Lecture 05 Geometry of Least Squares

Size: px
Start display at page:

Download "Lecture 05 Geometry of Least Squares"

Transcription

1 Lecture 05 Geometry of Least Squares 16 September 2015 Taylor B. Arnold Yale Statistics STAT 312/612

2 Goals for today 1. Geometry of least squares 2. Projection matrix P and annihilator matrix M 3. Multivariate Galton Heights

3 Geometry of Least Sqares

4 Last time, we established that the least squares solution to the model: y = Xβ + ϵ Yields the solution: β = (X t X) 1 X t y As long as the matrix X t X is invertable.

5 Define the column space of the matrix X as: R(X) = {θ : θ = Xb, b R p } R n This is the space spanned by the p columns of X sitting in n-dimensional space.

6 Define the column space of the matrix X as: R(X) = {θ : θ = Xb, b R p } R n This is the space spanned by the p columns of X sitting in n-dimensional space. Notice that the least squares problem can be re-written as: { θ = arg min y θ 2 2, s.t θ R(X) } θ Where then β = X θ.

7 Theorem 3.2 (p.g. 37, Rao & Toutenburg) The minimum, θ is attained when (y θ) R(X). In other words, (y θ) is perpendicular to all vectors in R.

8 Proof: Pick a θ in R such that (y θ) R(X).

9 Proof: Pick a θ in R such that (y θ) R(X). This implies that X t (y θ) = 0. Then for all θ R: y θ 2 2 = (y θ + θ θ) t (y θ + θ θ)

10 Proof: Pick a θ in R such that (y θ) R(X). This implies that X t (y θ) = 0. Then for all θ R: y θ 2 2 = (y θ + θ θ) t (y θ + θ θ) = (y θ) t (y θ) + ( θ θ) t ( θ θ) + 2(y θ) t ( θ θ)

11 Proof: Pick a θ in R such that (y θ) R(X). This implies that X t (y θ) = 0. Then for all θ R: y θ 2 2 = (y θ + θ θ) t (y θ + θ θ) = (y θ) t (y θ) + ( θ θ) t ( θ θ) + 2(y θ) t ( θ θ) = (y θ) t (y θ) + ( θ θ) t ( θ θ)

12 Proof: Pick a θ in R such that (y θ) R(X). This implies that X t (y θ) = 0. Then for all θ R: y θ 2 2 = (y θ + θ θ) t (y θ + θ θ) = (y θ) t (y θ) + ( θ θ) t ( θ θ) + 2(y θ) t ( θ θ) = (y θ) t (y θ) + ( θ θ) t ( θ θ) = y θ θ θ 2 2

13 Proof: Pick a θ in R such that (y θ) R(X). This implies that X t (y θ) = 0. Then for all θ R: y θ 2 2 = (y θ + θ θ) t (y θ + θ θ) = (y θ) t (y θ) + ( θ θ) t ( θ θ) + 2(y θ) t ( θ θ) = (y θ) t (y θ) + ( θ θ) t ( θ θ) = y θ θ θ 2 2 y θ 2 2

14 Proof: Pick a θ in R such that (y θ) R(X). This implies that X t (y θ) = 0. Then for all θ R: y θ 2 2 = (y θ + θ θ) t (y θ + θ θ) = (y θ) t (y θ) + ( θ θ) t ( θ θ) + 2(y θ) t ( θ θ) = (y θ) t (y θ) + ( θ θ) t ( θ θ) = y θ θ θ 2 2 y θ 2 2 So, if such a θ exists it attains the minimum. To see that it does, write θ = X β.

15 Proof: Pick a θ in R such that (y θ) R(X). This implies that X t (y θ) = 0. Then for all θ R: y θ 2 2 = (y θ + θ θ) t (y θ + θ θ) = (y θ) t (y θ) + ( θ θ) t ( θ θ) + 2(y θ) t ( θ θ) = (y θ) t (y θ) + ( θ θ) t ( θ θ) = y θ θ θ 2 2 y θ 2 2 So, if such a θ exists it attains the minimum. To see that it does, write θ = X β. Then: X t (y θ) = X t (y X β) = X t y X t X β

16 To see that such a θ does exist, write θ = X β.

17 To see that such a θ does exist, write θ = X β. Then: X t (y θ) = X t (y X β)

18 To see that such a θ does exist, write θ = X β. Then: X t (y θ) = X t (y X β) = X t y X t X β

19 To see that such a θ does exist, write θ = X β. Then: X t (y θ) = X t (y X β) = X t y X t X β = X t y X t X(X t X) 1 X t y

20 To see that such a θ does exist, write θ = X β. Then: X t (y θ) = X t (y X β) = X t y X t X β = X t y X t X(X t X) 1 X t y = X t y X t y = 0 And therefore our proposed θ R(X).

21 From this geometric interpretation of the least squares estimator, we introduce an important matrix P X called the projection matrix. P X = X(X t X) 1 X t I ll often drop the subscript as it should be understood that the projection is on the data matrix X.

22 Notice that PX = X: PX = X(X t X) 1 X t X = X

23 Notice that PX = X: PX = X(X t X) 1 X t X = X And Py gives the fitted values ŷ: Py = X(X t X) 1 X t Xy = X β = θ = ŷ Do you see why the projection matrix is called the projection matrix?

24 Notice that PX = X: PX = X(X t X) 1 X t X = X And Py gives the fitted values ŷ: Py = X(X t X) 1 X t Xy = X β = θ = ŷ Do you see why the projection matrix is called the projection matrix?

25

26 The projection matrix is sometimes called the hat matrix. Any thoughts as to why?

27 A closely related matrix to P is the annihilator matrix M: M = I n P

28 A closely related matrix to P is the annihilator matrix M: It gets its name because MX = 0. M = I n P

29 The matrix P = X(X t X) 1 X t is clearly symmetric. It is also idempotent: P 2 = X(X t X) 1 X t X(X t X) 1 X t

30 The matrix P = X(X t X) 1 X t is clearly symmetric. It is also idempotent: P 2 = X(X t X) 1 X t X(X t X) 1 X t = X(X t X) 1 (X t X)(X t X) 1 X t

31 The matrix P = X(X t X) 1 X t is clearly symmetric. It is also idempotent: P 2 = X(X t X) 1 X t X(X t X) 1 X t = X(X t X) 1 (X t X)(X t X) 1 X t = X(X t X) 1 X t

32 The matrix P = X(X t X) 1 X t is clearly symmetric. It is also idempotent: P 2 = X(X t X) 1 X t X(X t X) 1 X t = X(X t X) 1 (X t X)(X t X) 1 X t = X(X t X) 1 X t = P

33 M is also symmetric M t = (I n P) t = (I n P t ) = M

34 M is also symmetric M t = (I n P) t = (I n P t ) = M And idempotent: M 2 = (I n P) 2 = (I n P)(I n P)

35 M is also symmetric M t = (I n P) t = (I n P t ) = M And idempotent: M 2 = (I n P) 2 = (I n P)(I n P) = I n 2 P + P 2

36 M is also symmetric M t = (I n P) t = (I n P t ) = M And idempotent: M 2 = (I n P) 2 = (I n P)(I n P) = I n 2 P + P 2 = I n 2 P + P

37 M is also symmetric M t = (I n P) t = (I n P t ) = M And idempotent: M 2 = (I n P) 2 = (I n P)(I n P) = I n 2 P + P 2 = I n 2 P + P = I n P = M

38 M is also symmetric M t = (I n P) t = (I n P t ) = M And idempotent: M 2 = (I n P) 2 = (I n P)(I n P) = I n 2 P + P 2 = I n 2 P + P = I n P = M These properties both make sense given the geometric interpretation of P and M as projections; into the column space of X and the compliment of the columns space of X.

39 These properties are quite useful. Notice how we can easily rewrite the following for the residual vector r = y X β: r = y X β

40 These properties are quite useful. Notice how we can easily rewrite the following for the residual vector r = y X β: r = y X β = y Py

41 These properties are quite useful. Notice how we can easily rewrite the following for the residual vector r = y X β: r = y X β = y Py = (I n P)y

42 These properties are quite useful. Notice how we can easily rewrite the following for the residual vector r = y X β: r = y X β = y Py = (I n P)y = My

43 These properties are quite useful. Notice how we can easily rewrite the following for the residual vector r = y X β: r = y X β = y Py = (I n P)y = My = M(Xβ + ϵ)

44 These properties are quite useful. Notice how we can easily rewrite the following for the residual vector r = y X β: r = y X β = y Py = (I n P)y = My = M(Xβ + ϵ) = Mϵ

45 These properties are quite useful. Notice how we can easily rewrite the following for the residual vector r = y X β: r = y X β = y Py = (I n P)y = My = M(Xβ + ϵ) = Mϵ The matricies P and M not only help make the derivation easier, they also give geometric insight into what we are doing.

46 One particularly useful formula will be writing the squared residuals as: r 2 2 = Mϵ 2 2 = ϵ t M t Mϵ = ϵ t Mϵ

47 One particularly useful formula will be writing the squared residuals as: r 2 2 = Mϵ 2 2 = ϵ t M t Mϵ = ϵ t Mϵ So the matrix M translates the sum of squared residuals into the sum of the square errors, which are estimated by the residuals.

48 Applications

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No.

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No. 7. LEAST SQUARES ESTIMATION 1 EXERCISE: Least-Squares Estimation and Uniqueness of Estimates 1. For n real numbers a 1,...,a n, what value of a minimizes the sum of squared distances from a to each of

More information

Lecture 07 Hypothesis Testing with Multivariate Regression

Lecture 07 Hypothesis Testing with Multivariate Regression Lecture 07 Hypothesis Testing with Multivariate Regression 23 September 2015 Taylor B. Arnold Yale Statistics STAT 312/612 Goals for today 1. Review of assumptions and properties of linear model 2. The

More information

Lecture 16 Solving GLMs via IRWLS

Lecture 16 Solving GLMs via IRWLS Lecture 16 Solving GLMs via IRWLS 09 November 2015 Taylor B. Arnold Yale Statistics STAT 312/612 Notes problem set 5 posted; due next class problem set 6, November 18th Goals for today fixed PCA example

More information

Lecture 14 Singular Value Decomposition

Lecture 14 Singular Value Decomposition Lecture 14 Singular Value Decomposition 02 November 2015 Taylor B. Arnold Yale Statistics STAT 312/612 Goals for today singular value decomposition condition numbers application to mean squared errors

More information

Lecture 21 Theory of the Lasso II

Lecture 21 Theory of the Lasso II Lecture 21 Theory of the Lasso II 02 December 2015 Taylor B. Arnold Yale Statistics STAT 312/612 Class Notes Midterm II - Available now, due next Monday Problem Set 7 - Available now, due December 11th

More information

Matrix Approach to Simple Linear Regression: An Overview

Matrix Approach to Simple Linear Regression: An Overview Matrix Approach to Simple Linear Regression: An Overview Aspects of matrices that you should know: Definition of a matrix Addition/subtraction/multiplication of matrices Symmetric/diagonal/identity matrix

More information

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27

Estimation of the Response Mean. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 27 Estimation of the Response Mean Copyright c 202 Dan Nettleton (Iowa State University) Statistics 5 / 27 The Gauss-Markov Linear Model y = Xβ + ɛ y is an n random vector of responses. X is an n p matrix

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

STAT Homework 8 - Solutions

STAT Homework 8 - Solutions STAT-36700 Homework 8 - Solutions Fall 208 November 3, 208 This contains solutions for Homework 4. lease note that we have included several additional comments and approaches to the problems to give you

More information

Lecture 13: Simple Linear Regression in Matrix Format. 1 Expectations and Variances with Vectors and Matrices

Lecture 13: Simple Linear Regression in Matrix Format. 1 Expectations and Variances with Vectors and Matrices Lecture 3: Simple Linear Regression in Matrix Format To move beyond simple regression we need to use matrix algebra We ll start by re-expressing simple linear regression in matrix form Linear algebra is

More information

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X =

Xβ is a linear combination of the columns of X: Copyright c 2010 Dan Nettleton (Iowa State University) Statistics / 25 X = The Gauss-Markov Linear Model y Xβ + ɛ y is an n random vector of responses X is an n p matrix of constants with columns corresponding to explanatory variables X is sometimes referred to as the design

More information

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A )

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A ) Econ 60 Matrix Differentiation Let a and x are k vectors and A is an k k matrix. a x a x = a = a x Ax =A + A x Ax x =A + A x Ax = xx A We don t want to prove the claim rigorously. But a x = k a i x i i=

More information

Lecture 9 SLR in Matrix Form

Lecture 9 SLR in Matrix Form Lecture 9 SLR in Matrix Form STAT 51 Spring 011 Background Reading KNNL: Chapter 5 9-1 Topic Overview Matrix Equations for SLR Don t focus so much on the matrix arithmetic as on the form of the equations.

More information

Economics 620, Lecture 4: The K-Variable Linear Model I. y 1 = + x 1 + " 1 y 2 = + x 2 + " 2 :::::::: :::::::: y N = + x N + " N

Economics 620, Lecture 4: The K-Variable Linear Model I. y 1 = + x 1 +  1 y 2 = + x 2 +  2 :::::::: :::::::: y N = + x N +  N 1 Economics 620, Lecture 4: The K-Variable Linear Model I Consider the system y 1 = + x 1 + " 1 y 2 = + x 2 + " 2 :::::::: :::::::: y N = + x N + " N or in matrix form y = X + " where y is N 1, X is N

More information

Lecture 17 Intro to Lasso Regression

Lecture 17 Intro to Lasso Regression Lecture 17 Intro to Lasso Regression 11 November 2015 Taylor B. Arnold Yale Statistics STAT 312/612 Notes problem set 5 posted; due today Goals for today introduction to lasso regression the subdifferential

More information

Reference: Davidson and MacKinnon Ch 2. In particular page

Reference: Davidson and MacKinnon Ch 2. In particular page RNy, econ460 autumn 03 Lecture note Reference: Davidson and MacKinnon Ch. In particular page 57-8. Projection matrices The matrix M I X(X X) X () is often called the residual maker. That nickname is easy

More information

Lecture 02 Linear classification methods I

Lecture 02 Linear classification methods I Lecture 02 Linear classification methods I 22 January 2016 Taylor B. Arnold Yale Statistics STAT 365/665 1/32 Coursewebsite: A copy of the whole course syllabus, including a more detailed description of

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance:

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance: 8. PROPERTIES OF LEAST SQUARES ESTIMATES 1 Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = 0. 2. The errors are uncorrelated with common variance: These assumptions

More information

Generators for Continuous Coordinate Transformations

Generators for Continuous Coordinate Transformations Page 636 Lecture 37: Coordinate Transformations: Continuous Passive Coordinate Transformations Active Coordinate Transformations Date Revised: 2009/01/28 Date Given: 2009/01/26 Generators for Continuous

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

Linear Models Review

Linear Models Review Linear Models Review Vectors in IR n will be written as ordered n-tuples which are understood to be column vectors, or n 1 matrices. A vector variable will be indicted with bold face, and the prime sign

More information

AMS 212A Applied Mathematical Methods I Appendices of Lecture 06 Copyright by Hongyun Wang, UCSC. ( ) cos2

AMS 212A Applied Mathematical Methods I Appendices of Lecture 06 Copyright by Hongyun Wang, UCSC. ( ) cos2 AMS 22A Applied Mathematical Methods I Appendices of Lecture 06 Copyright by Hongyun Wang UCSC Appendix A: Proof of Lemma Lemma : Let (x ) be the solution of x ( r( x)+ q( x) )sin 2 + ( a) 0 < cos2 where

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Merlise Clyde STA721 Linear Models Duke University August 31, 2017 Outline Topics Likelihood Function Projections Maximum Likelihood Estimates Readings: Christensen Chapter

More information

Regression: Ordinary Least Squares

Regression: Ordinary Least Squares Regression: Ordinary Least Squares Mark Hendricks Autumn 2017 FINM Intro: Regression Outline Regression OLS Mathematics Linear Projection Hendricks, Autumn 2017 FINM Intro: Regression: Lecture 2/32 Regression

More information

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form Topic 7 - Matrix Approach to Simple Linear Regression Review of Matrices Outline Regression model in matrix form - Fall 03 Calculations using matrices Topic 7 Matrix Collection of elements arranged in

More information

STAT 801: Mathematical Statistics. Distribution Theory

STAT 801: Mathematical Statistics. Distribution Theory STAT 81: Mathematical Statistics Distribution Theory Basic Problem: Start with assumptions about f or CDF of random vector X (X 1,..., X p ). Define Y g(x 1,..., X p ) to be some function of X (usually

More information

Economics 620, Lecture 4: The K-Varable Linear Model I

Economics 620, Lecture 4: The K-Varable Linear Model I Economics 620, Lecture 4: The K-Varable Linear Model I Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 4: The K-Varable Linear Model I 1 / 20 Consider the system

More information

Vectors and Matrices Statistics with Vectors and Matrices

Vectors and Matrices Statistics with Vectors and Matrices Vectors and Matrices Statistics with Vectors and Matrices Lecture 3 September 7, 005 Analysis Lecture #3-9/7/005 Slide 1 of 55 Today s Lecture Vectors and Matrices (Supplement A - augmented with SAS proc

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Linear Algebra Review 1 / 45 Definition of Matrix Rectangular array of elements arranged in rows and

More information

STA 2101/442 Assignment Four 1

STA 2101/442 Assignment Four 1 STA 2101/442 Assignment Four 1 One version of the general linear model with fixed effects is y = Xβ + ɛ, where X is an n p matrix of known constants with n > p and the columns of X linearly independent.

More information

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 3 - Thurs 5th Oct 2017 Vectors and 3D geometry

ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 3 - Thurs 5th Oct 2017 Vectors and 3D geometry ES 111 Mathematical Methods in the Earth Sciences Lecture Outline 3 - Thurs 5th Oct 2017 Vectors and 3D geometry So far, all our calculus has been two-dimensional, involving only x and y. Nature is threedimensional,

More information

Linear Least Square Problems Dr.-Ing. Sudchai Boonto

Linear Least Square Problems Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Linear Least-Squares Problems Given y, measurement signal, find

More information

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT Math Camp II Basic Linear Algebra Yiqing Xu MIT Aug 26, 2014 1 Solving Systems of Linear Equations 2 Vectors and Vector Spaces 3 Matrices 4 Least Squares Systems of Linear Equations Definition A linear

More information

Chapter 6: Orthogonality

Chapter 6: Orthogonality Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products

More information

The Geometry of Linear Regression

The Geometry of Linear Regression Chapter 2 The Geometry of Linear Regression 21 Introduction In Chapter 1, we introduced regression models, both linear and nonlinear, and discussed how to estimate linear regression models by using the

More information

Lecture 13: Simple Linear Regression in Matrix Format

Lecture 13: Simple Linear Regression in Matrix Format See updates and corrections at http://www.stat.cmu.edu/~cshalizi/mreg/ Lecture 13: Simple Linear Regression in Matrix Format 36-401, Section B, Fall 2015 13 October 2015 Contents 1 Least Squares in Matrix

More information

3 Multiple Linear Regression

3 Multiple Linear Regression 3 Multiple Linear Regression 3.1 The Model Essentially, all models are wrong, but some are useful. Quote by George E.P. Box. Models are supposed to be exact descriptions of the population, but that is

More information

In the bivariate regression model, the original parameterization is. Y i = β 1 + β 2 X2 + β 2 X2. + β 2 (X 2i X 2 ) + ε i (2)

In the bivariate regression model, the original parameterization is. Y i = β 1 + β 2 X2 + β 2 X2. + β 2 (X 2i X 2 ) + ε i (2) RNy, econ460 autumn 04 Lecture note Orthogonalization and re-parameterization 5..3 and 7.. in HN Orthogonalization of variables, for example X i and X means that variables that are correlated are made

More information

STAT 430/510: Lecture 15

STAT 430/510: Lecture 15 STAT 430/510: Lecture 15 James Piette June 23, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.4... Conditional Distribution: Discrete Def: The conditional

More information

Fitting Linear Statistical Models to Data by Least Squares II: Weighted

Fitting Linear Statistical Models to Data by Least Squares II: Weighted Fitting Linear Statistical Models to Data by Least Squares II: Weighted Brian R. Hunt and C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling April 21, 2014 version

More information

Introduction to conic sections. Author: Eduard Ortega

Introduction to conic sections. Author: Eduard Ortega Introduction to conic sections Author: Eduard Ortega 1 Introduction A conic is a two-dimensional figure created by the intersection of a plane and a right circular cone. All conics can be written in terms

More information

Lectures on Simple Linear Regression Stat 431, Summer 2012

Lectures on Simple Linear Regression Stat 431, Summer 2012 Lectures on Simple Linear Regression Stat 43, Summer 0 Hyunseung Kang July 6-8, 0 Last Updated: July 8, 0 :59PM Introduction Previously, we have been investigating various properties of the population

More information

February 4, 2019 LECTURE 4: THE DERIVATIVE.

February 4, 2019 LECTURE 4: THE DERIVATIVE. February 4, 29 LECTURE 4: THE DERIVATIVE 2 HONORS MULTIVARIABLE CALCULUS PROFESSOR RICHARD BROWN Synopsis Today, we finish our discussion on its and pass through the concept of continuity Really, there

More information

Need for Several Predictor Variables

Need for Several Predictor Variables Multiple regression One of the most widely used tools in statistical analysis Matrix expressions for multiple regression are the same as for simple linear regression Need for Several Predictor Variables

More information

Orthogonal Projection and Least Squares Prof. Philip Pennance 1 -Version: December 12, 2016

Orthogonal Projection and Least Squares Prof. Philip Pennance 1 -Version: December 12, 2016 Orthogonal Projection and Least Squares Prof. Philip Pennance 1 -Version: December 12, 2016 1. Let V be a vector space. A linear transformation P : V V is called a projection if it is idempotent. That

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra /34

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra /34 Linear Algebra /34 Vectors A vector is a magnitude and a direction Magnitude = v Direction Also known as norm, length Represented by unit vectors (vectors with a length of 1 that point along distinct axes)

More information

Quantitative Methods in Economics Conditional Expectations

Quantitative Methods in Economics Conditional Expectations Quantitative Methods in Economics Conditional Expectations Maximilian Kasy Harvard University, fall 2016 1 / 19 Roadmap, Part I 1. Linear predictors and least squares regression 2. Conditional expectations

More information

Math 416, Spring 2010 Coordinate systems and Change of Basis February 16, 2010 COORDINATE SYSTEMS AND CHANGE OF BASIS. 1.

Math 416, Spring 2010 Coordinate systems and Change of Basis February 16, 2010 COORDINATE SYSTEMS AND CHANGE OF BASIS. 1. Math 46 Spring Coordinate systems and Change of asis February 6 COORDINAE SYSEMS AND CHANGE OF ASIS Announcements Don t forget that we have a quiz on hursday and test coming up the following hursday Finishing

More information

INTRODUCTION TO DATA SCIENCE

INTRODUCTION TO DATA SCIENCE INTRODUCTION TO DATA SCIENCE JOHN P DICKERSON Lecture #13 3/9/2017 CMSC320 Tuesdays & Thursdays 3:30pm 4:45pm ANNOUNCEMENTS Mini-Project #1 is due Saturday night (3/11): Seems like people are able to do

More information

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester Physics 403 Parameter Estimation, Correlations, and Error Bars Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Best Estimates and Reliability

More information

Equations with regular-singular points (Sect. 5.5).

Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points. s: Equations with regular-singular points. Method to find solutions. : Method to find solutions. Recall: The

More information

4 Multiple Linear Regression

4 Multiple Linear Regression 4 Multiple Linear Regression 4. The Model Definition 4.. random variable Y fits a Multiple Linear Regression Model, iff there exist β, β,..., β k R so that for all (x, x 2,..., x k ) R k where ε N (, σ

More information

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question Linear regression Reminders Thought questions should be submitted on eclass Please list the section related to the thought question If it is a more general, open-ended question not exactly related to a

More information

22 Approximations - the method of least squares (1)

22 Approximations - the method of least squares (1) 22 Approximations - the method of least squares () Suppose that for some y, the equation Ax = y has no solutions It may happpen that this is an important problem and we can t just forget about it If we

More information

Chapter 3: Maximum Likelihood Theory

Chapter 3: Maximum Likelihood Theory Chapter 3: Maximum Likelihood Theory Florian Pelgrin HEC September-December, 2010 Florian Pelgrin (HEC) Maximum Likelihood Theory September-December, 2010 1 / 40 1 Introduction Example 2 Maximum likelihood

More information

Economics 573 Problem Set 5 Fall 2002 Due: 4 October b. The sample mean converges in probability to the population mean.

Economics 573 Problem Set 5 Fall 2002 Due: 4 October b. The sample mean converges in probability to the population mean. Economics 573 Problem Set 5 Fall 00 Due: 4 October 00 1. In random sampling from any population with E(X) = and Var(X) =, show (using Chebyshev's inequality) that sample mean converges in probability to..

More information

FIRST MIDTERM EXAM ECON 7801 SPRING 2001

FIRST MIDTERM EXAM ECON 7801 SPRING 2001 FIRST MIDTERM EXAM ECON 780 SPRING 200 ECONOMICS DEPARTMENT, UNIVERSITY OF UTAH Problem 2 points Let y be a n-vector (It may be a vector of observations of a random variable y, but it does not matter how

More information

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing STAT763: Applied Regression Analysis Multiple linear regression 4.4 Hypothesis testing Chunsheng Ma E-mail: cma@math.wichita.edu 4.4.1 Significance of regression Null hypothesis (Test whether all β j =

More information

STAT 540: Data Analysis and Regression

STAT 540: Data Analysis and Regression STAT 540: Data Analysis and Regression Wen Zhou http://www.stat.colostate.edu/~riczw/ Email: riczw@stat.colostate.edu Department of Statistics Colorado State University Fall 205 W. Zhou (Colorado State

More information

Lecture Notes 15 Prediction Chapters 13, 22, 20.4.

Lecture Notes 15 Prediction Chapters 13, 22, 20.4. Lecture Notes 15 Prediction Chapters 13, 22, 20.4. 1 Introduction Prediction is covered in detail in 36-707, 36-701, 36-715, 10/36-702. Here, we will just give an introduction. We observe training data

More information

STAT 8260 Theory of Linear Models Lecture Notes

STAT 8260 Theory of Linear Models Lecture Notes STAT 8260 Theory of Linear Models Lecture Notes Classical linear models are at the core of the field of statistics, and are probably the most commonly used set of statistical techniques in practice. For

More information

STA 2101/442 Assignment 3 1

STA 2101/442 Assignment 3 1 STA 2101/442 Assignment 3 1 These questions are practice for the midterm and final exam, and are not to be handed in. 1. Suppose X 1,..., X n are a random sample from a distribution with mean µ and variance

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

plim W 0 " 1 N = 0 Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16.

plim W 0  1 N = 0 Prof. N. M. Kiefer, Econ 620, Cornell University, Lecture 16. 1 Lecture 16: Estimation of Simultaneous Equations Models Consider y 1 = Y 2 + X 1 + " 1 which is an equation from a system. We can rewrite this at y 1 = Z +" 1 where Z = [Y 2 X 1 ] and = [ 0 0 ] 0. Note

More information

EQUIVALENT FORCE-COUPLE SYSTEMS

EQUIVALENT FORCE-COUPLE SYSTEMS EQUIVALENT FORCE-COUPLE SYSTEMS Today s Objectives: Students will be able to: 1) Determine the effect of moving a force. 2) Find an equivalent force-couple system for a system of forces and couples. APPLICATIONS

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University.

Summer School in Statistics for Astronomers V June 1 - June 6, Regression. Mosuk Chow Statistics Department Penn State University. Summer School in Statistics for Astronomers V June 1 - June 6, 2009 Regression Mosuk Chow Statistics Department Penn State University. Adapted from notes prepared by RL Karandikar Mean and variance Recall

More information

Econometrics I. Professor William Greene Stern School of Business Department of Economics 3-1/29. Part 3: Least Squares Algebra

Econometrics I. Professor William Greene Stern School of Business Department of Economics 3-1/29. Part 3: Least Squares Algebra Econometrics I Professor William Greene Stern School of Business Department of Economics 3-1/29 Econometrics I Part 3 Least Squares Algebra 3-2/29 Vocabulary Some terms to be used in the discussion. Population

More information

Announcements Monday, September 18

Announcements Monday, September 18 Announcements Monday, September 18 WeBWorK 1.4, 1.5 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 22. Midterms happen during recitation. The exam covers through 1.5. About

More information

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities MA 1128: Lecture 08 03/02/2018 Linear Equations from Graphs And Linear Inequalities Linear Equations from Graphs Given a line, we would like to be able to come up with an equation for it. I ll go over

More information

ECS130 Scientific Computing. Lecture 1: Introduction. Monday, January 7, 10:00 10:50 am

ECS130 Scientific Computing. Lecture 1: Introduction. Monday, January 7, 10:00 10:50 am ECS130 Scientific Computing Lecture 1: Introduction Monday, January 7, 10:00 10:50 am About Course: ECS130 Scientific Computing Professor: Zhaojun Bai Webpage: http://web.cs.ucdavis.edu/~bai/ecs130/ Today

More information

forms Christopher Engström November 14, 2014 MAA704: Matrix factorization and canonical forms Matrix properties Matrix factorization Canonical forms

forms Christopher Engström November 14, 2014 MAA704: Matrix factorization and canonical forms Matrix properties Matrix factorization Canonical forms Christopher Engström November 14, 2014 Hermitian LU QR echelon Contents of todays lecture Some interesting / useful / important of matrices Hermitian LU QR echelon Rewriting a as a product of several matrices.

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 51 Outline 1 Matrix Expression 2 Linear and quadratic forms 3 Properties of quadratic form 4 Properties of estimates 5 Distributional properties 3 / 51 Matrix

More information

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6.

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. STAT 450: Statistical Theory Distribution Theory Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. Example: Why does t-statistic have t distribution? Ingredients: Sample X 1,...,X n from

More information

Linear Regression and Its Applications

Linear Regression and Its Applications Linear Regression and Its Applications Predrag Radivojac October 13, 2014 Given a data set D = {(x i, y i )} n the objective is to learn the relationship between features and the target. We usually start

More information

Course Notes Math 275 Boise State University. Shari Ultman

Course Notes Math 275 Boise State University. Shari Ultman Course Notes Math 275 Boise State University Shari Ultman Fall 2017 Contents 1 Vectors 1 1.1 Introduction to 3-Space & Vectors.............. 3 1.2 Working With Vectors.................... 7 1.3 Introduction

More information

Variable Selection and Model Building

Variable Selection and Model Building LINEAR REGRESSION ANALYSIS MODULE XIII Lecture - 37 Variable Selection and Model Building Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur The complete regression

More information

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18)

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) MichaelR.Roberts Department of Economics and Department of Statistics University of California

More information

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Q = (Y i β 0 β 1 X i1 β 2 X i2 β p 1 X i.p 1 ) 2, which in matrix notation is Q = (Y Xβ) (Y

More information

Math 3C Lecture 25. John Douglas Moore

Math 3C Lecture 25. John Douglas Moore Math 3C Lecture 25 John Douglas Moore June 1, 2009 Let V be a vector space. A basis for V is a collection of vectors {v 1,..., v k } such that 1. V = Span{v 1,..., v k }, and 2. {v 1,..., v k } are linearly

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra 1/33

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra 1/33 Linear Algebra 1/33 Vectors A vector is a magnitude and a direction Magnitude = v Direction Also known as norm, length Represented by unit vectors (vectors with a length of 1 that point along distinct

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review ORIE 4741 September 1, 2017 Linear Algebra Review September 1, 2017 1 / 33 Outline 1 Linear Independence and Dependence 2 Matrix Rank 3 Invertible Matrices 4 Norms 5 Projection Matrix

More information

STA 2201/442 Assignment 2

STA 2201/442 Assignment 2 STA 2201/442 Assignment 2 1. This is about how to simulate from a continuous univariate distribution. Let the random variable X have a continuous distribution with density f X (x) and cumulative distribution

More information

Discrete Mathematics and Its Applications

Discrete Mathematics and Its Applications Discrete Mathematics and Its Applications Lecture 1: The Foundations: Logic and Proofs (1.3-1.5) MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 19, 2017 Outline 1 Logical

More information

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 2 SECTION PROPERTIES

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 2 SECTION PROPERTIES Section Properties Centroid The centroid of an area is the point about which the area could be balanced if it was supported from that point. The word is derived from the word center, and it can be though

More information

Multivariate Regression (Chapter 10)

Multivariate Regression (Chapter 10) Multivariate Regression (Chapter 10) This week we ll cover multivariate regression and maybe a bit of canonical correlation. Today we ll mostly review univariate multivariate regression. With multivariate

More information

Linear regression COMS 4771

Linear regression COMS 4771 Linear regression COMS 4771 1. Old Faithful and prediction functions Prediction problem: Old Faithful geyser (Yellowstone) Task: Predict time of next eruption. 1 / 40 Statistical model for time between

More information

CHANGE OF BASIS FOR LINEAR SPACES

CHANGE OF BASIS FOR LINEAR SPACES CHANGE OF ASIS FOR LINEAR SPACES. Motivating Example Consider P 2 the space of polynomials of degree at most 2. Let : P 2 P 2 be defined by (p)(x) = p (x) p(x). his is a linear transformation. We would

More information

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model Outline 1 Multiple Linear Regression (Estimation, Inference, Diagnostics and Remedial Measures) 2 Special Topics for Multiple Regression Extra Sums of Squares Standardized Version of the Multiple Regression

More information

ESTIMATION THEORY. Chapter Estimation of Random Variables

ESTIMATION THEORY. Chapter Estimation of Random Variables Chapter ESTIMATION THEORY. Estimation of Random Variables Suppose X,Y,Y 2,...,Y n are random variables defined on the same probability space (Ω, S,P). We consider Y,...,Y n to be the observed random variables

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

Topic 2: Logistic Regression

Topic 2: Logistic Regression CS 4850/6850: Introduction to Machine Learning Fall 208 Topic 2: Logistic Regression Instructor: Daniel L. Pimentel-Alarcón c Copyright 208 2. Introduction Arguably the simplest task that we can teach

More information

Lecture 6: Linear models and Gauss-Markov theorem

Lecture 6: Linear models and Gauss-Markov theorem Lecture 6: Linear models and Gauss-Markov theorem Linear model setting Results in simple linear regression can be extended to the following general linear model with independently observed response variables

More information

Additional Practice Lessons 2.02 and 2.03

Additional Practice Lessons 2.02 and 2.03 Additional Practice Lessons 2.02 and 2.03 1. There are two numbers n that satisfy the following equations. Find both numbers. a. n(n 1) 306 b. n(n 1) 462 c. (n 1)(n) 182 2. The following function is defined

More information

SOLUTIONS FOR PROBLEMS 1-30

SOLUTIONS FOR PROBLEMS 1-30 . Answer: 5 Evaluate x x + 9 for x SOLUTIONS FOR PROBLEMS - 0 When substituting x in x be sure to do the exponent before the multiplication by to get (). + 9 5 + When multiplying ( ) so that ( 7) ( ).

More information

Probability Review. September 25, 2015

Probability Review. September 25, 2015 Probability Review September 25, 2015 We need a tool to 1) Formulate a model of some phenomenon. 2) Learn an instance of the model from data. 3) Use it to infer outputs from new inputs. Why Probability?

More information