Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra

Size: px
Start display at page:

Download "Lecture: Linear algebra. 4. Solutions of linear equation systems The fundamental theorem of linear algebra"

Transcription

1 Lecture: Linear algebra. 1. Subspaces. 2. Orthogonal complement. 3. The four fundamental subspaces 4. Solutions of linear equation systems The fundamental theorem of linear algebra 5. Determining the fundamental subspaces Lecture LA 1 Linear algebra I - Per Enqvist

2 Vector Spaces A vector space V is a set on which vector addition + and scalar multiplication are such that V1 For all v 1,v 2,v 3 V, v 1 +(v 2 +v 3 ) = (v 1 +v 2 )+v 3 V2 Exists a zero vector V, such that v+ = +v = v for all v V V3 For each v V there exists a unique v V such that v+( v) = ( v)+v = V4 For all v 1,v 2 V, v 1 +v 2 = v 2 +v 1 V5 For all v V, 1 v = v V6 For all α,β R and all v V, α (β v) = (αβ) v V7 For all α,β R and all v V, (α+β) v = α v+β v V8 For all α R and all v 1,v 2 V, α (v 1 +v 2 ) = α v 1 +α v 2 Lecture LA 2 Linear algebra I - Per Enqvist

3 Subspaces Definition 1. A subset M R n is called a subspace in R n if for all v 1,v 2 M and α 1,α 2 R it holds that α 1 v 1 + α 2 v 2 M Note that it always holds that M. x 3 M v 1 x 2 v 3 x 1 v 4 v 2 Lecture LA 3 Linear algebra I - Per Enqvist

4 Basis for a subspace The vectors v 1,...,v k are linearly independent if there exists no scalars α 1,,α k (not all zero) such that k l=1 α lv l =. Definition 2. M is spanned by v 1,...,v k if for each v M there are α 1,...,α k R such that k α l v l = v l=1 If v 1,...,v k are linearly independent, then they form a basis for M and the dimension of M is k, and it is denoted dim M = k. Notation: M = span{v 1,...,v k } = { k l=1 α lv l : α l R; l = 1,...,k}. Lecture LA 4 Linear algebra I - Per Enqvist

5 Sums of subspaces and orthogonal subspaces Given two subspaces M 1 and M 2, the subset M = {v 1 + v 2 : v 1 M 1,v 2 M 2 } is a subspace and we write M = M 1 + M 2. Two vectors v 1 and v 2 are orthogonal if v T 1 v 2 = v 1 v 2 cos θ =, i.e., the angle θ between them is π/2, and we write v 1 v 2. Two subspaces M 1 and M 2 are orthogonal if v 1 v 2 for all v 1 M 1 and v 2 M 2, and we write M 1 M 2. If dim M = dim M 1 + dim M 2, then every v M can be uniquely written on the form v = v 1 + v 2, where v 1 M 1 and v 2 M 2. Lecture LA 5 Linear algebra I - Per Enqvist

6 Direct sums of subspaces A linear space M (for example R n ) is a direct sum of the subspaces M 1, M 2 (i.e. M 1, M 2 M) if M 1 M 2 and M 2 + M 2 = R n. The direct sum is denoted M = M 1 M 2, and every v M can be written uniquely v = v 1 + v 2 for some v 1 M 1 and v 2 M 2. Example 1. Assume M 1 = span{v 1,v 2,...,v k } M 2 = span{v k+1,...,v l } M = span{v 1,v 2,...,v k,v k+1,...,v l } where v 1,...,v l are linearly independent vectors. Then it holds that M = M 1 M 2 if v i v j for all i = 1,...,k and j = k + 1,...,l. Lecture LA 6 Linear algebra I - Per Enqvist

7 Orthogonal complement The orthogonal complement to a subspace M R n is defined by M = {w R n : w T v =, v M} The following holds M is a subspace R n = M M. If dim M = k, then dim M = n k. (M ) = M. Lecture LA 7 Linear algebra I - Per Enqvist

8 The four fundamental subspaces Consider the linear operator A : R n R m, A = a 11. a m1... a 1n.... a mn [ ] = â 1 â 2... â n = ā T 1 ā T 2. ā T m The Range space: R(A) = {Ax x R n } = { n } = â j x j x j R n, j = 1,...,n j=1 The Null space: N(A) = {x R n Ax = } = { x R n ā T i x =, i = 1,...,m } Lecture LA 8 Linear algebra I - Per Enqvist

9 The Row space: R(A T ) = { A T u u R m} { m } = ā i u i u i R n, i = 1,...,m i=1 The left Null space: N(A T ) = { u R m A T u = } = { u R m â T j u =, j = 1,...,n } = { u R m u T A = } R(A) and N(A T ) are subspaces in R m R(A T ) and N(A) are subspaces in R n Lecture LA 9 Linear algebra I - Per Enqvist

10 The orthogonal complement of the fundamental subspaces Theorem 25.1 The following orthogonality relations hold (i) R(A) = N(A T ). (ii) R(A T ) = N(A). (iii) N(A) = R(A T ). (iv) N(A T ) = R(A). Lecture LA 1 Linear algebra I - Per Enqvist

11 The Fundamental Theorem of Linear algebra Theorem Let A R m n. Then the following direct sums hold (a) R n = R(A T ) N(A) (b) R m = R(A) N(A T ) where R(A T ) N(A) and R(A) N(A T ). Furthermore, it holds that dim R(A) = dim(a T ). Proof: Since N(A), R(A T ) R n according to the previous theorem, R(A T ) = N(A) it holds that R n = R(A T ) N(A). The proof of (b) follows from the same argument. Lecture LA 11 Linear algebra I - Per Enqvist

12 Solution of linear equation systems Let A R m n and b R n and consider the linear equation system Ax = b (1) (A) When does there exist a solution? (B) Is the solution unique? Which solution is chosen otherwise? (C) How do we construct the solution? The fundamental theorem of linear algebra answers the questions above. Lecture LA 12 Linear algebra I - Per Enqvist

13 Geometric illustration of the fundamental theorem of linear algebra N(A) N(A T ) R n A R m x n x x r R(A T ) Ax r R(A) The picture answers the questions (A) (C) above. The equation system Ax = b has a solution iff b R(A). The solution is unique if, and only if, N(A) =. Otherwise, every solution can be decomposed into two components x = x r + x n where x r R(A T ) satisfies Ax r = b and x n N(A). Often we select the smallest norm solution, i.e., x n =. Lecture LA 13 Linear algebra I - Per Enqvist

14 The following three slides dicusses the questions (A) (C) in more detail. (A) There is a solution to (1) if b R(A) (B) The solution is unique iff N(A) =. This follows since every x R n uniquely can be written x = x r + x n where x r R(A T ) and x n N(A). We have Ax = Ax r + Ax n = Ax r. The component x n N(A) is thus arbitrary and the solution is unique iff N(A) =. Which solution do we chose if N(A)? One choice is to take the solution that has the shortest length measured in the Euclidean norm x = x T x. It follows that we should choose x n =. Lecture LA 14 Linear algebra I - Per Enqvist

15 (C) Assume b R(A). There are three cases for the construction of solutions (i) N(A) = and m = n (quadratic matrix). Then the solution is determined by x = A 1 b. (ii) If N(A), then we choose the minimum norm solution solution given by x = A T u, where u R m solves AA T u = b. If AA T is invertible then the closed form is x = A T (AA T ) 1 b. (iii) N(A) = and m > n (overdetermined system). Then the solution is obtained by x = (A T A) 1 A T b. Lecture LA 15 Linear algebra I - Per Enqvist

16 Determining the four fundamental subspaces Two methods for determining the fundamental subspaces. Singular Value Decomposition. The best method from a numerical point of view. Gauss-Jordan s method. We focus on this method Lecture LA 16 Linear algebra I - Per Enqvist

17 Minimal rank factorization Theorem 26.1 Let A R m n and A = BC, where B R m r has linearly independent columns and C R r n has linearly independent rows. Then A and A T both have ranges of dimension r. Furthermore, N(A) = N(C) N(A T ) = N(B T ) R(A) = R(B) R(A T ) = R(C T ) Lecture LA 17 Linear algebra I - Per Enqvist

18 Summary of Gauss-Jordan s method Step 1 Perform elementary row operations to transform A to staircase form. PA = T = U (2) O where P is a product of elementary row operation matrices, while U is a staircase matrix on the form U = 1 * * 1 * 1 β 1 β 2 β 3 * * ** * * 1 * β r * * * * * * * * * * * Lecture LA 18 Linear algebra I - Per Enqvist

19 Step 1 (cont.) The staircase columns have indices β 1,...,β r, where r = rang(a) = dim R(A) (rang of the matrix). The other columns have the indices ν 1,...,ν l, l = n r. Step 2 Define A β = U β = U ν = [â β1... â βr ] [u β1... u βr ] [u ν1... u νl ] = I r S = P 1 Note that U β (the staircase columns in U) is an identity matrix. Lecture LA 19 Linear algebra I - Per Enqvist

20 Step 2 (cont.) Let S = P 1, then an equivalent expression for (2) is ] A = ST = [S 1 S 2 U = S 1 U O If we consider the columns with indices β 1,...,β r we have and then A = A β U. A β = S 1 U β = S 1, Lecture LA 2 Linear algebra I - Per Enqvist

21 Step 3 The factorization A = A β U is of the form A = BC where m rows = A B C r linearly independent rows n columns r linearly independent columns According to ch. 26 R(A) = R(A β U) = R(A β ) = span{â β1,...,â βr } N(A) = N(A β U) = N(U) = {x R n : Ux = } = {x R n : U β x β + U ν x ν = } = {x R n : x β = U ν x ν ; x ν R l } Lecture LA 21 Linear algebra I - Per Enqvist

22 Step 3 (cont.) Furthermore, using the previous factorization R(A T ) = R(U T A T β) = R(U T ) Finally, N(A T ) = R(A) = {y R m : A T βy = } which corresponds to solving an equation system. Lecture LA 22 Linear algebra I - Per Enqvist

23 Solving linear equation systems Existence and uniqueness of a linear equation system can be determined using Ax = b 1. the fundamental Theorem of linear algebra Gives theoretical insight and solution formulas. 2. Gauss-Jordan s method Practical method for calculations by hand. Lecture LA 23 Linear algebra I - Per Enqvist

24 Gauss-Jordan s method for solving equation systems Transform the equation system using elementary row operations Ax = b PAx = Pb U x = b r b n where U = 1 * * 1 * 1 * * ** * * * * * * * * * * * 1 * * * β 1 β 2 β 3 β r Lecture LA 24 Linear algebra I - Per Enqvist

25 Observe that 1. A solution does not exist, if and only if, b n 2. If b n =, there exists solutions, and they can all be written on the form x = x r + x n where x n N(A) and x βl, for coefficients corresponding to staircase columns x =, otherwise where x β = x β1. = b r x βk Lecture LA 25 Linear algebra I - Per Enqvist

26 Example Determine the nullspace and rangespace for the matrix A = Perform elementary row operations to transform A into staircase form. Lecture LA 26 Linear algebra I - Per Enqvist

27 Example A 1 = = P 1 A, where P 1 = We note that β 1 = /3 1/3 A 2 = = P 2 A 1, where P 2 = 1 1/3 1 1 Lecture LA 27 Linear algebra I - Per Enqvist

28 Example A 3 = 1 3 5/3 1/ /3 1/ /3 8/3 = P 3 A 2, where P 3 = We note that β 2 = /3 1/ /3 1/3 A 4 = 1 1 8/3 8/3 = P 4 A 3, where P 4 = 1 1 1/3 1 Lecture LA 28 Linear algebra I - Per Enqvist

29 Example A 5 = = P 5 A 4, where P 4 = 1 5/3 1 2/3 1 8/3 1 We note that β 3 = 4, and ν 1 = 3, ν 2 = 5. Rank(A) = 3. Then P = P 5 P 4 P 3 P 2 P 1, and A = P 1 T = A β U where A β = and U = Lecture LA 29 Linear algebra I - Per Enqvist

30 Example The range space is now given by R(A) = R(A β ) where we know that A β has linearly independent columns R(A) = R( ) = span(â ,â 2,â 4 ) 1 1 Lecture LA 3 Linear algebra I - Per Enqvist

31 Example The nullspace is given by N(A) = N(U) = I x 1 x 2 x = 2 1 x 3 x 5 1 N(A) = x 1 x 2 x 3 x 4 x 5 = x x = span 1, 1 1 Lecture LA 31 Linear algebra I - Per Enqvist

32 Example We also know that R(A T ) = R(U T ) = span and N(A T ) = N(A T β ) = = span follows by similar calculations as for N(A). Lecture LA 32 Linear algebra I - Per Enqvist

33 Reading instructions Chapter Lecture LA 33 Linear algebra I - Per Enqvist

Math 3C Lecture 25. John Douglas Moore

Math 3C Lecture 25. John Douglas Moore Math 3C Lecture 25 John Douglas Moore June 1, 2009 Let V be a vector space. A basis for V is a collection of vectors {v 1,..., v k } such that 1. V = Span{v 1,..., v k }, and 2. {v 1,..., v k } are linearly

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax = . (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)

More information

EE263: Introduction to Linear Dynamical Systems Review Session 2

EE263: Introduction to Linear Dynamical Systems Review Session 2 EE263: Introduction to Linear Dynamical Systems Review Session 2 Basic concepts from linear algebra nullspace range rank and conservation of dimension EE263 RS2 1 Prerequisites We assume that you are familiar

More information

Review of Some Concepts from Linear Algebra: Part 2

Review of Some Concepts from Linear Algebra: Part 2 Review of Some Concepts from Linear Algebra: Part 2 Department of Mathematics Boise State University January 16, 2019 Math 566 Linear Algebra Review: Part 2 January 16, 2019 1 / 22 Vector spaces A set

More information

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian FE661 - Statistical Methods for Financial Engineering 2. Linear algebra Jitkomut Songsiri matrices and vectors linear equations range and nullspace of matrices function of vectors, gradient and Hessian

More information

Algorithms to Compute Bases and the Rank of a Matrix

Algorithms to Compute Bases and the Rank of a Matrix Algorithms to Compute Bases and the Rank of a Matrix Subspaces associated to a matrix Suppose that A is an m n matrix The row space of A is the subspace of R n spanned by the rows of A The column space

More information

7. Dimension and Structure.

7. Dimension and Structure. 7. Dimension and Structure 7.1. Basis and Dimension Bases for Subspaces Example 2 The standard unit vectors e 1, e 2,, e n are linearly independent, for if we write (2) in component form, then we obtain

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Math 1553 Introduction to Linear Algebra

Math 1553 Introduction to Linear Algebra Math 1553 Introduction to Linear Algebra Lecture Notes Chapter 2 Matrix Algebra School of Mathematics The Georgia Institute of Technology Math 1553 Lecture Notes for Chapter 2 Introduction, Slide 1 Section

More information

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 Jesús De Loera, UC Davis February 1, 2012 General Linear Systems of Equations (2.2). Given a system of m equations and n unknowns. Now m n is OK! Apply elementary

More information

Lecture notes: Applied linear algebra Part 1. Version 2

Lecture notes: Applied linear algebra Part 1. Version 2 Lecture notes: Applied linear algebra Part 1. Version 2 Michael Karow Berlin University of Technology karow@math.tu-berlin.de October 2, 2008 1 Notation, basic notions and facts 1.1 Subspaces, range and

More information

A Review of Linear Algebra

A Review of Linear Algebra A Review of Linear Algebra Mohammad Emtiyaz Khan CS,UBC A Review of Linear Algebra p.1/13 Basics Column vector x R n, Row vector x T, Matrix A R m n. Matrix Multiplication, (m n)(n k) m k, AB BA. Transpose

More information

EE731 Lecture Notes: Matrix Computations for Signal Processing

EE731 Lecture Notes: Matrix Computations for Signal Processing EE731 Lecture Notes: Matrix Computations for Signal Processing James P. Reilly c Department of Electrical and Computer Engineering McMaster University September 22, 2005 0 Preface This collection of ten

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

Lecture 21: 5.6 Rank and Nullity

Lecture 21: 5.6 Rank and Nullity Lecture 21: 5.6 Rank and Nullity Wei-Ta Chu 2008/12/5 Rank and Nullity Definition The common dimension of the row and column space of a matrix A is called the rank ( 秩 ) of A and is denoted by rank(a);

More information

MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces.

MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces. MATH 304 Linear Algebra Lecture 18: Orthogonal projection (continued). Least squares problems. Normed vector spaces. Orthogonality Definition 1. Vectors x,y R n are said to be orthogonal (denoted x y)

More information

Chapter 6 - Orthogonality

Chapter 6 - Orthogonality Chapter 6 - Orthogonality Maggie Myers Robert A. van de Geijn The University of Texas at Austin Orthogonality Fall 2009 http://z.cs.utexas.edu/wiki/pla.wiki/ 1 Orthogonal Vectors and Subspaces http://z.cs.utexas.edu/wiki/pla.wiki/

More information

NOTES on LINEAR ALGEBRA 1

NOTES on LINEAR ALGEBRA 1 School of Economics, Management and Statistics University of Bologna Academic Year 207/8 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura

More information

IFT 6760A - Lecture 1 Linear Algebra Refresher

IFT 6760A - Lecture 1 Linear Algebra Refresher IFT 6760A - Lecture 1 Linear Algebra Refresher Scribe(s): Tianyu Li Instructor: Guillaume Rabusseau 1 Summary In the previous lecture we have introduced some applications of linear algebra in machine learning,

More information

Chapter 2 Subspaces of R n and Their Dimensions

Chapter 2 Subspaces of R n and Their Dimensions Chapter 2 Subspaces of R n and Their Dimensions Vector Space R n. R n Definition.. The vector space R n is a set of all n-tuples (called vectors) x x 2 x =., where x, x 2,, x n are real numbers, together

More information

Lecture 4 Orthonormal vectors and QR factorization

Lecture 4 Orthonormal vectors and QR factorization Orthonormal vectors and QR factorization 4 1 Lecture 4 Orthonormal vectors and QR factorization EE263 Autumn 2004 orthonormal vectors Gram-Schmidt procedure, QR factorization orthogonal decomposition induced

More information

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix Definition: Let L : V 1 V 2 be a linear operator. The null space N (L) of L is the subspace of V 1 defined by N (L) = {x

More information

18.06 Problem Set 3 - Solutions Due Wednesday, 26 September 2007 at 4 pm in

18.06 Problem Set 3 - Solutions Due Wednesday, 26 September 2007 at 4 pm in 8.6 Problem Set 3 - s Due Wednesday, 26 September 27 at 4 pm in 2-6. Problem : (=2+2+2+2+2) A vector space is by definition a nonempty set V (whose elements are called vectors) together with rules of addition

More information

Lecture 9: Vector Algebra

Lecture 9: Vector Algebra Lecture 9: Vector Algebra Linear combination of vectors Geometric interpretation Interpreting as Matrix-Vector Multiplication Span of a set of vectors Vector Spaces and Subspaces Linearly Independent/Dependent

More information

SECTION 3.3. PROBLEM 22. The null space of a matrix A is: N(A) = {X : AX = 0}. Here are the calculations of AX for X = a,b,c,d, and e. =

SECTION 3.3. PROBLEM 22. The null space of a matrix A is: N(A) = {X : AX = 0}. Here are the calculations of AX for X = a,b,c,d, and e. = SECTION 3.3. PROBLEM. The null space of a matrix A is: N(A) {X : AX }. Here are the calculations of AX for X a,b,c,d, and e. Aa [ ][ ] 3 3 [ ][ ] Ac 3 3 [ ] 3 3 [ ] 4+4 6+6 Ae [ ], Ab [ ][ ] 3 3 3 [ ]

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

GEOMETRY OF MATRICES x 1

GEOMETRY OF MATRICES x 1 GEOMETRY OF MATRICES. SPACES OF VECTORS.. Definition of R n. The space R n consists of all column vectors with n components. The components are real numbers... Representation of Vectors in R n.... R. The

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Null and Column Spaces Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./8 Announcements Study Guide posted HWK posted Math 9Applied

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition 6 Vector Spaces with Inned Product Basis and Dimension Section Objective(s): Vector Spaces and Subspaces Linear (In)dependence Basis and Dimension Inner Product 6 Vector Spaces and Subspaces Definition

More information

OHSX XM511 Linear Algebra: Multiple Choice Exercises for Chapter 2

OHSX XM511 Linear Algebra: Multiple Choice Exercises for Chapter 2 OHSX XM5 Linear Algebra: Multiple Choice Exercises for Chapter. In the following, a set is given together with operations of addition and scalar multiplication. Which is not a vector space under the given

More information

Vector Space and Linear Transform

Vector Space and Linear Transform 32 Vector Space and Linear Transform Vector space, Subspace, Examples Null space, Column space, Row space of a matrix Spanning sets and Linear Independence Basis and Dimension Rank of a matrix Vector norms

More information

Linear Algebra Formulas. Ben Lee

Linear Algebra Formulas. Ben Lee Linear Algebra Formulas Ben Lee January 27, 2016 Definitions and Terms Diagonal: Diagonal of matrix A is a collection of entries A ij where i = j. Diagonal Matrix: A matrix (usually square), where entries

More information

Chapter 5 Eigenvalues and Eigenvectors

Chapter 5 Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

Preliminary Linear Algebra 1. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 100

Preliminary Linear Algebra 1. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 100 Preliminary Linear Algebra 1 Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 100 Notation for all there exists such that therefore because end of proof (QED) Copyright c 2012

More information

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 4 Department of Aerospace Engineering AE6 Mathematics for Aerospace Engineers Assignment No.. Decide whether or not the following vectors are linearly independent, by solving c v + c v + c 3 v 3 + c v :

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lecture 3, Friday 4 th October 26 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Mathematics for

More information

Math 321: Linear Algebra

Math 321: Linear Algebra Math 32: Linear Algebra T. Kapitula Department of Mathematics and Statistics University of New Mexico September 8, 24 Textbook: Linear Algebra,by J. Hefferon E-mail: kapitula@math.unm.edu Prof. Kapitula,

More information

Math 290, Midterm II-key

Math 290, Midterm II-key Math 290, Midterm II-key Name (Print): (first) Signature: (last) The following rules apply: There are a total of 20 points on this 50 minutes exam. This contains 7 pages (including this cover page) and

More information

Lecture 1: Review of linear algebra

Lecture 1: Review of linear algebra Lecture 1: Review of linear algebra Linear functions and linearization Inverse matrix, least-squares and least-norm solutions Subspaces, basis, and dimension Change of basis and similarity transformations

More information

Math 369 Exam #2 Practice Problem Solutions

Math 369 Exam #2 Practice Problem Solutions Math 369 Exam #2 Practice Problem Solutions 2 5. Is { 2, 3, 8 } a basis for R 3? Answer: No, it is not. To show that it is not a basis, it suffices to show that this is not a linearly independent set.

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 1: Inner Products, Length, Orthogonality Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Motivation Not all linear systems have

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

6 Inner Product Spaces

6 Inner Product Spaces Lectures 16,17,18 6 Inner Product Spaces 6.1 Basic Definition Parallelogram law, the ability to measure angle between two vectors and in particular, the concept of perpendicularity make the euclidean space

More information

Pseudoinverse & Moore-Penrose Conditions

Pseudoinverse & Moore-Penrose Conditions ECE 275AB Lecture 7 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 7 ECE 275A Pseudoinverse & Moore-Penrose Conditions ECE 275AB Lecture 7 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88 Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

More information

Lecture 3: Linear Algebra Review, Part II

Lecture 3: Linear Algebra Review, Part II Lecture 3: Linear Algebra Review, Part II Brian Borchers January 4, Linear Independence Definition The vectors v, v,..., v n are linearly independent if the system of equations c v + c v +...+ c n v n

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date May 9, 29 2 Contents 1 Motivation for the course 5 2 Euclidean n dimensional Space 7 2.1 Definition of n Dimensional Euclidean Space...........

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Math 307 Learning Goals

Math 307 Learning Goals Math 307 Learning Goals May 14, 2018 Chapter 1 Linear Equations 1.1 Solving Linear Equations Write a system of linear equations using matrix notation. Use Gaussian elimination to bring a system of linear

More information

ECE 275A Homework #3 Solutions

ECE 275A Homework #3 Solutions ECE 75A Homework #3 Solutions. Proof of (a). Obviously Ax = 0 y, Ax = 0 for all y. To show sufficiency, note that if y, Ax = 0 for all y, then it must certainly be true for the particular value of y =

More information

Chapter 2. General Vector Spaces. 2.1 Real Vector Spaces

Chapter 2. General Vector Spaces. 2.1 Real Vector Spaces Chapter 2 General Vector Spaces Outline : Real vector spaces Subspaces Linear independence Basis and dimension Row Space, Column Space, and Nullspace 2 Real Vector Spaces 2 Example () Let u and v be vectors

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

Solution of Linear Equations

Solution of Linear Equations Solution of Linear Equations (Com S 477/577 Notes) Yan-Bin Jia Sep 7, 07 We have discussed general methods for solving arbitrary equations, and looked at the special class of polynomial equations A subclass

More information

Math Linear Algebra

Math Linear Algebra Math 220 - Linear Algebra (Summer 208) Solutions to Homework #7 Exercise 6..20 (a) TRUE. u v v u = 0 is equivalent to u v = v u. The latter identity is true due to the commutative property of the inner

More information

1. Select the unique answer (choice) for each problem. Write only the answer.

1. Select the unique answer (choice) for each problem. Write only the answer. MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +

More information

Pseudoinverse and Adjoint Operators

Pseudoinverse and Adjoint Operators ECE 275AB Lecture 5 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 5 ECE 275A Pseudoinverse and Adjoint Operators ECE 275AB Lecture 5 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego p.

More information

18.06 Problem Set 3 Solution Due Wednesday, 25 February 2009 at 4 pm in Total: 160 points.

18.06 Problem Set 3 Solution Due Wednesday, 25 February 2009 at 4 pm in Total: 160 points. 8.6 Problem Set 3 Solution Due Wednesday, 25 February 29 at 4 pm in 2-6. Total: 6 points. Problem : Consider the matrix A = 2 4 2 6 3 4 2 7 (a) Reduce A to echelon form U, find a special solution for each

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date April 29, 23 2 Contents Motivation for the course 5 2 Euclidean n dimensional Space 7 2. Definition of n Dimensional Euclidean Space...........

More information

EE731 Lecture Notes: Matrix Computations for Signal Processing

EE731 Lecture Notes: Matrix Computations for Signal Processing EE731 Lecture Notes: Matrix Computations for Signal Processing James P. Reilly c Department of Electrical and Computer Engineering McMaster University October 17, 005 Lecture 3 3 he Singular Value Decomposition

More information

Math 407: Linear Optimization

Math 407: Linear Optimization Math 407: Linear Optimization Lecture 16: The Linear Least Squares Problem II Math Dept, University of Washington February 28, 2018 Lecture 16: The Linear Least Squares Problem II (Math Dept, University

More information

SYLLABUS. 1 Linear maps and matrices

SYLLABUS. 1 Linear maps and matrices Dr. K. Bellová Mathematics 2 (10-PHY-BIPMA2) SYLLABUS 1 Linear maps and matrices Operations with linear maps. Prop 1.1.1: 1) sum, scalar multiple, composition of linear maps are linear maps; 2) L(U, V

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

NAME MATH 304 Examination 2 Page 1

NAME MATH 304 Examination 2 Page 1 NAME MATH 4 Examination 2 Page. [8 points (a) Find the following determinant. However, use only properties of determinants, without calculating directly (that is without expanding along a column or row

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Linear Algebra Practice Problems Page of 7 Linear Algebra Practice Problems These problems cover Chapters 4, 5, 6, and 7 of Elementary Linear Algebra, 6th ed, by Ron Larson and David Falvo (ISBN-3 = 978--68-78376-2,

More information

Moore-Penrose Conditions & SVD

Moore-Penrose Conditions & SVD ECE 275AB Lecture 8 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 8 ECE 275A Moore-Penrose Conditions & SVD ECE 275AB Lecture 8 Fall 2008 V1.0 c K. Kreutz-Delgado, UC San Diego p. 2/1

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

Rank & nullity. Defn. Let T : V W be linear. We define the rank of T to be rank T = dim im T & the nullity of T to be nullt = dim ker T.

Rank & nullity. Defn. Let T : V W be linear. We define the rank of T to be rank T = dim im T & the nullity of T to be nullt = dim ker T. Rank & nullity Aim lecture: We further study vector space complements, which is a tool which allows us to decompose linear problems into smaller ones. We give an algorithm for finding complements & an

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Math 108A: August 21, 2008 John Douglas Moore Our goal in these notes is to explain a few facts regarding linear systems of equations not included in the first few chapters

More information

Linear algebra review

Linear algebra review EE263 Autumn 2015 S. Boyd and S. Lall Linear algebra review vector space, subspaces independence, basis, dimension nullspace and range left and right invertibility 1 Vector spaces a vector space or linear

More information

Vector Spaces, Orthogonality, and Linear Least Squares

Vector Spaces, Orthogonality, and Linear Least Squares Week Vector Spaces, Orthogonality, and Linear Least Squares. Opening Remarks.. Visualizing Planes, Lines, and Solutions Consider the following system of linear equations from the opener for Week 9: χ χ

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

Lecture 17: Section 4.2

Lecture 17: Section 4.2 Lecture 17: Section 4.2 Shuanglin Shao November 4, 2013 Subspaces We will discuss subspaces of vector spaces. Subspaces Definition. A subset W is a vector space V is called a subspace of V if W is itself

More information

Lecture 23: 6.1 Inner Products

Lecture 23: 6.1 Inner Products Lecture 23: 6.1 Inner Products Wei-Ta Chu 2008/12/17 Definition An inner product on a real vector space V is a function that associates a real number u, vwith each pair of vectors u and v in V in such

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

More information

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam This study sheet will not be allowed during the test Books and notes will not be allowed during the test Calculators and cell phones

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Problem # Max points possible Actual score Total 120

Problem # Max points possible Actual score Total 120 FINAL EXAMINATION - MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to

More information

CAAM 335: Matrix Analysis

CAAM 335: Matrix Analysis 1 CAAM 335: Matrix Analysis Solutions to Problem Set 4, September 22, 2008 Due: Monday September 29, 2008 Problem 1 (10+10=20 points) (1) Let M be a subspace of R n. Prove that the complement of M in R

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

Matrices and Matrix Algebra.

Matrices and Matrix Algebra. Matrices and Matrix Algebra 3.1. Operations on Matrices Matrix Notation and Terminology Matrix: a rectangular array of numbers, called entries. A matrix with m rows and n columns m n A n n matrix : a square

More information

Linear Algebra in A Nutshell

Linear Algebra in A Nutshell Linear Algebra in A Nutshell Gilbert Strang Computational Science and Engineering Wellesley-Cambridge Press. 2007. Outline 1 Matrix Singularity 2 Matrix Multiplication by Columns or Rows Rank and nullspace

More information

ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6]

ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6] ORTHOGONALITY AND LEAST-SQUARES [CHAP. 6] Inner products and Norms Inner product or dot product of 2 vectors u and v in R n : u.v = u 1 v 1 + u 2 v 2 + + u n v n Calculate u.v when u = 1 2 2 0 v = 1 0

More information

MATH Linear Algebra

MATH Linear Algebra MATH 304 - Linear Algebra In the previous note we learned an important algorithm to produce orthogonal sequences of vectors called the Gramm-Schmidt orthogonalization process. Gramm-Schmidt orthogonalization

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

x y + z = 3 2y z = 1 4x + y = 0

x y + z = 3 2y z = 1 4x + y = 0 MA 253: Practice Exam Solutions You may not use a graphing calculator, computer, textbook, notes, or refer to other people (except the instructor). Show all of your work; your work is your answer. Problem

More information