Stabilization of highly polar BiFeO 3 like structure: a new interface design route for enhanced ferroelectricity in artificial perovskite superlattice

Size: px
Start display at page:

Download "Stabilization of highly polar BiFeO 3 like structure: a new interface design route for enhanced ferroelectricity in artificial perovskite superlattice"

Transcription

1 Stabilization of highly polar BiFeO 3 like structure: a new interface design route for enhanced ferroelectricity in artificial perovskite superlattice Speaker: Xifan Wu Temple University

2 Outline Part I. Introduction Ø Ferroelectricity (FE) and Octahedron rotations in perovskites Part II. Puzzling FE properties in BaTiO 3 /CaTiO 3 superlattice Ø Unexpected large FE and piezoelectricity Ø Interface reconstruction Part III. Stabilized BFO-like structure at interfaces of BTO/CTO Ø Model Hamiltonian fitted by DFT Part IV. Prediction of new FE materials based on the concept learned Ø Generating FE superlattice from nonpolar perovskites only Part V. Conclusion: Comparison among interface design approaches

3 Outline Part I. Introduction Ø Ferroelectricity (FE) and Octahedron rotations in perovskites Part II. Puzzling FE properties in BaTiO 3 /CaTiO 3 superlattice Ø Unexpected large FE and piezoelectricity Ø Interface reconstruction Part III. Stabilized BFO-like structure at interfaces of BTO/CTO Ø Model Hamiltonian fitted by DFT Part IV. Prediction of new FE materials based on the concept learned Ø Generating FE superlattice from nonpolar perovskites only Part V. Conclusion: Comparison among interface design approaches

4 Introduction: Octahedron rotations and FE in perovskites Perovskites only dominated by FE distortion: BaTiO 3, PbTiO 3, Ø Strong FE instability, polarization ~ 27 µc/cm 2 Ø Only FE structural distortion develops at room temperature Ø Without any oxygen octahedron rotations Г 4 (slater) FE mode

5 Introduction: Octahedron rotations and FE in perovskites Perovskites: oxygen octahedron rotations and tilts: more common CaTiO 3 (CTO)-like CTO of Pbnm In phase Rotation (a 0 a 0 c + ) Tilts (a - a - c 0 )

6 Introduction: Octahedron rotations and FE in perovskites Perovskites: oxygen octahedron rotations and tilts: more common CaTiO 3 (CTO)-like CTO of Pbnm Oxygen rotation suppress FE D. Vanderbilt and W. Zhong, Ferroelectrics 206, 181 (1997). N. A. Benedek and C. Fennie, J. Phys. Chem. C 117, (2013) In phase Rotation (a 0 a 0 c + ) Tilts (a - a - c 0 ) Suppressed FE Favored antipolar

7 Introduction: Octahedron rotations and FE in perovskites Perovskites: oxygen octahedron rotations and tilts: more common BiFeO 3 (BFO)-like BFO of R3C Out of phase Rotation (a 0 a 0 a - ) Tilts (a - a - a 0 )

8 Introduction: Octahedron rotations and FE in perovskites Perovskites: oxygen octahedron rotations and tilts: more common BiFeO 3 (BFO)-like BFO of R3C Out of phase Rotation (a 0 a 0 a - ) Strongly favored FE Ø Curie temperature ~ 1100 K Ø Neel temperature ~ 643 K Ø Polarization ~ 90 μc/ cm 2 Tilts (a - a - a 0 )

9 Introduction: Octahedron rotations and FE in perovskites CTO-like BFO-like Widespread! Relative rare! In phase Rotation (a 0 a 0 c + ) Out of phase Rotation (a 0 a 0 c - ) Tilts (a - a - c 0 ) Tilts (a - a - c 0 )

10 Outline Part I. Introduction Ø Ferroelectricity (FE) and Octahedron rotations in perovskites Part II. Puzzling FE properties in BaTiO 3 /CaTiO 3 superlattice Ø Unexpected large FE and piezoelectricity Ø Interface reconstruction Part III. Stabilized BFO-like structure at interfaces of BTO/CTO Ø Model Hamiltonian fitted by DFT Part IV. Prediction of new FE materials based on the concept learned Ø Generating FE superlattice from nonpolar perovskites only Part V. Conclusion: Comparison among interface design approaches

11 Puzzling FE in BaTiO3/CaTiO3 superlattices Polariza6on measurement S. S. A. Seo and H. N. Lee, Appl. Phys. LeE. 94, (2009). S. S. A. Seo et al Advanced Material (2007). Piezoelectricity measurement J. Y. Jo, et al, Phys. Rev. Lett. 104, (2010) Large Ferroelectricity and related properties: Ø d 33 = 54 pm/v in 2BaTiO 3 /4CaTiO 3 Ø Large polarization in nbatio 3 /ncatio 3 (n is small) STO substrate

12 Puzzling FE in BaTiO3/CaTiO3 superlattices DFT calculation: modeling of the structures FE distortion Octahedron Rotation a 0 a 0 c - Octahedron tilts a - a - c 0 Wang et al, Phys. Rev. X., 6, (2016)

13 Puzzling FE in BaTiO3/CaTiO3 superlattices DFT calculation: modeling of the structures DFT predictions are consistent with experiments d 33 (2BTO4CTO)/ d 33 (BTO ;ilm) ~ 0.98 (theory) ~ 1.0 (experiment)!!

14 Puzzling FE in BaTiO3/CaTiO3 superlattices Polariza6on measurement S. S. A. Seo and H. N. Lee, Appl. Phys. LeE. 94, (2009). S. S. A. Seo et al Advanced Material (2007). Piezoelectricity measurement J. Y. Jo, et al, Phys. Rev. Lett. 104, (2010) Large Ferroelectricity and related properties: Ø d 33 = 54 pm/v in 2BaTiO 3 /4CaTiO 3 Ø Large polarization in nbatio 3 /ncatio 3 (n is small) Why are these happening?

15 Puzzling FE in BaTiO 3 /CaTiO 3 superlattices What we expect based on bulk properties of BTO and CTO dielectric slab model 1. J. B. Neaton and K. M. Rabe, Appl. Phys. LeE. 82, (2003). p 3 (D) p 2 (D) A 1 TiO 3 A 2 TiO 3 p 1 (D) p 0 (D) p 1 (D) A 3 TiO 3 p 2 (D) P D p 3 (D)

16 Puzzling FE in BaTiO 3 /CaTiO 3 superlattices What we expect based on bulk properties of BTO and CTO dielectric slab model 1. J. B. Neaton and K. M. Rabe,Appl. Phys. LeE. 82, (2003). p 3 (D) p 2 (D) A 1 TiO 3 p 1 (D) A 2 TiO 3 p 0 (D) p 1 (D) A 3 TiO 3 P D p 2 (D) p 3 (D) Interface effect can not be neglected!!

17 Puzzling FE properties in BaTiO 3 /CaTiO 3 superlattice: Interface effect In-phase rotation Out-of-phase rotation In-plane P Out-of-plane P Antipolar mode Tilts Large Zero Strain induced in-plane P 6 BTO/6CTO on STO substrate Wang et al, Phys. Rev. X., 6, (2016) Large anti polar distortion Large Dominated by strained bulk CaTiO3

18 Puzzling FE properties in BaTiO 3 /CaTiO 3 superlattice: Interface effect In-phase rotation Out-of-phase rotation In-plane P Out-of-plane P Antipolar mode Tilts Zero Zero Zero Zero Zero 6 BTO/6CTO on STO substrate Dominated by strained bulk BaTiO 3 Wang et al, Phys. Rev. X., 6, (2016)

19 Outline In-phase rotation Out-of-phase rotation In-plane P Out-of-plane P Antipolar mode Tilts Dielectric slab model 6 BTO/6CTO on STO substrate Wang et al, Phys. Rev. X., 6, (2016)

20 Puzzling FE properties in BaTiO 3 /CaTiO 3 superlattice: Interface effect In-phase rotation Out-of-phase rotation In-plane P Out-of-plane P Antipolar mode Tilts 6 BTO/6CTO on STO substrate Wang et al, to be published in Phys. Rev. X.

21 Puzzling FE properties in BaTiO 3 /CaTiO 3 superlattice: Interface effect In-phase rotation Out-of-phase rotation In-plane P Out-of-plane P Antipolar mode Tilts suppressed Induced Induced Enhanced P suppressed suppressed 6 BTO/6CTO on STO substrate Wang et al, Phys. Rev. X., 6, (2016)

22 Octahedron rotations in perovskites high-resolution (amplitude contrast) transmission electron microscopy Simulated TEM based on DFT theory By Jianguo Wen and Dean Miller, Argonne Viewed from [110] direction Wang et al, to be published in Phys. Rev. X.

23 Outline Part I. Introduction Ø Ferroelectricity (FE) and Octahedron rotations in perovskites Part II. Puzzling FE properties in BaTiO 3 /CaTiO 3 superlattice Ø Unexpected large FE and piezoelectricity Ø Interface reconstruction Part III. Stabilized BFO-like structure at interfaces of BTO/CTO Ø Model Hamiltonian fitted by DFT Part IV. Prediction of new FE materials based on the concept learned Ø Generating FE superlattice from nonpolar perovskites only Part V. Conclusion: Comparison among interface design approaches

24 Model Hamiltonian fitted by DFT Model Hamiltonian CTO-like CTO on SrTiO3 substrate In phase Rotation (a 0 a 0 c + ) Tilts (a - a - c 0 ) R z i :in phase rotation N. A. Benedek and C. Fennie, Why are there so few perovskite ferroelectrics, J. Phys. Chem. C 117, (2013). R z o :out of phase rotation R xy :OOR tilt AFE xy :in plane antipolar FE xy :in plane FE FE z :out of plane FE Wang et al, Phys. Rev. X., 6, (2016)

25 Model Hamiltonian fitted by DFT Model Hamiltonian BFO-like CTO on SrTiO3 substrate Out of phase Rotation (a 0 a 0 c - ) Tilts (a - a - c 0 ) R z i :in phase rotation J.L. Blok, K.M. Rabe, D. Vanderbilt, D.H.A. Blank, and G. Rijnders, Phys. Rev. B 84, (2011). R z o :out of phase rotatio R xy :OOR tilt AFE xy :in plane antipolar FE xy :in plane FE FE z :out of plane FE Wang et al, to be published in Phys. Rev. X.

26 Model Hamiltonian fitted by DFT Ground state strained CaTiO 3 : CTO-like Metastable strained CaTiO 3 : BFO-like Assuming the oxygen octahedron rota6on and 6lt are tunable parameters Wang et al, Phys. Rev. X., 6, (2016)

27 Model Hamiltonian fitted by DFT Phase stabilities of ground state CTO CTO-like phase and metastable CTO BFO-like Natural ground state E>0 CTO- like stable E<0 BFO- like stable Tilts Rota6on Wang et al, Phys. Rev. X., 6, (2016)

28 Model Hamiltonian fitted by DFT In-phase rotation Out-of-phase rotation In-plane P Out-of-plane P Antipolar mode Tilts Stabilized BFO-like phase 1. Moderately suppressed tilting and rotation 2. Electric and mechanical boundary conditions Wang et al, Phys. Rev. X., 6, (2016)

29 Outline Part I. Introduction Ø Ferroelectricity (FE) and Octahedron rotations in perovskites Part II. Puzzling FE properties in BaTiO 3 /CaTiO 3 superlattice Ø Unexpected large FE and piezoelectricity Ø Interface reconstruction Part III. Stabilized BFO-like structure at interfaces of BTO/CTO Ø Model Hamiltonian fitted by DFT Part IV. Prediction of new FE materials based on the concept learned Ø Generating FE superlattice from nonpolar perovskites only Part V. Conclusion: Comparison among interface design approaches

30 Interface approach: Generating FE from nonpolar perovskites only A BO3 Out of phase rotation tilt In phase rotation cubic-like non polar perovskite Xifan Wu - - EFRC annual review Wang et al, Phys. Rev. X., 6, (2016)

31 Interface approach: Generating FE from nonpolar perovskites only A BO3 A BO3 Out of phase rotation tilt In phase rotation cubic-like non polar perovskite CTO-like non polar perovskite Xifan Wu - - EFRC annual review Wang et al, Phys. Rev. X., 6, (2016)

32 Interface approach: Generating FE from nonpolar perovskites only A BO3 A BO3 Out of phase rotation tilt 1A BO3/1A BO3 In phase rotation cubic-like non polar perovskite CTO-like non polar perovskite Xifan Wu - - EFRC annual review Wang et al, Phys. Rev. X., 6, (2016) BFO-like polar phase

33 Outline Part I. Introduction Ø Ferroelectricity (FE) and Octahedron rotations in perovskites Part II. Puzzling FE properties in BaTiO 3 /CaTiO 3 superlattice Ø Unexpected large FE and piezoelectricity Ø Interface reconstruction Part III. Stabilized BFO-like structure at interfaces of BTO/CTO Ø Model Hamiltonian fitted by DFT Part IV. Prediction of new FE materials based on the concept learned Ø Generating FE superlattice from nonpolar perovskites only Part V. Conclusion: Comparison among interface design approaches

34

35 Acknowledgement Ø Hongwei Wang (postdoc of Temple Physics) Ø Jianguo Wen (TEM, Argonne) Ø Dean Miller (TEM, Argonne) Ø Qibin Zhou (Rutgers Physics) Ø Karin M. Rabe (Rutgers Physics) Ø Mohan Chen (Princeton, Engineering) Ø Ho-Nyung Lee (Thin-film, Oak Ridge)

Polarization Enhancement in Perovskite Superlattices by Oxygen. Octahedral Tilts

Polarization Enhancement in Perovskite Superlattices by Oxygen. Octahedral Tilts Polarization Enhancement in Perovskite Superlattices by Oxygen Octahedral Tilts X. Z. Lu a), X. G. Gong, and H. J. Xiang b) Key Laboratory of Computational Physical Sciences (Ministry of Education), State

More information

Ferroelectricity in artificial bicolor oxide superlattices**

Ferroelectricity in artificial bicolor oxide superlattices** Ferroelectricity in artificial bicolor oxide superlattices** By Sung Seok A. Seo, Jun Hee Lee, Ho Nyung Lee,* Matthew F. Chisholm, Woo Seok Choi, Dong Jik Kim, Ji Young Jo, Hanchul Kim, Jaejun Yu, and

More information

Nanoxide electronics

Nanoxide electronics Nanoxide electronics Alexey Kalabukhov Quantum Device Physics Laboratory MC2, room D515 Alexei.kalaboukhov@chalmers.se Playing Lego with oxide materials: G. Rijnders, D.H.A. Blank, Nature 433, 369 (2005)

More information

Nanoxide electronics

Nanoxide electronics Nanoxide electronics Alexey Kalabukhov Quantum Device Physics Laboratory MC2, room D515 Alexei.kalaboukhov@chalmers.se Playing Lego with oxide materials: G. Rijnders, D.H.A. Blank, Nature 433, 369 (2005)

More information

Competing between oxygen tilts and polar shifts in BiFeO 3 thin films

Competing between oxygen tilts and polar shifts in BiFeO 3 thin films Journées Electromagnons Institut Néel Competing between oxygen tilts and polar shifts in BiFeO 3 thin films B. Dkhil Laboratoire Structures, Propriétés et Modélisation des Solides, CNRS-UMR 8580, Ecole

More information

Electric displacement as the fundamental variable in electronic-structure calculations

Electric displacement as the fundamental variable in electronic-structure calculations Electric displacement as the fundamental variable in electronic-structure calculations CECAM - Centre Européen de Calcul Atomique et Moléculaire EPF Lausanne, Switzerland Conference UC Davis, 6/23/2009

More information

E (MV cm -1 ) E // [001] x=0.7 E // [001] x=0.5. E // [001] E // [110] x=0.9. x=0.5

E (MV cm -1 ) E // [001] x=0.7 E // [001] x=0.5. E // [001] E // [110] x=0.9. x=0.5 15 1 E // [1] x=.5 a E // [1] x=.7 b P (µc cm -2 ) 5 15 1 5 1 st cycle 2 nd cycle 3 rd cycle E // [1] E // [11] x=.9 x=.5 c d.5 1 1.5 2 2.5 3.5 1 1.5 2 2.5 3 E (MV cm -1 ) Supplementary Figure 1: The P

More information

Component-specific electromechanical response in a ferroelectric/dielectric superlattice

Component-specific electromechanical response in a ferroelectric/dielectric superlattice Component-specific electromechanical response in a ferroelectric/dielectric superlattice Ji Young Jo, 1 Rebecca J. Sichel, 1 Eric M. Dufresne, 2 Ho Nyung Lee, 3 Serge M. Nakhmanson, 4 and Paul G. Evans

More information

Effect of substrate-induced strains on the spontaneous polarization of epitaxial BiFeO 3 thin films

Effect of substrate-induced strains on the spontaneous polarization of epitaxial BiFeO 3 thin films JOURNAL OF APPLIED PHYSICS 11, 11415 27 Effect of substrate-induced strains on the spontaneous polarization of epitaxial 3 thin films J. X. Zhang, a Y. L. Li, Y. Wang, Z. K. Liu, and L. Q. Chen Department

More information

Aberration-corrected TEM studies on interface of multilayered-perovskite systems

Aberration-corrected TEM studies on interface of multilayered-perovskite systems Aberration-corrected TEM studies on interface of multilayered-perovskite systems By Lina Gunawan (0326114) Supervisor: Dr. Gianluigi Botton November 1, 2006 MSE 702(1) Presentation Outline Literature Review

More information

FIRST-PRINCIPLES MODELING OF FUNCTIONAL PEROVSKITE MATERIALS AND SUPERLATTICES

FIRST-PRINCIPLES MODELING OF FUNCTIONAL PEROVSKITE MATERIALS AND SUPERLATTICES FIRST-PRINCIPLES MODELING OF FUNCTIONAL PEROVSKITE MATERIALS AND SUPERLATTICES By QIBIN ZHOU A dissertation submitted to the Graduate School New Brunswick Rutgers, The State University of New Jersey in

More information

Ferroelectricity in Strain-Free SrTiO 3 Thin Films

Ferroelectricity in Strain-Free SrTiO 3 Thin Films Ferroelectricity in Strain-Free SrTiO 3 Thin Films H. W. Jang, 1 A. Kumar, 2 S. Denev, 2 M. D. Biegalski, 3 P. Maksymovych, 3 C.W. Bark, 1 C. T. Nelson, 4 C. M. Folkman, 1 S. H. Baek, 1 N. Balke, 3 C.

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Epitaxial BiFeO3 multiferroic thin film heterostructures. Author(s) Citation Wang, J.; Neaton, J. B.;

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Reversible Electric Control of Exchange Bias in a Multiferroic Field Effect Device S. M. Wu 1, 2, Shane A. Cybart 1, 2, P. Yu 1, 2, M. D. Abrodos 1, J. Zhang 1, R. Ramesh 1, 2

More information

Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology

Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology MEMS Engineer Forum 2016/5/11 11:50-12:15 Content 1. Introduction 2. Processing 3. Materials Matter Content

More information

Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study

Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study Arturas Vailionis 1, Wolter Siemons 1,2, Gertjan Koster 1 1 Geballe Laboratory for

More information

arxiv: v1 [cond-mat.mtrl-sci] 6 Sep 2011

arxiv: v1 [cond-mat.mtrl-sci] 6 Sep 2011 Band Gap and Edge Engineering via Ferroic Distortion and Anisotropic Strain: The Case of SrTiO 3 Robert F. Berger, 1 Craig J. Fennie, 2 and Jeffrey B. Neaton 1, 1 Molecular Foundry, Lawrence Berkeley National

More information

Introduction to solid state physics

Introduction to solid state physics PHYS 342/555 Introduction to solid state physics Instructor: Dr. Pengcheng Dai Professor of Physics The University of Tennessee (Room 407A, Nielsen, 974-1509) Chapter 13: Dielectrics and ferroelectrics

More information

From 180º stripe domains to more exotic patterns of polarization in ferroelectric nanostructures. A first principles view

From 180º stripe domains to more exotic patterns of polarization in ferroelectric nanostructures. A first principles view From 180º stripe domains to more exotic patterns of polarization in ferroelectric nanostructures. A first principles view Pablo Aguado-Puente Javier Junquera Ferroelectricity: Basic definitions Existence

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL SUPPLEMENTARY MATERIAL Multiphase Nanodomains in a Strained BaTiO3 Film on a GdScO3 Substrate Shunsuke Kobayashi 1*, Kazutoshi Inoue 2, Takeharu Kato 1, Yuichi Ikuhara 1,2,3 and Takahisa Yamamoto 1, 4

More information

5. Building Blocks I: Ferroelectric inorganic micro- and nano(shell) tubes

5. Building Blocks I: Ferroelectric inorganic micro- and nano(shell) tubes 5. Building Blocks I: Ferroelectric inorganic micro- and nano(shell) tubes 5.1 New candidates for nanoelectronics: ferroelectric nanotubes In this chapter, one of the core elements for a complex building

More information

lead-free perovskite piezoelectric ceramics Cheuk W. Tai * and Y. Lereah Department of Physical Electronics, School of Electrical Engineering,

lead-free perovskite piezoelectric ceramics Cheuk W. Tai * and Y. Lereah Department of Physical Electronics, School of Electrical Engineering, Nano-scale oxygen octahedral tilting in 0.90(Bi 1/2 Na 1/2 )TiO 3-0.05(Bi 1/2 K 1/2 )TiO 3-0.05BaTiO 3 lead-free perovskite piezoelectric ceramics Cheuk W. Tai * and Y. Lereah Department of Physical Electronics,

More information

arxiv: v1 [cond-mat.mtrl-sci] 22 Apr 2010

arxiv: v1 [cond-mat.mtrl-sci] 22 Apr 2010 First-principles study of competing ferroelectric and antiferroelectric instabilities in BaTiO 3 /BaO superlattices Eric Bousquet 1,2, Javier Junquera 3, and Philippe Ghosez 1 1 Institut de physique (B5),

More information

Interfacial Coherency and Ferroelectricity of BaTiO 3 /SrTiO 3 Superlattice Films

Interfacial Coherency and Ferroelectricity of BaTiO 3 /SrTiO 3 Superlattice Films Boise State University ScholarWorks Physics Faculty Publications and Presentations Department of Physics 12-18-2007 Interfacial Coherency and Ferroelectricity of BaTiO 3 /SrTiO 3 Superlattice Films Y.

More information

arxiv: v1 [cond-mat.mtrl-sci] 23 Oct 2013

arxiv: v1 [cond-mat.mtrl-sci] 23 Oct 2013 Competition and cooperation between antiferrodistortive and ferroelectric instabilities in SrTiO3 Ulrich Aschauer and Nicola A. Spaldin arxiv:131.613v1 [cond-mat.mtrl-sci] 3 Oct 13 Materials Theory, ETH

More information

Phase diagram and piezoelectric response of (Ba 1 x Ca x )(Zr 0.1 Ti 0.9 )O 3 solid solution

Phase diagram and piezoelectric response of (Ba 1 x Ca x )(Zr 0.1 Ti 0.9 )O 3 solid solution FAST TRACK COMMUNICATION Phase diagram and piezoelectric response of (Ba 1 x Ca x )(Zr.1 Ti.9 )O 3 solid solution Desheng Fu 1, Yuto Kamai 1, Naonori Sakamoto 1, Naoki Wakiya 1, Hisao Suzuki 1 and Mitsuru

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Titanium d xy ferromagnetism at the LaAlO 3 /SrTiO 3 interface J.-S. Lee 1,*, Y. W. Xie 2, H. K. Sato 3, C. Bell 3, Y. Hikita 3, H. Y. Hwang 2,3, C.-C. Kao 1 1 Stanford Synchrotron Radiation Lightsource,

More information

Probing Magnetic Order with Neutron Scattering

Probing Magnetic Order with Neutron Scattering Probing Magnetic Order with Neutron Scattering G.J. Mankey, V.V. Krishnamurthy, F.D. Mackey and I. Zoto University of Alabama in collaboration with J.L. Robertson and M.L. Crow Oak Ridge National Laboratory

More information

and Short-Range Interactions H. J. Xiang P. R. China

and Short-Range Interactions H. J. Xiang P. R. China Origin of Polar Distortion in LiNbO3 type Ferroelectric Metals: Role of A-site Instability and Short-Range Interactions H. J. Xiang Key Laboratory of Computational Physical Sciences (Ministry of Education),

More information

Supplementary Information for Dimensionality-Driven. Insulator-Metal Transition in A-site Excess. Nonstoichiometric Perovskites

Supplementary Information for Dimensionality-Driven. Insulator-Metal Transition in A-site Excess. Nonstoichiometric Perovskites Supplementary Information for Dimensionality-Driven Insulator-Metal Transition in A-site Excess Nonstoichiometric Perovskites Z. Wang, M. Okude, M. Saito, S. Tsukimoto, A. Ohtomo, M. Tsukada, M. Kawasaki,

More information

Stability of a Ferroelectric Phase with Electrical Domains in Multilayers

Stability of a Ferroelectric Phase with Electrical Domains in Multilayers Stability of a Ferroelectric Phase with Electrical Domains in Multilayers I. B. Misirlioglu Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla/Orhanli 34956 Istanbul, Turkey Multilayer

More information

Materials 218/UCSB: Phase transitions and polar materials

Materials 218/UCSB: Phase transitions and polar materials Materials 218/UCSB: Phase transitions and polar materials Ram Seshadri (seshadri@mrl.ucsb.edu) Background: Intrinsic stability of thermodynamic systems (after H. B. Callen, Thermodynamics and an introduction

More information

When transition metals are incorporated into a certain site of the BiT, some of BiT-LaTMO 3

When transition metals are incorporated into a certain site of the BiT, some of BiT-LaTMO 3 Band gap tuning in ferroelectric Bi 4 Ti 3 O 12 by alloying LaTMO 3 (TM = Ti, V, Cr, Mn, Co, Ni, and Al) Woo Seok Choi and Ho Nyung Lee Materials Science and Technology Division, Oak Ridge National Laboratory,

More information

Depth profile study of ferroelectric PbZr 0.2 Ti 0.8 O 3 films

Depth profile study of ferroelectric PbZr 0.2 Ti 0.8 O 3 films JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 11 1 DECEMBER 2002 Depth profile study of ferroelectric PbZr 0.2 Ti 0.8 O 3 films Y. Li, V. Nagarajan, S. Aggarwal, R. Ramesh, L. G. Salamanca-Riba, and L.

More information

Accumulation of charged defects at. local and bulk properties of

Accumulation of charged defects at. local and bulk properties of Accumulation of charged defects at domain walls and its implication to local and bulk properties of polycrystalline lli BiFeO 3 Tadej Rojac Andreja Bencan, Hana Ursic, Bostjan Jancar, Gasper Tavcar, Maja

More information

Chemical Substitution-Induced Ferroelectric Polarization Rotation in BiFeO 3

Chemical Substitution-Induced Ferroelectric Polarization Rotation in BiFeO 3 Chemical Substitution-Induced Ferroelectric Polarization Rotation in BiFeO 3 Daisuke Kan, * Varatharajan Anbusathaiah, and Ichiro Takeuchi The direction of the ferroelectric polarization vector is a key

More information

The Pennsylvania State University. The Graduate School. College of Earth and Mineral Sciences PHASE TRANSITIONS IN EPITAXIAL RHOMBOHEDRAL

The Pennsylvania State University. The Graduate School. College of Earth and Mineral Sciences PHASE TRANSITIONS IN EPITAXIAL RHOMBOHEDRAL The Pennsylvania State University The Graduate School College of Earth and Mineral Sciences PHASE TRANSITIONS IN EPITAXIAL RHOMBOHEDRAL Pb(Zr 1-X Ti X )O 3 THIN FILMS A Dissertation in Materials Science

More information

Domain Structures in Epitaxial Ferroelectric Thin Films

Domain Structures in Epitaxial Ferroelectric Thin Films Domain Structures in Epitaxial Ferroelectric Thin Films By: Brian Smith S1711377 Supervised by: Prof. dr. Beatrix Noheda February 2009 1 TABLE OF CONTENTS Introduction. 3 1. Background 4 2. Experimental..

More information

Electrostatic charging and redox effects in oxide heterostructures

Electrostatic charging and redox effects in oxide heterostructures Electrostatic charging and redox effects in oxide heterostructures Peter Littlewood 1,2,3 Nick Bristowe 3 & Emilio Artacho 3,6 Miguel Pruneda 4 and Massimiliano Stengel 5 1 Argonne National Laboratory

More information

Oxide materials for electronics Inorganic Materials and Ceramics Research Group

Oxide materials for electronics Inorganic Materials and Ceramics Research Group Oxide materials for electronics Inorganic Materials and Ceramics Research Group Sverre M. Selbach, selbach@material.ntnu.no Department of Materials Science and Engineering, NTNU NorTex Nano Summit Oct.

More information

u u u REPORT DOCUMENTATION PAGE DARPA HROOl Office of Sponsored Programs 1534 White Avenue Form Approved OMB No.

u u u REPORT DOCUMENTATION PAGE DARPA HROOl Office of Sponsored Programs 1534 White Avenue Form Approved OMB No. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this CDllection of Information Is estimated to average 1 hour per response, including the time for reviewing Instructions,

More information

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816,

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816, Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 MoS 2 /TiO 2 Heterostructures as Nonmetal Plasmonic Photocatalysts for Highly

More information

arxiv:cond-mat/ v1 10 Jun 1994 K. M. Rabe

arxiv:cond-mat/ v1 10 Jun 1994 K. M. Rabe October 2, 2018 Phase transitions in BaTiO 3 from first principles W. Zhong and David Vanderbilt Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855-0849 arxiv:cond-mat/9406049v1

More information

Antiferroelectricity in oxides: a reexamination

Antiferroelectricity in oxides: a reexamination Antiferroelectricity in oxides: a reexamination Karin M. Rabe* Department of Physics and Astronomy Rutgers University, Piscataway, NJ 08854 * Corresponding Author: rabe@physics.rutgers.edu (Dated: December

More information

2 ( º ) Intensity (a.u.) Supplementary Figure 1. Crystal structure for composition Bi0.75Pb0.25Fe0.7Mn0.05Ti0.25O3. Highresolution

2 ( º ) Intensity (a.u.) Supplementary Figure 1. Crystal structure for composition Bi0.75Pb0.25Fe0.7Mn0.05Ti0.25O3. Highresolution Intensity (a.u.) Y Obs Y Cal Y Obs - Y Cal Bragg position Cc 20 40 60 80 100 2 ( º ) Supplementary Figure 1. Crystal structure for composition Bi0.75Pb0.25Fe0.7Mn0.05Ti0.25O3. Highresolution X-ray diffraction

More information

Recent Developments in Magnetoelectrics Vaijayanti Palkar

Recent Developments in Magnetoelectrics Vaijayanti Palkar Recent Developments in Magnetoelectrics Vaijayanti Palkar Department of Condensed Matter Physics & Materials Science Tata Institute of Fundamental Research Mumbai 400 005, India. Tata Institute of Fundamental

More information

Supplementary Figures:

Supplementary Figures: Supplementary Figures: Supplementary Figure 1 Cross-sectional morphology and Chemical composition. (a) A low-magnification dark-field TEM image shows the cross-sectional morphology of the BWO thin film

More information

Publication I. c 2010 American Physical Society. Reprinted with permission.

Publication I. c 2010 American Physical Society. Reprinted with permission. Publication I Tyunina, M., Narkilahti, J., Plekh, M., Oja, R., Nieminen, R.M., Dejneka, A., and Trepakov, V. Evidence for Strain-Induced Ferroelectric Order in Epitaxial Thin-Film KTaO 3. Physical Review

More information

Effects of substrate on the dielectric and tunable properties of epitaxial SrTiO 3 thin films

Effects of substrate on the dielectric and tunable properties of epitaxial SrTiO 3 thin films JOURNAL OF APPLIED PHYSICS 100, 114107 2006 Effects of substrate on the dielectric and tunable properties of epitaxial SrTiO 3 thin films J. H. Hao a Department of Applied Physics, The Hong Kong Polytechnic

More information

Curie-Weiss law in thin-film ferroelectrics

Curie-Weiss law in thin-film ferroelectrics JOURNAL OF APPLIED PHYSICS 100, 044114 006 Curie-Weiss law in thin-film ferroelectrics Biao Wang School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China C. H. Woo a Department of Electronic

More information

High-temperature structural phase transitions in perovskite (CaTiO 3 )

High-temperature structural phase transitions in perovskite (CaTiO 3 ) J. Phys.: Condens. Matter 8 (1996) 8267 8275. Printed in the UK High-temperature structural phase transitions in perovskite (CaTiO 3 ) Simon A T Redfern Department of Earth Sciences, University of Cambridge,

More information

Applications of Structure Optimization and Forces in the LAPW Method

Applications of Structure Optimization and Forces in the LAPW Method Applications of Structure Optimization and Forces in the LAPW Method David J. Singh Oak Ridge National Laboratory F i = - i E E CECAM, July 21, 2011 Exploring Complex Energy Surfaces Suppose we want to

More information

Epitaxial piezoelectric heterostructures for ultrasound micro-transducers

Epitaxial piezoelectric heterostructures for ultrasound micro-transducers 15 th Korea-U.S. Forum on Nanotechnology Epitaxial piezoelectric heterostructures for ultrasound micro-transducers Seung-Hyub Baek Center for Electronic Materials Korea Institute of Science and Technology

More information

Graded Ferroelectric Capacitors with Robust Temperature Characteristics. Abstract

Graded Ferroelectric Capacitors with Robust Temperature Characteristics. Abstract Preprint Graded Ferroelectric Capacitors with Robust Temperature Characteristics Mohamed Y. El-Naggar, Kaushik Dayal, David G. Goodwin, and Kaushik Bhattacharya Division of Engineering & Applied Science

More information

Chris G. Van de Walle

Chris G. Van de Walle Complex oxide interfaces Chris G. Van de Walle Anderson Janotti, Lars Bjaalie, Luke Gordon, Burak Himmetoglu, K. Krishnaswamy Materials Department, University of California, Santa Barbara ES213 June 11-14,

More information

Characteristics of Lead Free Ferroelectric Thin Films Consisted of (Na 0.5 Bi 0.5 )TiO 3 and Bi 4 Ti 3 O 12

Characteristics of Lead Free Ferroelectric Thin Films Consisted of (Na 0.5 Bi 0.5 )TiO 3 and Bi 4 Ti 3 O 12 Advanced Materials Research Online: 2013-04-24 ISSN: 1662-8985, Vol. 684, pp 307-311 doi:10.4028/www.scientific.net/amr.684.307 2013 Trans Tech Publications, Switzerland Characteristics of Lead Free Ferroelectric

More information

8 SCIENTIFIC HIGHLIGHT OF THE MONTH: First Principles Studies of Multiferroic Materials. First Principles Studies of Multiferroic Materials

8 SCIENTIFIC HIGHLIGHT OF THE MONTH: First Principles Studies of Multiferroic Materials. First Principles Studies of Multiferroic Materials 8 SCIENTIFIC HIGHLIGHT OF THE MONTH: First Principles Studies of Multiferroic Materials First Principles Studies of Multiferroic Materials Silvia Picozzi 1 and Claude Ederer 2 1 Consiglio Nazionale delle

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions Zheng Wen, Chen Li, Di Wu*, Aidong Li and Naiben Ming National Laboratory of Solid State Microstructures,

More information

High tunable dielectric response of Pb 0.87 Ba 0.1 La 0.02 (Zr 0.6 Sn 0.33 Ti 0.07 ) O 3 thin film

High tunable dielectric response of Pb 0.87 Ba 0.1 La 0.02 (Zr 0.6 Sn 0.33 Ti 0.07 ) O 3 thin film Journal of Applied Physics, 2010, Volume 108, Issue 4, paper number 044107 High tunable dielectric response of Pb 0.87 Ba 0.1 La 0.02 (Zr 0.6 Sn 0.33 Ti 0.07 ) O 3 thin film T. M. Correia and Q. Zhang*

More information

Stress-Induced Phase Transition in Pb(Zr 1/2 Ti 1/2 )O 3

Stress-Induced Phase Transition in Pb(Zr 1/2 Ti 1/2 )O 3 Stress-Induced Phase Transition in Pb(Zr 1/2 Ti 1/2 )O 3 Nicholas J. Ramer, Steven P. Lewis, E. J. Mele, and Andrew M. Rappe, Department of Chemistry, Department of Physics and Laboratory for Research

More information

M any functional properties observed in perovskite oxides, ABO3, exhibit close couplings to slight structural

M any functional properties observed in perovskite oxides, ABO3, exhibit close couplings to slight structural OPEN SUBJECT AREAS: STRUCTURAL PROPERTIES TRANSMISSION ELECTRON MICROSCOPY CERAMICS CHARACTERIZATION AND ANALYTICAL TECHNIQUES Atomic level observation of octahedral distortions at the perovskite oxide

More information

First-principles calculations of insulators in a. finite electric field

First-principles calculations of insulators in a. finite electric field Université de Liège First-principles calculations of insulators in a finite electric field M. Veithen, I. Souza, J. Íñiguez, D. Vanderbilt, K. M. Rabe and h. Ghosez Supported by: FNRS Belgium, VW Stiftung,

More information

Roger Johnson Structure and Dynamics: Displacive phase transition Lecture 9

Roger Johnson Structure and Dynamics: Displacive phase transition Lecture 9 9.1. Summary In this Lecture we will consider structural phase transitions characterised by atomic displacements, which result in a low temperature structure that is distorted compared to a higher temperature,

More information

The effect of high-pressure on (multi-)ferroics. How do distortions behave under pressure? General rules?

The effect of high-pressure on (multi-)ferroics. How do distortions behave under pressure? General rules? The effect of high-pressure on (multi-)ferroics or How do distortions behave under pressure? General rules? Jens KREISEL Laboratoire des Matériaux et du Génie Physique Grenoble Institute of Technology

More information

Structure re(inement of strained LaVO 3 thin (ilm.

Structure re(inement of strained LaVO 3 thin (ilm. Structure re(inement of strained LaVO 3 thin (ilm. H. Rotella, 1 M. Morales, 2 P.Roussel, 3 H. Ouerdane, 1 D. Chateigner, 1 P. Boullay, 1 L. Lutterotti, 4 and W. Prellier. 1 1 Laboratoire CRISMAT, CNRS

More information

Patrick E. Hopkins Assistant Professor Dept. Mech. & Aero. Eng.

Patrick E. Hopkins Assistant Professor Dept. Mech. & Aero. Eng. Stephen R. Lee, Doug Medlin, Harlan Brown- Shaklee, Jon F. Ihlefeld Sandia NaConal Labs Strain field and coherent domain wall effects on the thermal conducevity and Kapitza conductance in Bismuth Ferrite

More information

JOHN G. EKERDT RESEARCH FOCUS

JOHN G. EKERDT RESEARCH FOCUS JOHN G. EKERDT RESEARCH FOCUS We study the surface, growth and materials chemistry of ultrathin metal and dielectric films. Our work seeks to: 1) develop and understand the reactions and chemistry that

More information

Fabrication and Characteristic Investigation of Multifunctional Oxide p-n Heterojunctions

Fabrication and Characteristic Investigation of Multifunctional Oxide p-n Heterojunctions Advances in Science and Technology Vol. 45 (2006) pp. 2582-2587 online at http://www.scientific.net (2006) Trans Tech Publications, Switzerland Fabrication and Characteristic Investigation of Multifunctional

More information

A Hydrothermally Deposited Epitaxial PbTiO 3 Thin Film on SrRuO 3 Bottom Electrode for the Ferroelectric Ultra-High Density Storage Medium

A Hydrothermally Deposited Epitaxial PbTiO 3 Thin Film on SrRuO 3 Bottom Electrode for the Ferroelectric Ultra-High Density Storage Medium Integrated Ferroelectrics, 64: 247 257, 2004 Copyright C Taylor & Francis Inc. ISSN: 1058-4587 print/ 1607-8489 online DOI: 10.1080/10584580490894645 A Hydrothermally Deposited Epitaxial PbTiO 3 Thin Film

More information

Coexisting ferroelectric and antiferroelectric phases in dipole ordered substances. Material properties and possible applications.

Coexisting ferroelectric and antiferroelectric phases in dipole ordered substances. Material properties and possible applications. Coexisting ferroelectric and antiferroelectric phases in dipole ordered substances. Material properties and possible applications. V. M. Ishchuk Science & Technology Center Reaktivelektron of the National

More information

Supplementary Figure 1: Projected density of states (DOS) of the d states for the four titanium ions in the SmSr superlattice (Ti 1 -Ti 4 as defined

Supplementary Figure 1: Projected density of states (DOS) of the d states for the four titanium ions in the SmSr superlattice (Ti 1 -Ti 4 as defined Supplementary Figure 1: Projected density of states (DOS) of the d states for the four titanium ions in the SmSr superlattice (Ti 1 -Ti 4 as defined in the main text). Supplementary Table 1: Comparison

More information

Ab initio study of ferroelectric domain walls in PbTiO 3

Ab initio study of ferroelectric domain walls in PbTiO 3 Ab initio study of ferroelectric domain walls in PbTiO 3 B. Meyer and David Vanderbilt Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA (September 13, 2001)

More information

Ferroelectricity and Antiferroelectricity in Elemental Group-V Monolayer Materials

Ferroelectricity and Antiferroelectricity in Elemental Group-V Monolayer Materials Ferroelectricity and Antiferroelectricity in Elemental Group-V Monolayer Materials Chengcheng Xiao 1, Fang Wang 1, Shengyuan A. Yang 2, Yunhao Lu 1 * 1 State Key Laboratory of Silicon Materials, School

More information

INSTABILITY, THE DRIVING FORCE FOR NEW PHYSICAL PHENOMENA. Zhicheng Zhong

INSTABILITY, THE DRIVING FORCE FOR NEW PHYSICAL PHENOMENA. Zhicheng Zhong INSTABILITY, THE DRIVING FORCE FOR NEW PHYSICAL PHENOMENA Zhicheng Zhong Composition of the Graduation Committee Prof. Dr. G. van der Steenhoven Prof. Dr. P. J. Kelly Prof. Dr. Ing. A. J. H. M. Rijnders

More information

Matias Bargheer. Examples of Ultrafast X-ray Diffraction Experimens: Synchrotron vs. Laser-Plasma Sources

Matias Bargheer. Examples of Ultrafast X-ray Diffraction Experimens: Synchrotron vs. Laser-Plasma Sources Matias Bargheer Examples of Ultrafast X-ray Diffraction Experimens: Synchrotron vs. Laser-Plasma Sources Some details of the setup: BESSYII + Plasma VSR Ultrafast heat transport on nm length scale Inhomogeneous

More information

Phase diagram of unpoled lead-free (1-x)(Bi1/ 2Na1/2)TiO3 xbatio3 ceramics

Phase diagram of unpoled lead-free (1-x)(Bi1/ 2Na1/2)TiO3 xbatio3 ceramics Materials Science and Engineering Publications Materials Science and Engineering 9-2010 Phase diagram of unpoled lead-free (1-x)(Bi1/ 2Na1/2)TiO3 xbatio3 ceramics C. Ma Iowa State University Xiaoli Tan

More information

University of Munich, Theresienstr. 41, Munich, Germany and b Department of Physics, University of California,

University of Munich, Theresienstr. 41, Munich, Germany and b Department of Physics, University of California, LV11765 Avoiding the polarization catastrophe in LaAlO 3 overlayers on SrTiO 3 (001) through a polar distortion Rossitza Pentcheva a and Warren E. Pickett b a Department of Earth and Environmental Sciences,

More information

Ab initio study of ferroelectricity in BaTiO 3 nanowires

Ab initio study of ferroelectricity in BaTiO 3 nanowires Ab initio study of ferroelectricity in BaTiO 3 nanowires G. Pilania, S. P. Alpay, and R. Ramprasad* Chemical, Materials, and Biomolecular Engineering, Institute of Materials Science, University of Connecticut,

More information

Realizing Magnetoelectric Coupling with Hydroxide as a Knob J.Y. Ni 1,2, P.S. Wang 1,2, J. L. Lu 1,2, and H. J. Xiang 1,2*

Realizing Magnetoelectric Coupling with Hydroxide as a Knob J.Y. Ni 1,2, P.S. Wang 1,2, J. L. Lu 1,2, and H. J. Xiang 1,2* Realizing Magnetoelectric Coupling with Hydroxide as a Knob J.Y. Ni 1,2, P.S. Wang 1,2, J. L. Lu 1,2, and H. J. Xiang 1,2* 1 Key Laboratory of Computational Physical Sciences (Ministry of Education), State

More information

"Oxygen-vacancy effect on structural, magnetic, and ferroelectric properties in multiferroic YMnO3 single crystals"

Oxygen-vacancy effect on structural, magnetic, and ferroelectric properties in multiferroic YMnO3 single crystals University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2012 "Oxygen-vacancy effect on structural, magnetic, and ferroelectric

More information

Institut des NanoSciences de Paris

Institut des NanoSciences de Paris CNRS / Photothèque Cyril Frésillon Institut des NanoSciences de Paris Polarity in low dimensions: MgO nano-ribbons on Au(111) J. Goniakowski, C. Noguera Institut des Nanosciences de Paris, CNRS & Université

More information

NEW ROUTES TO MULTIFERROICS

NEW ROUTES TO MULTIFERROICS NEW ROUTES TO MULTIFERROICS C. N. R. RAO Jawaharlal Nehru Centre for Advanced Scientific Research & Indian Institute of Science Bangalore, India 1 MULTIFERROICS Ferromagnetic Ferroelectric Ferroelastic

More information

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface Pramod Verma Indian Institute of Science, Bangalore 560012 July 24, 2014 Pramod Verma

More information

arxiv: v1 [cond-mat.mtrl-sci] 3 May 2007

arxiv: v1 [cond-mat.mtrl-sci] 3 May 2007 Ravindran et al Origin of magnetoelectric behavior in BiFeO 3 P. Ravindran, R. Vidya, A. Kjekshus, and H. Fjellvåg Department of Chemistry, University of Oslo, Box 1033, Blindern N-0315, Oslo, Norway O.

More information

APPENDIX A Landau Free-Energy Coefficients

APPENDIX A Landau Free-Energy Coefficients APPENDIX A Landau Free-Energy Coefficients Long-Qing Chen Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 180 USA The thermodynamics of

More information

A new era in surface diffraction pulsed laser deposition of complex metal oxide thin films

A new era in surface diffraction pulsed laser deposition of complex metal oxide thin films A new era in surface diffraction pulsed laser deposition of complex metal oxide thin films Phil Willmott, Christian Schlepütz tz,, Roger Herger, Oliver Bunk, and Bruce Patterson Beamline X04SA Materials

More information

Piezoelectric nonlinearity and frequency dispersion of the direct piezoelectric response. of BiFeO 3 ceramics. Switzerland

Piezoelectric nonlinearity and frequency dispersion of the direct piezoelectric response. of BiFeO 3 ceramics. Switzerland Accepted in Journal of Applied Physics Piezoelectric nonlinearity and frequency dispersion of the direct piezoelectric response of BiFeO 3 ceramics Tadej Rojac, 1,a) Andreja Bencan 1, Goran Drazic 1, Marija

More information

Atomic Resolution Interfacial Structure of Lead-free Ferroelectric

Atomic Resolution Interfacial Structure of Lead-free Ferroelectric Atomic Resolution Interfacial Structure of Lead-free Ferroelectric K 0.5 Na 0.5 NbO 3 Thin films Deposited on SrTiO 3 Chao Li 1, Lingyan Wang 1*, Zhao Wang 2, Yaodong Yang 2, Wei Ren 1 and Guang Yang 1

More information

Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites

Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites Indian Journal of Pure & Applied Physics Vol. 49, February 2011, pp. 132-136 Electric field dependent sound velocity change in Ba 1 x Ca x TiO 3 ferroelectric perovskites Dushyant Pradeep, U C Naithani

More information

Room-temperature tunable microwave properties of strained SrTiO 3 films

Room-temperature tunable microwave properties of strained SrTiO 3 films JOURNAL OF APPLIED PHYSICS VOLUME 96, NUMBER 11 1 DECEMBER 2004 Room-temperature tunable microwave properties of ed SrTiO 3 films Wontae Chang, a) Steven W. Kirchoefer, Jeffrey M. Pond, Jeffrey A. Bellotti,

More information

arxiv: v1 [cond-mat.mtrl-sci] 9 Apr 2007

arxiv: v1 [cond-mat.mtrl-sci] 9 Apr 2007 Electrical transport properties of polar heterointerface between KTaO 3 and SrTiO 3 A. Kalabukhov, 1, R. Gunnarsson, 1 T. Claeson, 1 and D. Winkler 1 arxiv:0704.1050v1 [cond-mat.mtrl-sci] 9 Apr 2007 1

More information

Application of density functional theory to real materials problems. Nicola Spaldin Materials Department, UCSB

Application of density functional theory to real materials problems. Nicola Spaldin Materials Department, UCSB Application of density functional theory to real materials problems Nicola Spaldin Materials Department, UCSB From Harry Suhl s lecture notes: In theoretical physics, one obective is to explain what has

More information

Ferroelectric order in individual nanometrescale crystals

Ferroelectric order in individual nanometrescale crystals Ferroelectric order in individual nanometrescale crystals Mark J. Polking 1, Myung-Geun Han 2, Amin Yourdkhani 3,4, Valeri Petkov 5, Christian F. Kisielowski 6, Vyacheslav V. Volkov 2, Yimei Zhu 2, Gabriel

More information

First-principles study of stability and vibrational properties of tetragonal PbTiO 3

First-principles study of stability and vibrational properties of tetragonal PbTiO 3 PHYSICAL REVIEW B VOLUME 54, NUMBER 6 1 AUGUST 1996-II First-principles study of stability and vibrational properties of tetragonal PbTiO 3 Alberto García* Departamento de Física Aplicada II, Universidad

More information

Mechanism of Polarization Fatigue in BiFeO 3 : the Role of Schottky Barrier

Mechanism of Polarization Fatigue in BiFeO 3 : the Role of Schottky Barrier Mechanism of Polarization Fatigue in BiFeO 3 : the Role of Schottky Barrier Yang Zhou, 1 Xi Zou, 1 Lu You, 1 Rui Guo, 1 Zhi Shiuh Lim, 1 Lang Chen, 1 Guoliang Yuan, 2,a) and Junling Wang 1,b) 1 School

More information

In situ X-ray characterization of piezoelectric ceramic thin films. bulletin

In situ X-ray characterization of piezoelectric ceramic thin films. bulletin bulletin c o v e r s t o r y (Credit: Agresta; ANL.) X-ray nanodiffraction instruments, such as this one at the Advanced Photon Source of Argonne National Laboratory, allow researchers to study the structure

More information

Strain Tuning of Ferroelectric Thin Films

Strain Tuning of Ferroelectric Thin Films Annu. Rev. Mater. Res. 2007. 37:589 626 First published online as a Review in Advance on May 7, 2007 The Annual Review of Materials Research is online at http://matsci.annualreviews.org This article s

More information

Structural dynamics of PZT thin films at the nanoscale

Structural dynamics of PZT thin films at the nanoscale Mater. Res. Soc. Symp. Proc. Vol. 902E 2006 Materials Research Society 0902-T06-09.1 Structural dynamics of PZT thin films at the nanoscale Alexei Grigoriev 1, Dal-Hyun Do 1, Dong Min Kim 1, Chang-Beom

More information

in this web service Cambridge University Press

in this web service Cambridge University Press High-k Materials Mat. Res. Soc. Symp. Proc. Vol. 670 2001 Materials Research Society Materials and Physical Properties of Novel High-k and Medium-k Gate Dielectrics Ran Liu, Stefan Zollner, Peter Fejes,

More information

In situ Transmission Electron Microscopy Study on the Phase Transitionsin Lead-Free (1 x)(bi1/ 2Na1/2)TiO3 xbatio3 Ceramics

In situ Transmission Electron Microscopy Study on the Phase Transitionsin Lead-Free (1 x)(bi1/ 2Na1/2)TiO3 xbatio3 Ceramics Materials Science and Engineering Publications Materials Science and Engineering 2011 In situ Transmission Electron Microscopy Study on the Phase Transitionsin Lead-Free (1 x)(bi1/ 2Na1/2)TiO3 xbatio3

More information