Linear Least Square Problems Dr.-Ing. Sudchai Boonto

Size: px
Start display at page:

Download "Linear Least Square Problems Dr.-Ing. Sudchai Boonto"

Transcription

1 Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand

2 Linear Least-Squares Problems Given y, measurement signal, find the least-squares solution x, min x ϵ T ϵ st y = Ax or more standard ofrm min x Ax y 2, where A R m n, y meas R m and x R n is an unknown parameter vector 2/18

3 Linear Least-Squares Problems cont The cost function of the least-squares minimization problem can be expanded as V (x) = Ax y 2 = (Ax y) T (Ax y) = x T A T Ax x T A T y y T Ax + y T y The gradient x V (x) = V (x) x 1 V (x) x n = 2AT Ax 2A T y 3/18

4 Linear Least-Squares Problems cont The solution ˆx to the least-square problem is found by setting the gradient equal to 0 Thus A T Aˆx = A T y, normal equation or A T (Aˆx y) = 0 The minimal value of the cost function Ax y 2 can be find from V (x) = ˆx T A T Aˆx ˆx T A T y y T Aˆx + y T y = ˆx T A T (Aˆx y) y T (Aˆx y) with the normal equation, the first of above equation is zero, then min V (x) = y T (Aˆx y) 4/18

5 Geometric interpretation y ϵ ŷ a 2 A a 1 we are looking for the projection ŷ of the vector y onto the space spanned by the measurement vector a i ŷ is the vector closest to y if the error ϵ is orthogonal to this space 5/18

6 Geometric interpretation cont ϵ is orthogonal to this space if a T i ϵ = 0, i = 1,, n in matrix from A T ϵ = 0 or A T (y ŷ) = A T (y Aˆx) = 0 6/18

7 Completion of Squares the completion of squares formula for quadratic polynomials is ( ax 2 + 2bxy + cy 2 = a x + b ) 2 ( ) a y + c b2 y 2 a when a > 0, this tells us the minimum with respect to x for fixed y ( ) min x R ax2 + 2bxy + cy 2 = c b2 y 2, a which is achieved when x = b a y 7/18

8 Completion of Squares of matrices if A R n n and D R m m are symmetric matrices and B R n m, then [ ] T [ ] [ ] x A B x y B T = (x + A 1 By) T A(x + A 1 By) D y compare with + y T (D B T A 1 B)y ( ax 2 + 2bxy + cy 2 = a x + b ) 2 ( ) a y + c b2 y 2 a 8/18

9 Completion of Squares of matrices gives a general formula for quadratic optimization; if A > 0, then min x x y T A B T and the minimizing x is B x = y T (D B T A 1 B)y D y ˆx = A 1 By 9/18

10 Application to Least-square V (x) = Ax y 2 = x T A T Ax x T A T y y T Ax + y T y [ ] T [ x A = T A A T ] [ ] y x 1 y T A y T y 1 }{{} M By the help of Schur complement [ ] T [ ] [ x I 0 A V (x) = T ] [ ] [ ] A 0 I ˆx x 1 ˆx T I 0 y T y y T, Aˆx 0 I 1 for ˆx satisfying and ˆx = (A T A) 1 A T y V (x) = (x ˆx) T A T A(x ˆx) + (y T y y T Aˆx) 10/18

11 regression or curve fitting model using a linear combination of functions f(t) = x 1 f 1 (t) + x 2 f 2 (t) + + x n f n (t) collect m data samples y i = f(t i ), i = 1,, m write in matrix form y 1 f 1 (t 1 ) f n (t 1 ) x 1 y 2 = f 1 (t 2 ) f n (t 2 ) x 2 y m f 1 (t m ) f n (t m ) x n find least-squares estimate for x by x est = (A T A) 1 A T y called curve fitting or linear regression; functions f i are called regressors 11/18

12 Solutions if the matrix A has full column rank if A T A is square and invertible and the solution ˆx is ˆx = (A T A) 1 A T y (A T A) 1 A T is called pseudo-inverse of A because ((A T A) 1 A T )A = I 12/18

13 Example Given A = 2 1, y = 0, consider the set of three equations in two unknowns, F x = y The least squares solution is given by ˆx = (A T A) 1 A T y = = [ [ ] ] [ ] The least-squares residual is ϵ 2 = Aˆx y 2 = /18

14 Solutions if the matrix A does not have full column rank A does not have full column rank the problem is change to min x X x 2 with X = {x : x = arg min Az y 2 } x A = [ U 1 U 2 ] [ Σ ] [ ] V T 1 V T 2 the minimization problem can be written as min z = U 1 ΣV T 1 Az y 2 = min U 1 ΣV T z 1 z y 2 14/18

15 Solutions if the matrix A does not have full column rank define the partitioned vector the problem becomes ξ 1 = ξ 2 V 1 T V T 2 z min Az y 2 = min U 1 Σξ 1 y 2 z ξ 1 ˆξ 1 = Σ 1 U T 1 y from the normal equation ξ 2 does not change the value of the minimization problem and can be chosen arbitrarily 15/18

16 Solutions if the matrix A does not have full column rank the solutions become ] ẑ = [V 1 V 2 ˆξ 1 = V 1 Σ 1 U1 T y + V 2 ˆξ2 ˆξ 2 thus X = {x : x = V 1 Σ 1 U T 1 y + V 2 ˆξ2, ˆξ 2 R n r } x 2 = V 1 Σ 1 U T 1 y 2 + V 2 ˆξ2 2 select ˆξ 2 = 0, thus ˆx = V 1 Σ 1 U T 1 y 16/18

17 Example Given A = [ ] 1 2 1, y = ˆx = A T (AA T ) 1 y 1 1 = = 1 [ ] [ 1 0 [ ] 1 0 ] 1 2 the 2-norm of this solution is ˆx = 3/2 17/18

18 Reference 1 Lecture note on Introduction to Linear Dynamical Systems, Stephen Boyd, Stanford University 2 Michel Verhaegen and Vincent Verdult Filtering and System Identification: A Least Squares Approach, Cambridge University Press, /18

Lecture 5 Least-squares

Lecture 5 Least-squares EE263 Autumn 2008-09 Stephen Boyd Lecture 5 Least-squares least-squares (approximate) solution of overdetermined equations projection and orthogonality principle least-squares estimation BLUE property

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 9 1 / 23 Overview

More information

Lecture 9: Input Disturbance A Design Example Dr.-Ing. Sudchai Boonto

Lecture 9: Input Disturbance A Design Example Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand d u g r e u K G y The sensitivity S is the transfer function

More information

Lecture 13: Orthogonal projections and least squares (Section ) Thang Huynh, UC San Diego 2/9/2018

Lecture 13: Orthogonal projections and least squares (Section ) Thang Huynh, UC San Diego 2/9/2018 Lecture 13: Orthogonal projections and least squares (Section 3.2-3.3) Thang Huynh, UC San Diego 2/9/2018 Orthogonal projection onto subspaces Theorem. Let W be a subspace of R n. Then, each x in R n can

More information

Nonlinear System Identification Using MLP Dr.-Ing. Sudchai Boonto

Nonlinear System Identification Using MLP Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Nonlinear System Identification Given a data set Z N = {y(k),

More information

Least Squares. Stephen Boyd. EE103 Stanford University. October 28, 2017

Least Squares. Stephen Boyd. EE103 Stanford University. October 28, 2017 Least Squares Stephen Boyd EE103 Stanford University October 28, 2017 Outline Least squares problem Solution of least squares problem Examples Least squares problem 2 Least squares problem suppose m n

More information

Least squares problems Linear Algebra with Computer Science Application

Least squares problems Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application April 8, 018 1 Least Squares Problems 11 Least Squares Problems What do you do when Ax = b has no solution? Inconsistent systems arise often in applications

More information

Solutions to Review Problems for Chapter 6 ( ), 7.1

Solutions to Review Problems for Chapter 6 ( ), 7.1 Solutions to Review Problems for Chapter (-, 7 The Final Exam is on Thursday, June,, : AM : AM at NESBITT Final Exam Breakdown Sections % -,7-9,- - % -9,-,7,-,-7 - % -, 7 - % Let u u and v Let x x x x,

More information

Orthogonal Projection. Hung-yi Lee

Orthogonal Projection. Hung-yi Lee Orthogonal Projection Hung-yi Lee Reference Textbook: Chapter 7.3, 7.4 Orthogonal Projection What is Orthogonal Complement What is Orthogonal Projection How to do Orthogonal Projection Application of Orthogonal

More information

Pseudoinverse & Moore-Penrose Conditions

Pseudoinverse & Moore-Penrose Conditions ECE 275AB Lecture 7 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 7 ECE 275A Pseudoinverse & Moore-Penrose Conditions ECE 275AB Lecture 7 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego

More information

MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces.

MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces. MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces. Orthogonality Definition 1. Vectors x,y R n are said to be orthogonal (denoted x y)

More information

Pseudoinverse and Adjoint Operators

Pseudoinverse and Adjoint Operators ECE 275AB Lecture 5 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 5 ECE 275A Pseudoinverse and Adjoint Operators ECE 275AB Lecture 5 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego p.

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

LECTURE 7. Least Squares and Variants. Optimization Models EE 127 / EE 227AT. Outline. Least Squares. Notes. Notes. Notes. Notes.

LECTURE 7. Least Squares and Variants. Optimization Models EE 127 / EE 227AT. Outline. Least Squares. Notes. Notes. Notes. Notes. Optimization Models EE 127 / EE 227AT Laurent El Ghaoui EECS department UC Berkeley Spring 2015 Sp 15 1 / 23 LECTURE 7 Least Squares and Variants If others would but reflect on mathematical truths as deeply

More information

Stochastic Process II Dr.-Ing. Sudchai Boonto

Stochastic Process II Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Random process Consider a random experiment specified by the

More information

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix Definition: Let L : V 1 V 2 be a linear operator. The null space N (L) of L is the subspace of V 1 defined by N (L) = {x

More information

Chapter 6: Orthogonality

Chapter 6: Orthogonality Chapter 6: Orthogonality (Last Updated: November 7, 7) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved around.. Inner products

More information

Filtering and Identification

Filtering and Identification Filtering and Identification Day 1 - Lecture 1: Introduction and refreshment LA Michel Verhaegen 1/42 Smart Optics Systems Star Telescope / Collimator Plane wavefront Turbulent Atmosphere Disturbed wavefront

More information

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015 Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

Least-squares data fitting

Least-squares data fitting EE263 Autumn 2015 S. Boyd and S. Lall Least-squares data fitting 1 Least-squares data fitting we are given: functions f 1,..., f n : S R, called regressors or basis functions data or measurements (s i,

More information

Chapter 6 - Orthogonality

Chapter 6 - Orthogonality Chapter 6 - Orthogonality Maggie Myers Robert A. van de Geijn The University of Texas at Austin Orthogonality Fall 2009 http://z.cs.utexas.edu/wiki/pla.wiki/ 1 Orthogonal Vectors and Subspaces http://z.cs.utexas.edu/wiki/pla.wiki/

More information

MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products.

MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products. MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products. Orthogonal projection Theorem 1 Let V be a subspace of R n. Then any vector x R n is uniquely represented

More information

Lecture 6: Geometry of OLS Estimation of Linear Regession

Lecture 6: Geometry of OLS Estimation of Linear Regession Lecture 6: Geometry of OLS Estimation of Linear Regession Xuexin Wang WISE Oct 2013 1 / 22 Matrix Algebra An n m matrix A is a rectangular array that consists of nm elements arranged in n rows and m columns

More information

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Outline Motivation The Laplace Transform The Laplace Transform

More information

Consider a subspace V = im(a) of R n, where m. Then,

Consider a subspace V = im(a) of R n, where m. Then, 5.4 LEAST SQUARES AND DATA FIT- TING ANOTHER CHARACTERIZATION OF ORTHOG- ONAL COMPLEMENTS Consider a subspace V = im(a) of R n, where A = [ ] v 1 v 2... v m. Then, V = { x in R n : v x = 0, for all v in

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Name: TA Name and section: NO CALCULATORS, SHOW ALL WORK, NO OTHER PAPERS ON DESK. There is very little actual work to be done on this exam if

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2017) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

Final Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015

Final Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Final Review Written by Victoria Kala vtkala@mathucsbedu SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Summary This review contains notes on sections 44 47, 51 53, 61, 62, 65 For your final,

More information

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017 Inverses Stephen Boyd EE103 Stanford University October 28, 2017 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Orthogonal Projections, Gram-Schmidt Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./ Orthonormal Sets A set of vectors {u, u,...,

More information

Lecture 19 Observability and state estimation

Lecture 19 Observability and state estimation EE263 Autumn 2007-08 Stephen Boyd Lecture 19 Observability and state estimation state estimation discrete-time observability observability controllability duality observers for noiseless case continuous-time

More information

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

More information

Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra

Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra Lecture: Linear algebra. 1. Subspaces. 2. Orthogonal complement. 3. The four fundamental subspaces 4. Solutions of linear equation systems The fundamental theorem of linear algebra 5. Determining the fundamental

More information

Lecture: Quadratic optimization

Lecture: Quadratic optimization Lecture: Quadratic optimization 1. Positive definite och semidefinite matrices 2. LDL T factorization 3. Quadratic optimization without constraints 4. Quadratic optimization with constraints 5. Least-squares

More information

Lecture 9: Time-Domain Analysis of Discrete-Time Systems Dr.-Ing. Sudchai Boonto

Lecture 9: Time-Domain Analysis of Discrete-Time Systems Dr.-Ing. Sudchai Boonto Lecture 9: Time-Domain Analysis of Discrete-Time Systems Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Outline

More information

Orthogonality and Least Squares

Orthogonality and Least Squares 6 Orthogonality and Least Squares 6.1 INNER PRODUCT, LENGTH, AND ORTHOGONALITY INNER PRODUCT If u and v are vectors in, then we regard u and v as matrices. n 1 n The transpose u T is a 1 n matrix, and

More information

Conjugate Gradient algorithm. Storage: fixed, independent of number of steps.

Conjugate Gradient algorithm. Storage: fixed, independent of number of steps. Conjugate Gradient algorithm Need: A symmetric positive definite; Cost: 1 matrix-vector product per step; Storage: fixed, independent of number of steps. The CG method minimizes the A norm of the error,

More information

Orthogonality. 6.1 Orthogonal Vectors and Subspaces. Chapter 6

Orthogonality. 6.1 Orthogonal Vectors and Subspaces. Chapter 6 Chapter 6 Orthogonality 6.1 Orthogonal Vectors and Subspaces Recall that if nonzero vectors x, y R n are linearly independent then the subspace of all vectors αx + βy, α, β R (the space spanned by x and

More information

1 Cricket chirps: an example

1 Cricket chirps: an example Notes for 2016-09-26 1 Cricket chirps: an example Did you know that you can estimate the temperature by listening to the rate of chirps? The data set in Table 1 1. represents measurements of the number

More information

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis,

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis, 5 Orthogonality Goals: We use scalar products to find the length of a vector, the angle between 2 vectors, projections, orthogonal relations between vectors and subspaces Then we study some applications

More information

Exercise Sheet 1.

Exercise Sheet 1. Exercise Sheet 1 You can download my lecture and exercise sheets at the address http://sami.hust.edu.vn/giang-vien/?name=huynt 1) Let A, B be sets. What does the statement "A is not a subset of B " mean?

More information

For each problem, place the letter choice of your answer in the spaces provided on this page.

For each problem, place the letter choice of your answer in the spaces provided on this page. Math 6 Final Exam Spring 6 Your name Directions: For each problem, place the letter choice of our answer in the spaces provided on this page...... 6. 7. 8. 9....... 6. 7. 8. 9....... B signing here, I

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

Orthogonal Projection and Least Squares Prof. Philip Pennance 1 -Version: December 12, 2016

Orthogonal Projection and Least Squares Prof. Philip Pennance 1 -Version: December 12, 2016 Orthogonal Projection and Least Squares Prof. Philip Pennance 1 -Version: December 12, 2016 1. Let V be a vector space. A linear transformation P : V V is called a projection if it is idempotent. That

More information

Typical Problem: Compute.

Typical Problem: Compute. Math 2040 Chapter 6 Orhtogonality and Least Squares 6.1 and some of 6.7: Inner Product, Length and Orthogonality. Definition: If x, y R n, then x y = x 1 y 1 +... + x n y n is the dot product of x and

More information

Lecture 8: Discrete-Time Signals and Systems Dr.-Ing. Sudchai Boonto

Lecture 8: Discrete-Time Signals and Systems Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongut s Unniversity of Technology Thonburi Thailand Outline Introduction Some Useful Discrete-Time Signal Models

More information

The SVD-Fundamental Theorem of Linear Algebra

The SVD-Fundamental Theorem of Linear Algebra Nonlinear Analysis: Modelling and Control, 2006, Vol. 11, No. 2, 123 136 The SVD-Fundamental Theorem of Linear Algebra A. G. Akritas 1, G. I. Malaschonok 2, P. S. Vigklas 1 1 Department of Computer and

More information

In English, this means that if we travel on a straight line between any two points in C, then we never leave C.

In English, this means that if we travel on a straight line between any two points in C, then we never leave C. Convex sets In this section, we will be introduced to some of the mathematical fundamentals of convex sets. In order to motivate some of the definitions, we will look at the closest point problem from

More information

Quadratic forms. Defn

Quadratic forms. Defn Quadratic forms Aim lecture: We use the spectral thm for self-adjoint operators to study solns to some multi-variable quadratic eqns. In this lecture, we work over the real field F = R. We use the notn

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

Math 407: Linear Optimization

Math 407: Linear Optimization Math 407: Linear Optimization Lecture 16: The Linear Least Squares Problem II Math Dept, University of Washington February 28, 2018 Lecture 16: The Linear Least Squares Problem II (Math Dept, University

More information

Math 308 Practice Final Exam Page and vector y =

Math 308 Practice Final Exam Page and vector y = Math 308 Practice Final Exam Page Problem : Solving a linear equation 2 0 2 5 Given matrix A = 3 7 0 0 and vector y = 8. 4 0 0 9 (a) Solve Ax = y (if the equation is consistent) and write the general solution

More information

ECE 275A Homework #3 Solutions

ECE 275A Homework #3 Solutions ECE 75A Homework #3 Solutions. Proof of (a). Obviously Ax = 0 y, Ax = 0 for all y. To show sufficiency, note that if y, Ax = 0 for all y, then it must certainly be true for the particular value of y =

More information

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No.

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No. 7. LEAST SQUARES ESTIMATION 1 EXERCISE: Least-Squares Estimation and Uniqueness of Estimates 1. For n real numbers a 1,...,a n, what value of a minimizes the sum of squared distances from a to each of

More information

Least squares: the big idea

Least squares: the big idea Notes for 2016-02-22 Least squares: the big idea Least squares problems are a special sort of minimization problem. Suppose A R m n where m > n. In general, we cannot solve the overdetermined system Ax

More information

Lecture 6. Regularized least-squares and minimum-norm methods 6 1

Lecture 6. Regularized least-squares and minimum-norm methods 6 1 Regularized least-squares and minimum-norm methods 6 1 Lecture 6 Regularized least-squares and minimum-norm methods EE263 Autumn 2004 multi-objective least-squares regularized least-squares nonlinear least-squares

More information

Lecture 10: Linear Matrix Inequalities Dr.-Ing. Sudchai Boonto

Lecture 10: Linear Matrix Inequalities Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Linear Matrix Inequalities A linear matrix inequality (LMI)

More information

Numerical Methods. Elena loli Piccolomini. Civil Engeneering. piccolom. Metodi Numerici M p. 1/??

Numerical Methods. Elena loli Piccolomini. Civil Engeneering.  piccolom. Metodi Numerici M p. 1/?? Metodi Numerici M p. 1/?? Numerical Methods Elena loli Piccolomini Civil Engeneering http://www.dm.unibo.it/ piccolom elena.loli@unibo.it Metodi Numerici M p. 2/?? Least Squares Data Fitting Measurement

More information

Lecture notes: Applied linear algebra Part 1. Version 2

Lecture notes: Applied linear algebra Part 1. Version 2 Lecture notes: Applied linear algebra Part 1. Version 2 Michael Karow Berlin University of Technology karow@math.tu-berlin.de October 2, 2008 1 Notation, basic notions and facts 1.1 Subspaces, range and

More information

Lecture 1: Review of linear algebra

Lecture 1: Review of linear algebra Lecture 1: Review of linear algebra Linear functions and linearization Inverse matrix, least-squares and least-norm solutions Subspaces, basis, and dimension Change of basis and similarity transformations

More information

Check that your exam contains 30 multiple-choice questions, numbered sequentially.

Check that your exam contains 30 multiple-choice questions, numbered sequentially. MATH EXAM SPRING VERSION A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER On your scantron, write and bubble your PSU ID, Section Number, and Test Version. Failure to correctly code these items may result

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review ORIE 4741 September 1, 2017 Linear Algebra Review September 1, 2017 1 / 33 Outline 1 Linear Independence and Dependence 2 Matrix Rank 3 Invertible Matrices 4 Norms 5 Projection Matrix

More information

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian FE661 - Statistical Methods for Financial Engineering 2. Linear algebra Jitkomut Songsiri matrices and vectors linear equations range and nullspace of matrices function of vectors, gradient and Hessian

More information

STAT 350: Geometry of Least Squares

STAT 350: Geometry of Least Squares The Geometry of Least Squares Mathematical Basics Inner / dot product: a and b column vectors a b = a T b = a i b i a b a T b = 0 Matrix Product: A is r s B is s t (AB) rt = s A rs B st Partitioned Matrices

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

The geometry of least squares

The geometry of least squares The geometry of least squares We can think of a vector as a point in space, where the elements of the vector are the coordinates of the point. Consider for example, the following vector s: t = ( 4, 0),

More information

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MATH 3 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left

More information

8. Least squares. ˆ Review of linear equations. ˆ Least squares. ˆ Example: curve-fitting. ˆ Vector norms. ˆ Geometrical intuition

8. Least squares. ˆ Review of linear equations. ˆ Least squares. ˆ Example: curve-fitting. ˆ Vector norms. ˆ Geometrical intuition CS/ECE/ISyE 54 Introduction to Optimization Spring 017 18 8. Least squares ˆ Review of linear equations ˆ Least squares ˆ Eample: curve-fitting ˆ Vector norms ˆ Geometrical intuition Laurent Lessard (www.laurentlessard.com)

More information

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A )

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A ) Econ 60 Matrix Differentiation Let a and x are k vectors and A is an k k matrix. a x a x = a = a x Ax =A + A x Ax x =A + A x Ax = xx A We don t want to prove the claim rigorously. But a x = k a i x i i=

More information

Conjugate Gradient Method

Conjugate Gradient Method Conjugate Gradient Method direct and indirect methods positive definite linear systems Krylov sequence spectral analysis of Krylov sequence preconditioning Prof. S. Boyd, EE364b, Stanford University Three

More information

INC 693, 481 Dynamics System and Modelling: Introduction to Modelling Dr.-Ing. Sudchai Boonto Assistant Professor

INC 693, 481 Dynamics System and Modelling: Introduction to Modelling Dr.-Ing. Sudchai Boonto Assistant Professor INC 693, 481 Dynamics System and Modelling: Introduction to Modelling Dr.-Ing. Sudchai Boonto Assistant Professor Department of Control System and Instrumentation Engineering King Mongkut s Unniversity

More information

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1) EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Homework 4. Convex Optimization /36-725

Homework 4. Convex Optimization /36-725 Homework 4 Convex Optimization 10-725/36-725 Due Friday November 4 at 5:30pm submitted to Christoph Dann in Gates 8013 (Remember to a submit separate writeup for each problem, with your name at the top)

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 1: Inner Products, Length, Orthogonality Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Motivation Not all linear systems have

More information

Linear algebra I Homework #1 due Thursday, Oct. 5

Linear algebra I Homework #1 due Thursday, Oct. 5 Homework #1 due Thursday, Oct. 5 1. Show that A(5,3,4), B(1,0,2) and C(3, 4,4) are the vertices of a right triangle. 2. Find the equation of the plane that passes through the points A(2,4,3), B(2,3,5),

More information

Designing Information Devices and Systems I Discussion 13B

Designing Information Devices and Systems I Discussion 13B EECS 6A Fall 7 Designing Information Devices and Systems I Discussion 3B. Orthogonal Matching Pursuit Lecture Orthogonal Matching Pursuit (OMP) algorithm: Inputs: A set of m songs, each of length n: S

More information

MATH 167: APPLIED LINEAR ALGEBRA Least-Squares

MATH 167: APPLIED LINEAR ALGEBRA Least-Squares MATH 167: APPLIED LINEAR ALGEBRA Least-Squares October 30, 2014 Least Squares We do a series of experiments, collecting data. We wish to see patterns!! We expect the output b to be a linear function of

More information

Fitting Linear Statistical Models to Data by Least Squares I: Introduction

Fitting Linear Statistical Models to Data by Least Squares I: Introduction Fitting Linear Statistical Models to Data by Least Squares I: Introduction Brian R. Hunt and C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling January 25, 2012 version

More information

The Full-rank Linear Least Squares Problem

The Full-rank Linear Least Squares Problem Jim Lambers COS 7 Spring Semeseter 1-11 Lecture 3 Notes The Full-rank Linear Least Squares Problem Gien an m n matrix A, with m n, and an m-ector b, we consider the oerdetermined system of equations Ax

More information

Observability and state estimation

Observability and state estimation EE263 Autumn 2015 S Boyd and S Lall Observability and state estimation state estimation discrete-time observability observability controllability duality observers for noiseless case continuous-time observability

More information

Lecture 7 : Generalized Plant and LFT form Dr.-Ing. Sudchai Boonto Assistant Professor

Lecture 7 : Generalized Plant and LFT form Dr.-Ing. Sudchai Boonto Assistant Professor Dr.-Ing. Sudchai Boonto Assistant Professor Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Linear Quadratic Gaussian The state space

More information

Fitting Linear Statistical Models to Data by Least Squares II: Weighted

Fitting Linear Statistical Models to Data by Least Squares II: Weighted Fitting Linear Statistical Models to Data by Least Squares II: Weighted Brian R. Hunt and C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling April 21, 2014 version

More information

Assignment #9: Orthogonal Projections, Gram-Schmidt, and Least Squares. Name:

Assignment #9: Orthogonal Projections, Gram-Schmidt, and Least Squares. Name: Assignment 9: Orthogonal Projections, Gram-Schmidt, and Least Squares Due date: Friday, April 0, 08 (:pm) Name: Section Number Assignment 9: Orthogonal Projections, Gram-Schmidt, and Least Squares Due

More information

University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam January 23, 2015

University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam January 23, 2015 University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra PhD Preliminary Exam January 23, 2015 Name: Exam Rules: This exam lasts 4 hours and consists of

More information

Math 261 Lecture Notes: Sections 6.1, 6.2, 6.3 and 6.4 Orthogonal Sets and Projections

Math 261 Lecture Notes: Sections 6.1, 6.2, 6.3 and 6.4 Orthogonal Sets and Projections Math 6 Lecture Notes: Sections 6., 6., 6. and 6. Orthogonal Sets and Projections We will not cover general inner product spaces. We will, however, focus on a particular inner product space the inner product

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Linear algebra review

Linear algebra review EE263 Autumn 2015 S. Boyd and S. Lall Linear algebra review vector space, subspaces independence, basis, dimension nullspace and range left and right invertibility 1 Vector spaces a vector space or linear

More information

DS-GA 1002 Lecture notes 12 Fall Linear regression

DS-GA 1002 Lecture notes 12 Fall Linear regression DS-GA Lecture notes 1 Fall 16 1 Linear models Linear regression In statistics, regression consists of learning a function relating a certain quantity of interest y, the response or dependent variable,

More information

Topics. Review of lecture 2/11 Error, Residual and Condition Number. Review of lecture 2/16 Backward Error Analysis The General Case 1 / 22

Topics. Review of lecture 2/11 Error, Residual and Condition Number. Review of lecture 2/16 Backward Error Analysis The General Case 1 / 22 Topics Review of lecture 2/ Error, Residual and Condition Number Review of lecture 2/6 Backward Error Analysis The General Case / 22 Theorem (Calculation of 2 norm of a symmetric matrix) If A = A t is

More information

Linear Systems. Carlo Tomasi

Linear Systems. Carlo Tomasi Linear Systems Carlo Tomasi Section 1 characterizes the existence and multiplicity of the solutions of a linear system in terms of the four fundamental spaces associated with the system s matrix and of

More information

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true. 1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

More information

Sample ECE275A Midterm Exam Questions

Sample ECE275A Midterm Exam Questions Sample ECE275A Midterm Exam Questions The questions given below are actual problems taken from exams given in in the past few years. Solutions to these problems will NOT be provided. These problems and

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

P = A(A T A) 1 A T. A Om (m n)

P = A(A T A) 1 A T. A Om (m n) Chapter 4: Orthogonality 4.. Projections Proposition. Let A be a matrix. Then N(A T A) N(A). Proof. If Ax, then of course A T Ax. Conversely, if A T Ax, then so Ax also. x (A T Ax) x T A T Ax (Ax) T Ax

More information