Nonparametric Predictive Inference (An Introduction)

Size: px
Start display at page:

Download "Nonparametric Predictive Inference (An Introduction)"

Transcription

1 Nonparametric Predictive Inference (An Introduction) SIPTA Summer School 200 Durham University 3 September 200

2 Hill s assumption A (n) (Hill, 968) Hill s assumption A (n) (Hill, 968) X,..., X n, X n+ are real-valued and exchangeable random quantities x < x 2 <... < x n are the ordered observed values of X,..., X n (and let x 0 = and x n+ = ) For X n+, A (n) is given by P(X n+ I j = (x j, x j )) = n +, j =,..., n +

3 Nonparametric predictive inference (NPI) Nonparametric predictive inference (NPI) NPI is based on Hill s assumption A (n) Let B be the Borel σ-field over R. For any element B B, lower probability P(.) and upper probability P(.) for the event X n+ B, based on the intervals I j = (x j, x j ) (j =, 2,..., n + ) created by n real-valued non-tied observations, and the assumption A (n), are P(X n+ B) = n + {j : I j B} P(X n+ B) = n + {j : I j B }

4 Illustration example Illustration example n = 4 0 x x 2 x 3 x 4

5 Illustration example Illustration example n = 4 0 x x 2 x 3 x 4 P(X (0, x )) = P(X (x 4, )) = P(X (x i, x i+ )) =, i =, 2, 3

6 Illustration example Illustration example n = 4 B 0 x x 2 x 3 x 4

7 Illustration example Illustration example n = 4 B 0 x x 2 x 3 x 4 P[X B] = P[X B] = 3

8 Illustration example Illustration example n = 4 B 0 x x 2 x 3 x 4 P[X B] = P[X B] = 3 Imprecision = P P = 2 = 0.4

9 NPI for m future observations NPI for m future observations We are interested in m future observations, X n+i for i =,..., m. We link the data and future observations via Hill s assumption A (n), actually via A (n+m ) (which implies A (n+k) for all k = 0,,..., m 2). Let S j = #{X n+i I j, i =,..., m}, then inferences about these m future observations, assuming A (n+m ), can be based on the following probabilities, for any (s,..., s n+ ) with non-negative integers s j with n+ j= s j = m ( n + m {S j = s j }) = n n+ P( j= )

10 NPI for Pairwise comparisons Comparing two independent groups, X and Y We have two independent groups X and Y : x < x 2 <... < x nx and y < y 2 <... < y ny The classical methods test H 0 : F X = F Y. For complete data, Coolen (996) introduced NPI to compare two independent groups depending on A (n). This is given via the lower and upper probabilities P(X nx + < Y ny +) P(X nx + < Y ny +)

11 Illustration n y + n y + n y + n y + 0 y y 2... y ny y ny n x + n x + n x + n x + 0 x x 2... x nx x nx

12 Illustration Lower Probability, P(X nx + < Y ny +) n y + n y + n y + n y + 0 y y 2... y ny y ny n x + n x + n x + n x + 0 x x 2... x nx x nx

13 Illustration Upper Probability, P(X nx + < Y ny +) n y + n y + n y + n y + 0 y y 2... y ny y ny n x + n x + n x + n x + 0 x x 2... x nx x nx

14 Illustration Example We use data on birthweights for 2 male and 2 female babies as presented by Dobson (983). Male (X ) Female (Y ) P(X 3 > Y 3 ) = = 0.09 P(X 3 > Y 3 ) = 69 = 0.67.

15 Right-censored data Right-censored data Very common in lifetime data, e.g. in survival analysis and reliability studies Actual event of interest for a unit (e.g. death or failure) is not observed, only that this event has not happened by an observed time We assume that the censoring mechanism is independent of the residual lifetime at the time of censoring, hence that every unit still in the experiment had the same probability of being the unit censored ( non-informative censoring )

16 rc-a (n) assumption (Coolen & Yan, 2004) rc-a (n) assumption (Coolen & Yan, 2004) n = 4 0 x c x 2 x 3

17 rc-a (n) assumption (Coolen & Yan, 2004) rc-a (n) assumption (Coolen & Yan, 2004) n = 4 0 x c x 2 x 3

18 rc-a (n) assumption (Coolen & Yan, 2004) rc-a (n) assumption (Coolen & Yan, 2004) n = 4 0 x c x 2 x

19 rc-a (n) assumption (Coolen & Yan, 2004) rc-a (n) assumption (Coolen & Yan, 2004) n = 4 0 x c x 2 x 3

20 rc-a (n) assumption (Coolen & Yan, 2004) rc-a (n) assumption (Coolen & Yan, 2004) n = 4 B 0 x c x 2 x 3

21 rc-a (n) assumption (Coolen & Yan, 2004) rc-a (n) assumption (Coolen & Yan, 2004) n = 4 B 0 x c x 2 x 3 P[X B] = 0 P[X B] = 7 Imprecision = P P = 7 =

22 rc-a (n) assumption (Coolen & Yan, 2004) Example Table: Cervical cancer survival data (> t indicates right-censoring at t) Control - A New therapy - B 90 > > >978 0 > > >3 > >9 >360 > >63 > > >77 827

23 rc-a (n) assumption (Coolen & Yan, 2004)

24 rc-a (n) assumption (Coolen & Yan, 2004)

25 rc-a (n) assumption (Coolen & Yan, 2004)

26 NPI for Bernoulli data NPI for Bernoulli data n + m exchangeable Bernoulli trials (each success or failure ) Yj l : the number of successes in trials j to l Data on first n trials: Y n = s Interest in Y n+m n+ FC: Low structure imprecise predictive inference for Bayes problem Stat. & Prob. Letters 36, 998,

27 NPI for Bernoulli data R t = {r,..., r t }, with t m + and 0 r < r 2 <... < r t m, (define ( s+r 0 ) s = 0). NPI upper probability: P(Y n+m n+ R t Y n = s) = ( ) t [( ) ( )] ( ) n + m s + rj s + rj n s + m rj. n s s n s j= NPI lower probability: P(Y n+m n+ R t Y n = s) = P(Y n+m n+ Rc t Y n = s).

28 NPI for Bernoulli data Centre (n i, s i ) s i /n i order Centre (n i, s i ) s i /n i order (8,43) (23,27) (200,27) (369,7) (7,26) (24,28) (42,) (84,3) (27,36) (740,67) (47,49) (268,32) Table. Heart operations mortality data.

29 NPI for Bernoulli data m : P( > ) P( > ) ( > ) P( ) P( ) ( ) P(3 > ) P(3 > ) (3 > ) P(3 ) P(3 ) (3 ) P(3 > 4) P(3 > 4) (3 > 4) P(3 4) P(3 4) (3 4) Table 2. Some pairwise comparisons between centres.

30 NPI for Bernoulli data i [P, P](i > max j i m = 0 m = 0 j) [P, P](i max j) [P, P](i > max j i j i j) [P, P](i max j i [0.77, 0.97] [0.369, 0.397] [0.426, 0.482] [0.26, 0.83] 2 [0.033, 0.039] [0.2, 0.28] [0.022, 0.032] [0.04, 0.07] 3 [0.06, 0.072] [0.73, 0.96] [0.073, 0.098] [0.4, 0.48] 4 [0.07, 0.022] [0.067, 0.082] [0.007, 0.0] [0.04, 0.022] [0.060, 0.070] [0.73, 0.93] [0.069, 0.089] [0.0, 0.39] 6 [0.02, 0.024] [0.082, 0.092] [0.008, 0.0] [0.07, 0.022] 7 [0.06, 0.020] [0.067, 0.078] [0.00, 0.008] [0.0, 0.06] 8 [0.048, 0.04] [0.48, 0.63] [0.042, 0.04] [0.073, 0.09] 9 [0.030, 0.036] [0.04, 0.20] [0.08, 0.026] [0.034, 0.048] 0 [0.064, 0.074] [0.79, 0.20] [0.077, 0.0] [0.2, 0.3] [0.009, 0.0] [0.046, 0.02] [0.00, 0.002] [0.003, 0.004] 2 [0.022, 0.027] [0.08, 0.098] [0.00, 0.04] [0.020, 0.028] Table 3. Multiple comparisons between centres. j)

31 Further comments and research challenges Further comments and research challenges NPI has been presented for many problems in Statistics, Reliability, Risk and OR NPI is never in disagreement with inferences based on empirical probabilities, so one could call NPI objective A particularly nice NPI model for multinomial data has been presented (FC and Thomas Augustin) Main challenges are to develop NPI for multi-dimensional random quantities, including use of co-variates and multivariate statistics Most importantly: NPI has helped us to get better understanding of foundations of statistics with imprecise probabilities

32 References References For more information and references:

System reliability using the survival signature

System reliability using the survival signature System reliability using the survival signature Frank Coolen GDRR Ireland 8-10 July 2013 (GDRR 2013) Survival signature 1 / 31 Joint work with: Tahani Coolen-Maturi (Durham University) Ahmad Aboalkhair

More information

Nonparametric predictive inference for ordinal data

Nonparametric predictive inference for ordinal data Nonparametric predictive inference for ordinal data F.P.A. Coolen a,, P. Coolen-Schrijner, T. Coolen-Maturi b,, F.F. Ali a, a Dept of Mathematical Sciences, Durham University, Durham DH1 3LE, UK b Kent

More information

Introduction to Imprecise Probability and Imprecise Statistical Methods

Introduction to Imprecise Probability and Imprecise Statistical Methods Introduction to Imprecise Probability and Imprecise Statistical Methods Frank Coolen UTOPIAE Training School, Strathclyde University 22 November 2017 (UTOPIAE) Intro to IP 1 / 20 Probability Classical,

More information

Semi-parametric predictive inference for bivariate data using copulas

Semi-parametric predictive inference for bivariate data using copulas Semi-parametric predictive inference for bivariate data using copulas Tahani Coolen-Maturi a, Frank P.A. Coolen b,, Noryanti Muhammad b a Durham University Business School, Durham University, Durham, DH1

More information

Nonparametric predictive inference with parametric copulas for combining bivariate diagnostic tests

Nonparametric predictive inference with parametric copulas for combining bivariate diagnostic tests Nonparametric predictive inference with parametric copulas for combining bivariate diagnostic tests Noryanti Muhammad, Universiti Malaysia Pahang, Malaysia, noryanti@ump.edu.my Tahani Coolen-Maturi, Durham

More information

Three-group ROC predictive analysis for ordinal outcomes

Three-group ROC predictive analysis for ordinal outcomes Three-group ROC predictive analysis for ordinal outcomes Tahani Coolen-Maturi Durham University Business School Durham University, UK tahani.maturi@durham.ac.uk June 26, 2016 Abstract Measuring the accuracy

More information

NONPARAMETRIC PREDICTIVE INFERENCE FOR REPRODUCIBILITY OF TWO BASIC TESTS BASED ON ORDER STATISTICS

NONPARAMETRIC PREDICTIVE INFERENCE FOR REPRODUCIBILITY OF TWO BASIC TESTS BASED ON ORDER STATISTICS REVSTAT Statistical Journal Volume 16, Number 2, April 2018, 167 185 NONPARAMETRIC PREDICTIVE INFERENCE FOR REPRODUCIBILITY OF TWO BASIC TESTS BASED ON ORDER STATISTICS Authors: Frank P.A. Coolen Department

More information

Nonparametric Predictive Inference for Acceptance Decisions. Mohamed A. Elsaeiti. A thesis presented for the degree of Doctor of Philosophy

Nonparametric Predictive Inference for Acceptance Decisions. Mohamed A. Elsaeiti. A thesis presented for the degree of Doctor of Philosophy Nonparametric Predictive Inference for Acceptance Decisions Mohamed A. Elsaeiti A thesis presented for the degree of Doctor of Philosophy Department of Mathematical Sciences University of Durham England

More information

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Nicholas C. Henderson Thomas A. Louis Gary Rosner Ravi Varadhan Johns Hopkins University July 31, 2018

More information

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 Department of Statistics North Carolina State University Presented by: Butch Tsiatis, Department of Statistics, NCSU

More information

Continuous-Valued Probability Review

Continuous-Valued Probability Review CS 6323 Continuous-Valued Probability Review Prof. Gregory Provan Department of Computer Science University College Cork 2 Overview Review of discrete distributions Continuous distributions 3 Discrete

More information

5. Conditional Distributions

5. Conditional Distributions 1 of 12 7/16/2009 5:36 AM Virtual Laboratories > 3. Distributions > 1 2 3 4 5 6 7 8 5. Conditional Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an

More information

STAT 6385 Survey of Nonparametric Statistics. Order Statistics, EDF and Censoring

STAT 6385 Survey of Nonparametric Statistics. Order Statistics, EDF and Censoring STAT 6385 Survey of Nonparametric Statistics Order Statistics, EDF and Censoring Quantile Function A quantile (or a percentile) of a distribution is that value of X such that a specific percentage of the

More information

STAT Section 2.1: Basic Inference. Basic Definitions

STAT Section 2.1: Basic Inference. Basic Definitions STAT 518 --- Section 2.1: Basic Inference Basic Definitions Population: The collection of all the individuals of interest. This collection may be or even. Sample: A collection of elements of the population.

More information

Bayesian Nonparametric Accelerated Failure Time Models for Analyzing Heterogeneous Treatment Effects

Bayesian Nonparametric Accelerated Failure Time Models for Analyzing Heterogeneous Treatment Effects Bayesian Nonparametric Accelerated Failure Time Models for Analyzing Heterogeneous Treatment Effects Nicholas C. Henderson Thomas A. Louis Gary Rosner Ravi Varadhan Johns Hopkins University September 28,

More information

Durham E-Theses. Predictive Inference with Copulas for Bivariate Data MUHAMMAD, NORYANTI

Durham E-Theses. Predictive Inference with Copulas for Bivariate Data MUHAMMAD, NORYANTI Durham E-Theses Predictive Inference with Copulas for Bivariate Data MUHAMMAD, NORYANTI How to cite: MUHAMMAD, NORYANTI (2016) Predictive Inference with Copulas for Bivariate Data, Durham theses, Durham

More information

The structure function for system reliability as predictive (imprecise) probability

The structure function for system reliability as predictive (imprecise) probability The structure function for system reliability as predictive (imprecise) probability Frank P.A. Coolen 1a, Tahani Coolen-Maturi 2 1 Department of Mathematical Sciences, Durham University, UK 2 Durham University

More information

Error distribution function for parametrically truncated and censored data

Error distribution function for parametrically truncated and censored data Error distribution function for parametrically truncated and censored data Géraldine LAURENT Jointly with Cédric HEUCHENNE QuantOM, HEC-ULg Management School - University of Liège Friday, 14 September

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University September 22, 2011 Today: MLE and MAP Bayes Classifiers Naïve Bayes Readings: Mitchell: Naïve Bayes and Logistic

More information

Multivariate Survival Analysis

Multivariate Survival Analysis Multivariate Survival Analysis Previously we have assumed that either (X i, δ i ) or (X i, δ i, Z i ), i = 1,..., n, are i.i.d.. This may not always be the case. Multivariate survival data can arise in

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier Machine Learning 10-701/15 701/15-781, 781, Spring 2008 Theory of Classification and Nonparametric Classifier Eric Xing Lecture 2, January 16, 2006 Reading: Chap. 2,5 CB and handouts Outline What is theoretically

More information

Nonparametric Model Construction

Nonparametric Model Construction Nonparametric Model Construction Chapters 4 and 12 Stat 477 - Loss Models Chapters 4 and 12 (Stat 477) Nonparametric Model Construction Brian Hartman - BYU 1 / 28 Types of data Types of data For non-life

More information

Stochastic orders: a brief introduction and Bruno s contributions. Franco Pellerey

Stochastic orders: a brief introduction and Bruno s contributions. Franco Pellerey Stochastic orders: a brief introduction and Bruno s contributions. Franco Pellerey Stochastic orders (comparisons) Among his main interests in research activity A field where his contributions are still

More information

(3) Review of Probability. ST440/540: Applied Bayesian Statistics

(3) Review of Probability. ST440/540: Applied Bayesian Statistics Review of probability The crux of Bayesian statistics is to compute the posterior distribution, i.e., the uncertainty distribution of the parameters (θ) after observing the data (Y) This is the conditional

More information

CS8803: Statistical Techniques in Robotics Byron Boots. Hilbert Space Embeddings

CS8803: Statistical Techniques in Robotics Byron Boots. Hilbert Space Embeddings CS8803: Statistical Techniques in Robotics Byron Boots Hilbert Space Embeddings 1 Motivation CS8803: STR Hilbert Space Embeddings 2 Overview Multinomial Distributions Marginal, Joint, Conditional Sum,

More information

1. Discrete Distributions

1. Discrete Distributions Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 1. Discrete Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space Ω.

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

Beyond GLM and likelihood

Beyond GLM and likelihood Stat 6620: Applied Linear Models Department of Statistics Western Michigan University Statistics curriculum Core knowledge (modeling and estimation) Math stat 1 (probability, distributions, convergence

More information

Continuous case Discrete case General case. Hazard functions. Patrick Breheny. August 27. Patrick Breheny Survival Data Analysis (BIOS 7210) 1/21

Continuous case Discrete case General case. Hazard functions. Patrick Breheny. August 27. Patrick Breheny Survival Data Analysis (BIOS 7210) 1/21 Hazard functions Patrick Breheny August 27 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/21 Introduction Continuous case Let T be a nonnegative random variable representing the time to an event

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2015 Julien Berestycki (University of Oxford) SB2a MT 2015 1 / 16 Lecture 16 : Bayesian analysis

More information

ECE 302: Probabilistic Methods in Electrical Engineering

ECE 302: Probabilistic Methods in Electrical Engineering ECE 302: Probabilistic Methods in Electrical Engineering Test I : Chapters 1 3 3/22/04, 7:30 PM Print Name: Read every question carefully and solve each problem in a legible and ordered manner. Make sure

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

Chapter 4: Modelling

Chapter 4: Modelling Chapter 4: Modelling Exchangeability and Invariance Markus Harva 17.10. / Reading Circle on Bayesian Theory Outline 1 Introduction 2 Models via exchangeability 3 Models via invariance 4 Exercise Statistical

More information

Lecture 2: Probability and Distributions

Lecture 2: Probability and Distributions Lecture 2: Probability and Distributions Ani Manichaikul amanicha@jhsph.edu 17 April 2007 1 / 65 Probability: Why do we care? Probability helps us by: Allowing us to translate scientific questions info

More information

Probability distributions. Probability Distribution Functions. Probability distributions (contd.) Binomial distribution

Probability distributions. Probability Distribution Functions. Probability distributions (contd.) Binomial distribution Probability distributions Probability Distribution Functions G. Jogesh Babu Department of Statistics Penn State University September 27, 2011 http://en.wikipedia.org/wiki/probability_distribution We discuss

More information

Infering the Number of State Clusters in Hidden Markov Model and its Extension

Infering the Number of State Clusters in Hidden Markov Model and its Extension Infering the Number of State Clusters in Hidden Markov Model and its Extension Xugang Ye Department of Applied Mathematics and Statistics, Johns Hopkins University Elements of a Hidden Markov Model (HMM)

More information

A multi-state model for the prognosis of non-mild acute pancreatitis

A multi-state model for the prognosis of non-mild acute pancreatitis A multi-state model for the prognosis of non-mild acute pancreatitis Lore Zumeta Olaskoaga 1, Felix Zubia Olaskoaga 2, Guadalupe Gómez Melis 1 1 Universitat Politècnica de Catalunya 2 Intensive Care Unit,

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics October 17, 2017 CS 361: Probability & Statistics Inference Maximum likelihood: drawbacks A couple of things might trip up max likelihood estimation: 1) Finding the maximum of some functions can be quite

More information

Joint Modeling of Longitudinal Item Response Data and Survival

Joint Modeling of Longitudinal Item Response Data and Survival Joint Modeling of Longitudinal Item Response Data and Survival Jean-Paul Fox University of Twente Department of Research Methodology, Measurement and Data Analysis Faculty of Behavioural Sciences Enschede,

More information

Lecture 3. Univariate Bayesian inference: conjugate analysis

Lecture 3. Univariate Bayesian inference: conjugate analysis Summary Lecture 3. Univariate Bayesian inference: conjugate analysis 1. Posterior predictive distributions 2. Conjugate analysis for proportions 3. Posterior predictions for proportions 4. Conjugate analysis

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

Wageningen Summer School in Econometrics. The Bayesian Approach in Theory and Practice

Wageningen Summer School in Econometrics. The Bayesian Approach in Theory and Practice Wageningen Summer School in Econometrics The Bayesian Approach in Theory and Practice September 2008 Slides for Lecture on Qualitative and Limited Dependent Variable Models Gary Koop, University of Strathclyde

More information

STAT 705: Analysis of Contingency Tables

STAT 705: Analysis of Contingency Tables STAT 705: Analysis of Contingency Tables Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Analysis of Contingency Tables 1 / 45 Outline of Part I: models and parameters Basic

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

Monte Carlo Dynamically Weighted Importance Sampling for Spatial Models with Intractable Normalizing Constants

Monte Carlo Dynamically Weighted Importance Sampling for Spatial Models with Intractable Normalizing Constants Monte Carlo Dynamically Weighted Importance Sampling for Spatial Models with Intractable Normalizing Constants Faming Liang Texas A& University Sooyoung Cheon Korea University Spatial Model Introduction

More information

Fundamentals of Reliability Engineering and Applications

Fundamentals of Reliability Engineering and Applications Fundamentals of Reliability Engineering and Applications E. A. Elsayed elsayed@rci.rutgers.edu Rutgers University Quality Control & Reliability Engineering (QCRE) IIE February 21, 2012 1 Outline Part 1.

More information

Let us use the term failure time to indicate the time of the event of interest in either a survival analysis or reliability analysis.

Let us use the term failure time to indicate the time of the event of interest in either a survival analysis or reliability analysis. 10.2 Product-Limit (Kaplan-Meier) Method Let us use the term failure time to indicate the time of the event of interest in either a survival analysis or reliability analysis. Let T be a continuous random

More information

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability?

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability? Probability: Why do we care? Lecture 2: Probability and Distributions Sandy Eckel seckel@jhsph.edu 22 April 2008 Probability helps us by: Allowing us to translate scientific questions into mathematical

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY OF CALIFORNIA, SAN DIEGO Estimation of the primary hazard ratio in the presence of a secondary covariate with non-proportional hazards An undergraduate honors thesis submitted to the Department

More information

Measures of Association and Variance Estimation

Measures of Association and Variance Estimation Measures of Association and Variance Estimation Dipankar Bandyopadhyay, Ph.D. Department of Biostatistics, Virginia Commonwealth University D. Bandyopadhyay (VCU) BIOS 625: Categorical Data & GLM 1 / 35

More information

STAT:5100 (22S:193) Statistical Inference I

STAT:5100 (22S:193) Statistical Inference I STAT:5100 (22S:193) Statistical Inference I Week 3 Luke Tierney University of Iowa Fall 2015 Luke Tierney (U Iowa) STAT:5100 (22S:193) Statistical Inference I Fall 2015 1 Recap Matching problem Generalized

More information

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks Y. Xu, D. Scharfstein, P. Mueller, M. Daniels Johns Hopkins, Johns Hopkins, UT-Austin, UF JSM 2018, Vancouver 1 What are semi-competing

More information

1 of 6 7/16/2009 6:31 AM Virtual Laboratories > 11. Bernoulli Trials > 1 2 3 4 5 6 1. Introduction Basic Theory The Bernoulli trials process, named after James Bernoulli, is one of the simplest yet most

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

CS1512 Foundations of Computing Science 2. Lecture 4

CS1512 Foundations of Computing Science 2. Lecture 4 CS1512 Foundations of Computing Science 2 Lecture 4 Bayes Law; Gaussian Distributions 1 J R W Hunter, 2006; C J van Deemter 2007 (Revd. Thomas) Bayes Theorem P( E 1 and E 2 ) = P( E 1 )* P( E 2 E 1 ) Order

More information

Computational Perception. Bayesian Inference

Computational Perception. Bayesian Inference Computational Perception 15-485/785 January 24, 2008 Bayesian Inference The process of probabilistic inference 1. define model of problem 2. derive posterior distributions and estimators 3. estimate parameters

More information

Lecture 8: Summary Measures

Lecture 8: Summary Measures Lecture 8: Summary Measures Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 8:

More information

1 of 14 7/15/2009 9:25 PM Virtual Laboratories > 2. Probability Spaces > 1 2 3 4 5 6 7 5. Independence As usual, suppose that we have a random experiment with sample space S and probability measure P.

More information

Reliability of Coherent Systems with Dependent Component Lifetimes

Reliability of Coherent Systems with Dependent Component Lifetimes Reliability of Coherent Systems with Dependent Component Lifetimes M. Burkschat Abstract In reliability theory, coherent systems represent a classical framework for describing the structure of technical

More information

Censoring mechanisms

Censoring mechanisms Censoring mechanisms Patrick Breheny September 3 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/23 Fixed vs. random censoring In the previous lecture, we derived the contribution to the likelihood

More information

Dynamic Scheduling of the Upcoming Exam in Cancer Screening

Dynamic Scheduling of the Upcoming Exam in Cancer Screening Dynamic Scheduling of the Upcoming Exam in Cancer Screening Dongfeng 1 and Karen Kafadar 2 1 Department of Bioinformatics and Biostatistics University of Louisville 2 Department of Statistics University

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

Lecture 05 Geometry of Least Squares

Lecture 05 Geometry of Least Squares Lecture 05 Geometry of Least Squares 16 September 2015 Taylor B. Arnold Yale Statistics STAT 312/612 Goals for today 1. Geometry of least squares 2. Projection matrix P and annihilator matrix M 3. Multivariate

More information

Probability and Estimation. Alan Moses

Probability and Estimation. Alan Moses Probability and Estimation Alan Moses Random variables and probability A random variable is like a variable in algebra (e.g., y=e x ), but where at least part of the variability is taken to be stochastic.

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

An introduction to biostatistics: part 1

An introduction to biostatistics: part 1 An introduction to biostatistics: part 1 Cavan Reilly September 6, 2017 Table of contents Introduction to data analysis Uncertainty Probability Conditional probability Random variables Discrete random

More information

Solutions to First Midterm Exam, Stat 371, Spring those values: = Or, we can use Rule 6: = 0.63.

Solutions to First Midterm Exam, Stat 371, Spring those values: = Or, we can use Rule 6: = 0.63. Solutions to First Midterm Exam, Stat 371, Spring 2010 There are two, three or four versions of each question. The questions on your exam comprise a mix of versions. As a result, when you examine the solutions

More information

Review of Probabilities and Basic Statistics

Review of Probabilities and Basic Statistics Alex Smola Barnabas Poczos TA: Ina Fiterau 4 th year PhD student MLD Review of Probabilities and Basic Statistics 10-701 Recitations 1/25/2013 Recitation 1: Statistics Intro 1 Overview Introduction to

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Introduction to Probabilistic Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

Bayesian Nonparametric Inference Methods for Mean Residual Life Functions

Bayesian Nonparametric Inference Methods for Mean Residual Life Functions Bayesian Nonparametric Inference Methods for Mean Residual Life Functions Valerie Poynor Department of Applied Mathematics and Statistics, University of California, Santa Cruz April 28, 212 1/3 Outline

More information

ST495: Survival Analysis: Maximum likelihood

ST495: Survival Analysis: Maximum likelihood ST495: Survival Analysis: Maximum likelihood Eric B. Laber Department of Statistics, North Carolina State University February 11, 2014 Everything is deception: seeking the minimum of illusion, keeping

More information

Probability and Information Theory. Sargur N. Srihari

Probability and Information Theory. Sargur N. Srihari Probability and Information Theory Sargur N. srihari@cedar.buffalo.edu 1 Topics in Probability and Information Theory Overview 1. Why Probability? 2. Random Variables 3. Probability Distributions 4. Marginal

More information

Chap. 3 Rigid Bodies: Equivalent Systems of Forces. External/Internal Forces; Equivalent Forces

Chap. 3 Rigid Bodies: Equivalent Systems of Forces. External/Internal Forces; Equivalent Forces Chap. 3 Rigid Bodies: Equivalent Systems of Forces Treatment of a body as a single particle is not always possible. In general, the size of the body and the specific points of application of the forces

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Review of Probability Mark Craven and David Page Computer Sciences 760.

Review of Probability Mark Craven and David Page Computer Sciences 760. Review of Probability Mark Craven and David Page Computer Sciences 760 www.biostat.wisc.edu/~craven/cs760/ Goals for the lecture you should understand the following concepts definition of probability random

More information

Ignoring the matching variables in cohort studies - when is it valid, and why?

Ignoring the matching variables in cohort studies - when is it valid, and why? Ignoring the matching variables in cohort studies - when is it valid, and why? Arvid Sjölander Abstract In observational studies of the effect of an exposure on an outcome, the exposure-outcome association

More information

Exercises. (a) Prove that m(t) =

Exercises. (a) Prove that m(t) = Exercises 1. Lack of memory. Verify that the exponential distribution has the lack of memory property, that is, if T is exponentially distributed with parameter λ > then so is T t given that T > t for

More information

Comparison of Two Population Means

Comparison of Two Population Means Comparison of Two Population Means Esra Akdeniz March 15, 2015 Independent versus Dependent (paired) Samples We have independent samples if we perform an experiment in two unrelated populations. We have

More information

Lecture 01: Introduction

Lecture 01: Introduction Lecture 01: Introduction Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South Carolina Lecture 01: Introduction

More information

Simple techniques for comparing survival functions with interval-censored data

Simple techniques for comparing survival functions with interval-censored data Simple techniques for comparing survival functions with interval-censored data Jinheum Kim, joint with Chung Mo Nam jinhkim@suwon.ac.kr Department of Applied Statistics University of Suwon Comparing survival

More information

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data 1 Part III. Hypothesis Testing III.1. Log-rank Test for Right-censored Failure Time Data Consider a survival study consisting of n independent subjects from p different populations with survival functions

More information

2.1 Elementary probability; random sampling

2.1 Elementary probability; random sampling Chapter 2 Probability Theory Chapter 2 outlines the probability theory necessary to understand this text. It is meant as a refresher for students who need review and as a reference for concepts and theorems

More information

Lecture 3. Truncation, length-bias and prevalence sampling

Lecture 3. Truncation, length-bias and prevalence sampling Lecture 3. Truncation, length-bias and prevalence sampling 3.1 Prevalent sampling Statistical techniques for truncated data have been integrated into survival analysis in last two decades. Truncation in

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

Probability Review. September 25, 2015

Probability Review. September 25, 2015 Probability Review September 25, 2015 We need a tool to 1) Formulate a model of some phenomenon. 2) Learn an instance of the model from data. 3) Use it to infer outputs from new inputs. Why Probability?

More information

Stat 476 Life Contingencies II. Multiple Life and Multiple Decrement Models

Stat 476 Life Contingencies II. Multiple Life and Multiple Decrement Models Stat 476 Life Contingencies II Multiple Life and Multiple Decrement Models Multiple Life Models To this point, all of the products we ve dealt with were based on the life status (alive / dead or multi-state)

More information

Probability Distributions.

Probability Distributions. Probability Distributions http://www.pelagicos.net/classes_biometry_fa18.htm Probability Measuring Discrete Outcomes Plotting probabilities for discrete outcomes: 0.6 0.5 0.4 0.3 0.2 0.1 NOTE: Area within

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan Introduction The markets can be thought of as a complex interaction of a large number of random processes,

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Introduction The markets can be thought of as a complex interaction of a large number of random

More information

4. Conditional Probability

4. Conditional Probability 1 of 13 7/15/2009 9:25 PM Virtual Laboratories > 2. Probability Spaces > 1 2 3 4 5 6 7 4. Conditional Probability Definitions and Interpretations The Basic Definition As usual, we start with a random experiment

More information

Semi-Competing Risks on A Trivariate Weibull Survival Model

Semi-Competing Risks on A Trivariate Weibull Survival Model Semi-Competing Risks on A Trivariate Weibull Survival Model Cheng K. Lee Department of Targeting Modeling Insight & Innovation Marketing Division Wachovia Corporation Charlotte NC 28244 Jenq-Daw Lee Graduate

More information

AFT Models and Empirical Likelihood

AFT Models and Empirical Likelihood AFT Models and Empirical Likelihood Mai Zhou Department of Statistics, University of Kentucky Collaborators: Gang Li (UCLA); A. Bathke; M. Kim (Kentucky) Accelerated Failure Time (AFT) models: Y = log(t

More information

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis STAT 6350 Analysis of Lifetime Data Failure-time Regression Analysis Explanatory Variables for Failure Times Usually explanatory variables explain/predict why some units fail quickly and some units survive

More information

Math/Stat 352 Lecture 8

Math/Stat 352 Lecture 8 Math/Stat 352 Lecture 8 Sections 4.3 and 4.4 Commonly Used Distributions: Poisson, hypergeometric, geometric, and negative binomial. 1 The Poisson Distribution Poisson random variable counts the number

More information

Review: Probability. BM1: Advanced Natural Language Processing. University of Potsdam. Tatjana Scheffler

Review: Probability. BM1: Advanced Natural Language Processing. University of Potsdam. Tatjana Scheffler Review: Probability BM1: Advanced Natural Language Processing University of Potsdam Tatjana Scheffler tatjana.scheffler@uni-potsdam.de October 21, 2016 Today probability random variables Bayes rule expectation

More information

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions Introduction to Statistical Data Analysis Lecture 3: Probability Distributions James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

Part 3 Robust Bayesian statistics & applications in reliability networks

Part 3 Robust Bayesian statistics & applications in reliability networks Tuesday 9:00-12:30 Part 3 Robust Bayesian statistics & applications in reliability networks by Gero Walter 69 Robust Bayesian statistics & applications in reliability networks Outline Robust Bayesian Analysis

More information

Nonparametric rank based estimation of bivariate densities given censored data conditional on marginal probabilities

Nonparametric rank based estimation of bivariate densities given censored data conditional on marginal probabilities Hutson Journal of Statistical Distributions and Applications (26 3:9 DOI.86/s4488-6-47-y RESEARCH Open Access Nonparametric rank based estimation of bivariate densities given censored data conditional

More information