multiferroic Materials. Abstract

Introduction on Multiferroic Materials. Abstract Introduction on Multiferroic Materials Xiaotian Zhang(xzhang25@utk.edu) Instructor: Elbio Dagotto Class: Solid State 2, 2010, Spring semester Department of Physics and Astronomy The University of Tennessee,

More information

Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems

Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems Scanning Tunneling Microscopy & Spectroscopy: A tool for probing electronic inhomogeneities in correlated systems Anjan K. Gupta Physics Department, I. I. T Kanpur ICTS-GJ, IITK, Feb 2010 Acknowledgements

More information

Material Science II. d Electron systems

Material Science II. d Electron systems Material Science II. d Electron systems 1. Electronic structure of transition-metal ions (May 23) 2. Crystal structure and band structure (June 13) 3. Mott s (June 20) 4. Metal- transition (June 27) 5.

More information