Variable Selection and Model Building

Size: px
Start display at page:

Download "Variable Selection and Model Building"

Transcription

1 LINEAR REGRESSION ANALYSIS MODULE XIII Lecture - 37 Variable Selection and Model Building Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

2 The complete regression analysis depends on the explanatory variables present in the model. It is understood in the regression analysis that only correct and important explanatory variables appear in the model. In practice, after ensuring the correct functional form of the model, the analyst usually has a pool of explanatory variables which possibly influence the process or experiment. Generally, all such candidate variables are not used in the regression modeling but a subset of explanatory variables is chosen from this pool. How to determine such an appropriate subset of explanatory variables to be used in regression is called the problem of variable selection. While choosing a subset of explanatory variables, there are two possible options: 1. In order to make the model as realistic as possible, the analyst may include as many as possible explanatory variables.. In order to make the model as simple as possible, one may include only fewer number of explanatory variables. Both the approaches have their own consequences. In fact, model building and subset selection have contradicting objectives. When large number of variables are included in the model, then these factors can influence the prediction of study variable y. On the other hand, when small number of variables are included then the predictive variance of ŷ decreases. Also, when the observations on more number are to be collected, then it involves more cost, time, labour etc. A compromise between these consequences is striked to select the best regression equation.

3 3 The problem of variable selection is addressed assuming that the functional form of the explanatory variable, e.g., x,,log x x etc., is known and no outliers or influential observations are present in the data. Various statistical tools like residual analysis, identification of influential or high leverage observations, model adequacy etc. are linked to variable selection. In fact, all these processes should be solved simultaneously. Usually, these steps are iteratively employed. In the first step, a strategy for variable selection is opted and model is fitted with selected variables. The fitted model is then checked for the functional form, outliers, influential observations etc. Based on the outcome, the model is re-examined and selection of variable is reviewed again. Several iterations may be required before the final adequate model is decided. 1 There can be two types of incorrect model specifications. 1. Omission/exclusion of relevant variables.. Inclusion of irrelevant variables. Now we discuss the statistical consequences arising from both the situations.

4 4 1. Exclusion of relevant variables In order to keep the model simple, the analyst may delete some of the explanatory variables which may be of importance from the point of view of theoretical considerations. There can be several reasons behind such decision, e.g., it may be hard to quantity the variables like taste, intelligence etc. Sometimes it may be difficult to take correct observations on the variables like income etc. Let there be k candidate explanatory variables out of which suppose r variables are included and (k r) variables are to be deleted from the model. So partition the X and β as X = X1 X and β β1 β. n k = n r n ( k r) r 1 ( k r) 1) The model y = Xβ + ε, E( ε) = 0, V( ε) = σ I y = X β + X β + ε 1 1 which is called as full model or true model. can be expressed as After dropping the r explanatory variable in the model, the new model is y = X1β1+ δ which is called as misspecified model or false model.

5 5 Applying OLS to the false model, the OLSE of The estimation error is obtained as follows: where b = ( XX) Xy b = ( XX) X( Xβ + Xβ + ε) β 1 = β + ( XX) XXβ + ( XX) Xε b β = θ + ( XX) Xε θ = ( XX) XXβ is Thus Eb ( β) = θ + ( XX) E( ε) = θ β which is a linear function of, i.e., the coefficients of excluded variables. So is biased, in general. The bias vanishes if XX 1 = 0, i.e., X 1 and X are orthogonal or uncorrelated. The mean squared error matrix of b 1 is b 1 MSEb ( ) = Eb ( β)( b β) = E θθ + θε X( XX) + ( XX) Xεθ + ( XX) Xεε X( XX) = θθ σ ( XX) XIX( XX) = θθ + σ ( XX) So efficiency generally declines. Note that the second term is the conventional form of MSE.

6 6 The residual sum of squares is where Thus SSres ee ˆ σ = = n r n r e= y Xb = Hy, H = I X( XX) X Hy= H( Xβ + Xβ + ε) = 0 + H ( X β + ε) 1 = H ( X β + ε) 1 yh y= ( X β + X β + ε) H ( X β + ε) = ( β XHHXβ + β XHε + β XHXβ + β XHε + ε HXβ + ε Hε) Es ( ) = E( βxhx 1 β) E( ε Hε) n r 1 = βxhx 1 β) + ( n r) σ n r 1 = σ + βxhx 1 β. n r Thus s is a biased estimator of and s provides an over estimate of. Note that even if XX = then also s gives an overestimate of be invalid in this case. σ σ σ 1 0,. So the statistical inferences based on this will be faulty. The t-test and confidence region will

7 7 If the response is to be predicted at x = ( x, x ), ˆ = = ( ) y xb x X X X y with E( yˆ ) = x β Var yˆ = σ + x X X x ( ) 1 ( ). 1 then using the full model, the predicted value is When subset model is used then the predictor is and then yˆ = xb E( yˆ ) = x ( X X ) X E( y) = x( XX) XE( Xβ + Xβ + ε) = x( XX) X( Xβ + Xβ ) = xβ + x( XX) XXβ = x β + xθ. 1 1 i Thus ŷ is a biased predictor of y. It is unbiased when XX = The MSE of predictor is Also 1 ( ). MSE( yˆ1) = σ 1 + x1( X1X1) x 1 + x1θ xβ provided ˆ MSE yˆ1 Var( y) ( ) V ( ˆ β) ββ is positive semidefinite.

8 8. Inclusion of irrelevant variables Sometimes due to enthusiasm and to make the model more realistic, the analyst may include some explanatory variables that are not very relevant to the model. Such variables may contribute very little to the explanatory power of the model. This may tend to reduce the degrees of freedom (n - k) and consequently the validity of inference drawn may be questionable. or example, the value of coefficient of determination will increase indicating that the model is getting better which may not really be true. Let the true model be y = Xβ + ε, E( ε) = 0, V( ε) = σ I which comprise k explanatory variable. Suppose now r additional explanatory variables are added to the model and resulting model becomes y = Xβ + γ + δ n r γ r 1 where is a matrix of n observations on each of the r explanatory variables and is vector of regression coefficient associated with and Applying OLS to false model, we get where b and C are the OLSEs of and respectively. δ is disturbance term. This model is termed as false model. b X X X X y = c X y X X X b X y = X c y X Xb + X C = X y (1) Xb + C = y () β γ

9 Premultiply equation () by 1 X ( ), we get 9 X Xb X C X y ( ) + ( ) = ( ). (3) Subtracting equation (1) from (3), we get X X X ( ) X b = X y X ( ) y X I ( ) Xb = X I ( ) y b = X H X X H y ( ) where H = I ( ). The estimation error of b is β ( ) b = X H X X H y β ( X HX) X H( X ) = β + ε β = ( X HX) X Hε. Thus E b X H X X H E ( β) = ( ) ( ε) = 0, so b is unbiased even when some irrelevant variables are added to the model. The covariance matrix is ( β)( β) Vb ( ) = Eb b ( ) 1 = E X HX X Hεε HX( X HX) = σ = σ ( X HX) X HIHX ( X HX) ( X H X). 1

10 10 If OLS is applied to true model, then with bt = ( X X) X y Eb ( T ) Vb = β ( T ) = σ ( X X). To compare b and b T we use the following result. Result: If A and B are two positive definite matrices then A B is atleast positive semi definite if atleast positive semi definite. B A is also Let A= ( X H X) B = ( X X) B A = X X X H X ( ) = X X X X + X X = ( ) X X which is atleast positive semi definite matrix. This implies that the efficiency declines unless X = 0. If X = 0, i.e., X and are orthogonal, then both are equally efficient. The residual sum of squares under false model is SS = e e res

11 11 where e = y Xb c b = X H X X H y ( ) c ( ) y ( ) Xb = y Xb ( ) ( ) = ( ) I X( X HX) X H z y ( ) ( ) x ( ) X H y X X H = I H = I X X H X X H H = = = H : idempotent. So = ( ) ( ) X e y X X H X X H y H y = I X( X H X) X H ( ) H X y = HX ( I H ) HX y = H H X y = H y where H = H H * * X X X.

12 1 Thus SS = e e res E SS = y H H H H y = yhh = yh = X X * X * ( res ) σ ( X ) σ ( n k r) = SSres E = σ. n k r y X y tr H SS res So is an unbiased estimator of. n k r σ A comparison of exclusion and inclusion of variables is as follows: Exclusion type Inclusion type Estimation of coefficients Biased Unbiased Efficiency Generally declines Declines Estimation of disturbance Over-estimate Unbiased term Conventional test of Invalid and faulty inferences Valid though erroneous hypothesis and confidence region

Chapter 11 Specification Error Analysis

Chapter 11 Specification Error Analysis Chapter Specification Error Analsis The specification of a linear regression model consists of a formulation of the regression relationships and of statements or assumptions concerning the explanator variables

More information

Chapter 13 Variable Selection and Model Building

Chapter 13 Variable Selection and Model Building Chater 3 Variable Selection and Model Building The comlete regsion analysis deends on the exlanatory variables ent in the model. It is understood in the regsion analysis that only correct and imortant

More information

Multiple Linear Regression Analysis

Multiple Linear Regression Analysis LINEAR REGREION ANALYSIS MODULE III Lecture 3 Multiple Linear Regsion Analysis Dr Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Likelihood ratio test for H : Rβ

More information

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises

LINEAR REGRESSION ANALYSIS. MODULE XVI Lecture Exercises LINEAR REGRESSION ANALYSIS MODULE XVI Lecture - 44 Exercises Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Exercise 1 The following data has been obtained on

More information

Simple Linear Regression Analysis

Simple Linear Regression Analysis LINEAR REGRESSION ANALYSIS MODULE II Lecture - 6 Simple Linear Regression Analysis Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Prediction of values of study

More information

Variable Selection and Model Building

Variable Selection and Model Building LINEAR REGRESSION ANALYSIS MODULE XIII Lecture - 39 Variable Selection and Model Building Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur 5. Akaike s information

More information

ECONOMETRIC THEORY. MODULE XVII Lecture - 43 Simultaneous Equations Models

ECONOMETRIC THEORY. MODULE XVII Lecture - 43 Simultaneous Equations Models ECONOMETRIC THEORY MODULE XVII Lecture - 43 Simultaneous Equations Models Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur 2 Estimation of parameters To estimate

More information

Lecture 9 SLR in Matrix Form

Lecture 9 SLR in Matrix Form Lecture 9 SLR in Matrix Form STAT 51 Spring 011 Background Reading KNNL: Chapter 5 9-1 Topic Overview Matrix Equations for SLR Don t focus so much on the matrix arithmetic as on the form of the equations.

More information

Variable Selection and Model Building

Variable Selection and Model Building LINEAR REGRESSION ANALYSIS MODULE XIII Lecture - 38 Variable Selection and Model Building Dr. Shalabh Deartment of Mathematics and Statistics Indian Institute of Technology Kanur Evaluation of subset regression

More information

ECONOMETRIC THEORY. MODULE VI Lecture 19 Regression Analysis Under Linear Restrictions

ECONOMETRIC THEORY. MODULE VI Lecture 19 Regression Analysis Under Linear Restrictions ECONOMETRIC THEORY MODULE VI Lecture 9 Regression Analysis Under Linear Restrictions Dr Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur One of the basic objectives

More information

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Q = (Y i β 0 β 1 X i1 β 2 X i2 β p 1 X i.p 1 ) 2, which in matrix notation is Q = (Y Xβ) (Y

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models there are two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent

More information

Business Statistics. Tommaso Proietti. Linear Regression. DEF - Università di Roma 'Tor Vergata'

Business Statistics. Tommaso Proietti. Linear Regression. DEF - Università di Roma 'Tor Vergata' Business Statistics Tommaso Proietti DEF - Università di Roma 'Tor Vergata' Linear Regression Specication Let Y be a univariate quantitative response variable. We model Y as follows: Y = f(x) + ε where

More information

Math 423/533: The Main Theoretical Topics

Math 423/533: The Main Theoretical Topics Math 423/533: The Main Theoretical Topics Notation sample size n, data index i number of predictors, p (p = 2 for simple linear regression) y i : response for individual i x i = (x i1,..., x ip ) (1 p)

More information

Statistical Modelling in Stata 5: Linear Models

Statistical Modelling in Stata 5: Linear Models Statistical Modelling in Stata 5: Linear Models Mark Lunt Arthritis Research UK Epidemiology Unit University of Manchester 07/11/2017 Structure This Week What is a linear model? How good is my model? Does

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u Interval estimation and hypothesis tests So far our focus has been on estimation of the parameter vector β in the linear model y i = β 1 x 1i + β 2 x 2i +... + β K x Ki + u i = x iβ + u i for i = 1, 2,...,

More information

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model Outline 1 Multiple Linear Regression (Estimation, Inference, Diagnostics and Remedial Measures) 2 Special Topics for Multiple Regression Extra Sums of Squares Standardized Version of the Multiple Regression

More information

ECON The Simple Regression Model

ECON The Simple Regression Model ECON 351 - The Simple Regression Model Maggie Jones 1 / 41 The Simple Regression Model Our starting point will be the simple regression model where we look at the relationship between two variables In

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

In the bivariate regression model, the original parameterization is. Y i = β 1 + β 2 X2 + β 2 X2. + β 2 (X 2i X 2 ) + ε i (2)

In the bivariate regression model, the original parameterization is. Y i = β 1 + β 2 X2 + β 2 X2. + β 2 (X 2i X 2 ) + ε i (2) RNy, econ460 autumn 04 Lecture note Orthogonalization and re-parameterization 5..3 and 7.. in HN Orthogonalization of variables, for example X i and X means that variables that are correlated are made

More information

LECTURE 10. Introduction to Econometrics. Multicollinearity & Heteroskedasticity

LECTURE 10. Introduction to Econometrics. Multicollinearity & Heteroskedasticity LECTURE 10 Introduction to Econometrics Multicollinearity & Heteroskedasticity November 22, 2016 1 / 23 ON PREVIOUS LECTURES We discussed the specification of a regression equation Specification consists

More information

Reference: Davidson and MacKinnon Ch 2. In particular page

Reference: Davidson and MacKinnon Ch 2. In particular page RNy, econ460 autumn 03 Lecture note Reference: Davidson and MacKinnon Ch. In particular page 57-8. Projection matrices The matrix M I X(X X) X () is often called the residual maker. That nickname is easy

More information

LECTURE 5 HYPOTHESIS TESTING

LECTURE 5 HYPOTHESIS TESTING October 25, 2016 LECTURE 5 HYPOTHESIS TESTING Basic concepts In this lecture we continue to discuss the normal classical linear regression defined by Assumptions A1-A5. Let θ Θ R d be a parameter of interest.

More information

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form Topic 7 - Matrix Approach to Simple Linear Regression Review of Matrices Outline Regression model in matrix form - Fall 03 Calculations using matrices Topic 7 Matrix Collection of elements arranged in

More information

Any of 27 linear and nonlinear models may be fit. The output parallels that of the Simple Regression procedure.

Any of 27 linear and nonlinear models may be fit. The output parallels that of the Simple Regression procedure. STATGRAPHICS Rev. 9/13/213 Calibration Models Summary... 1 Data Input... 3 Analysis Summary... 5 Analysis Options... 7 Plot of Fitted Model... 9 Predicted Values... 1 Confidence Intervals... 11 Observed

More information

Economics 620, Lecture 4: The K-Variable Linear Model I. y 1 = + x 1 + " 1 y 2 = + x 2 + " 2 :::::::: :::::::: y N = + x N + " N

Economics 620, Lecture 4: The K-Variable Linear Model I. y 1 = + x 1 +  1 y 2 = + x 2 +  2 :::::::: :::::::: y N = + x N +  N 1 Economics 620, Lecture 4: The K-Variable Linear Model I Consider the system y 1 = + x 1 + " 1 y 2 = + x 2 + " 2 :::::::: :::::::: y N = + x N + " N or in matrix form y = X + " where y is N 1, X is N

More information

Introduction to Estimation Methods for Time Series models. Lecture 1

Introduction to Estimation Methods for Time Series models. Lecture 1 Introduction to Estimation Methods for Time Series models Lecture 1 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 1 SNS Pisa 1 / 19 Estimation

More information

Heteroskedasticity. y i = β 0 + β 1 x 1i + β 2 x 2i β k x ki + e i. where E(e i. ) σ 2, non-constant variance.

Heteroskedasticity. y i = β 0 + β 1 x 1i + β 2 x 2i β k x ki + e i. where E(e i. ) σ 2, non-constant variance. Heteroskedasticity y i = β + β x i + β x i +... + β k x ki + e i where E(e i ) σ, non-constant variance. Common problem with samples over individuals. ê i e ˆi x k x k AREC-ECON 535 Lec F Suppose y i =

More information

Regression Analysis for Data Containing Outliers and High Leverage Points

Regression Analysis for Data Containing Outliers and High Leverage Points Alabama Journal of Mathematics 39 (2015) ISSN 2373-0404 Regression Analysis for Data Containing Outliers and High Leverage Points Asim Kumer Dey Department of Mathematics Lamar University Md. Amir Hossain

More information

ECO220Y Simple Regression: Testing the Slope

ECO220Y Simple Regression: Testing the Slope ECO220Y Simple Regression: Testing the Slope Readings: Chapter 18 (Sections 18.3-18.5) Winter 2012 Lecture 19 (Winter 2012) Simple Regression Lecture 19 1 / 32 Simple Regression Model y i = β 0 + β 1 x

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

The Linear Regression Model

The Linear Regression Model The Linear Regression Model Carlo Favero Favero () The Linear Regression Model 1 / 67 OLS To illustrate how estimation can be performed to derive conditional expectations, consider the following general

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 MA 575 Linear Models: Cedric E Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1 1 Within-group Correlation Let us recall the simple two-level hierarchical

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

Unit 10: Simple Linear Regression and Correlation

Unit 10: Simple Linear Regression and Correlation Unit 10: Simple Linear Regression and Correlation Statistics 571: Statistical Methods Ramón V. León 6/28/2004 Unit 10 - Stat 571 - Ramón V. León 1 Introductory Remarks Regression analysis is a method for

More information

statistical sense, from the distributions of the xs. The model may now be generalized to the case of k regressors:

statistical sense, from the distributions of the xs. The model may now be generalized to the case of k regressors: Wooldridge, Introductory Econometrics, d ed. Chapter 3: Multiple regression analysis: Estimation In multiple regression analysis, we extend the simple (two-variable) regression model to consider the possibility

More information

Econometrics Summary Algebraic and Statistical Preliminaries

Econometrics Summary Algebraic and Statistical Preliminaries Econometrics Summary Algebraic and Statistical Preliminaries Elasticity: The point elasticity of Y with respect to L is given by α = ( Y/ L)/(Y/L). The arc elasticity is given by ( Y/ L)/(Y/L), when L

More information

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017 Summary of Part II Key Concepts & Formulas Christopher Ting November 11, 2017 christopherting@smu.edu.sg http://www.mysmu.edu/faculty/christophert/ Christopher Ting 1 of 16 Why Regression Analysis? Understand

More information

14 Multiple Linear Regression

14 Multiple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 14 Multiple Linear Regression 14.1 The multiple linear regression model In simple linear regression, the response variable y is expressed in

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

Dr. Maddah ENMG 617 EM Statistics 11/28/12. Multiple Regression (3) (Chapter 15, Hines)

Dr. Maddah ENMG 617 EM Statistics 11/28/12. Multiple Regression (3) (Chapter 15, Hines) Dr. Maddah ENMG 617 EM Statistics 11/28/12 Multiple Regression (3) (Chapter 15, Hines) Problems in multiple regression: Multicollinearity This arises when the independent variables x 1, x 2,, x k, are

More information

Mathematics for Economics MA course

Mathematics for Economics MA course Mathematics for Economics MA course Simple Linear Regression Dr. Seetha Bandara Simple Regression Simple linear regression is a statistical method that allows us to summarize and study relationships between

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 1 Bootstrapped Bias and CIs Given a multiple regression model with mean and

More information

Economics 620, Lecture 4: The K-Varable Linear Model I

Economics 620, Lecture 4: The K-Varable Linear Model I Economics 620, Lecture 4: The K-Varable Linear Model I Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 4: The K-Varable Linear Model I 1 / 20 Consider the system

More information

Multiple Linear Regression CIVL 7012/8012

Multiple Linear Regression CIVL 7012/8012 Multiple Linear Regression CIVL 7012/8012 2 Multiple Regression Analysis (MLR) Allows us to explicitly control for many factors those simultaneously affect the dependent variable This is important for

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur nalysis of Variance and Design of Experiment-I MODULE V LECTURE - 9 FCTORIL EXPERIMENTS Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Sums of squares Suppose

More information

Final Review. Yang Feng. Yang Feng (Columbia University) Final Review 1 / 58

Final Review. Yang Feng.   Yang Feng (Columbia University) Final Review 1 / 58 Final Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Final Review 1 / 58 Outline 1 Multiple Linear Regression (Estimation, Inference) 2 Special Topics for Multiple

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

Multiple Regression Analysis. Part III. Multiple Regression Analysis

Multiple Regression Analysis. Part III. Multiple Regression Analysis Part III Multiple Regression Analysis As of Sep 26, 2017 1 Multiple Regression Analysis Estimation Matrix form Goodness-of-Fit R-square Adjusted R-square Expected values of the OLS estimators Irrelevant

More information

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1 Lecture Simple Linear Regression STAT 51 Spring 011 Background Reading KNNL: Chapter 1-1 Topic Overview This topic we will cover: Regression Terminology Simple Linear Regression with a single predictor

More information

Chapter 14 Stein-Rule Estimation

Chapter 14 Stein-Rule Estimation Chapter 14 Stein-Rule Estimation The ordinary least squares estimation of regression coefficients in linear regression model provides the estimators having minimum variance in the class of linear and unbiased

More information

Ma 3/103: Lecture 24 Linear Regression I: Estimation

Ma 3/103: Lecture 24 Linear Regression I: Estimation Ma 3/103: Lecture 24 Linear Regression I: Estimation March 3, 2017 KC Border Linear Regression I March 3, 2017 1 / 32 Regression analysis Regression analysis Estimate and test E(Y X) = f (X). f is the

More information

STAT 540: Data Analysis and Regression

STAT 540: Data Analysis and Regression STAT 540: Data Analysis and Regression Wen Zhou http://www.stat.colostate.edu/~riczw/ Email: riczw@stat.colostate.edu Department of Statistics Colorado State University Fall 205 W. Zhou (Colorado State

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity

Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity R.G. Pierse 1 Omitted Variables Suppose that the true model is Y i β 1 + β X i + β 3 X 3i + u i, i 1,, n (1.1) where β 3 0 but that the

More information

PANEL DATA RANDOM AND FIXED EFFECTS MODEL. Professor Menelaos Karanasos. December Panel Data (Institute) PANEL DATA December / 1

PANEL DATA RANDOM AND FIXED EFFECTS MODEL. Professor Menelaos Karanasos. December Panel Data (Institute) PANEL DATA December / 1 PANEL DATA RANDOM AND FIXED EFFECTS MODEL Professor Menelaos Karanasos December 2011 PANEL DATA Notation y it is the value of the dependent variable for cross-section unit i at time t where i = 1,...,

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Business Economics BUSINESS ECONOMICS. PAPER No. : 8, FUNDAMENTALS OF ECONOMETRICS MODULE No. : 3, GAUSS MARKOV THEOREM

Business Economics BUSINESS ECONOMICS. PAPER No. : 8, FUNDAMENTALS OF ECONOMETRICS MODULE No. : 3, GAUSS MARKOV THEOREM Subject Business Economics Paper No and Title Module No and Title Module Tag 8, Fundamentals of Econometrics 3, The gauss Markov theorem BSE_P8_M3 1 TABLE OF CONTENTS 1. INTRODUCTION 2. ASSUMPTIONS OF

More information

Linear Regression. September 27, Chapter 3. Chapter 3 September 27, / 77

Linear Regression. September 27, Chapter 3. Chapter 3 September 27, / 77 Linear Regression Chapter 3 September 27, 2016 Chapter 3 September 27, 2016 1 / 77 1 3.1. Simple linear regression 2 3.2 Multiple linear regression 3 3.3. The least squares estimation 4 3.4. The statistical

More information

coefficients n 2 are the residuals obtained when we estimate the regression on y equals the (simple regression) estimated effect of the part of x 1

coefficients n 2 are the residuals obtained when we estimate the regression on y equals the (simple regression) estimated effect of the part of x 1 Review - Interpreting the Regression If we estimate: It can be shown that: where ˆ1 r i coefficients β ˆ+ βˆ x+ βˆ ˆ= 0 1 1 2x2 y ˆβ n n 2 1 = rˆ i1yi rˆ i1 i= 1 i= 1 xˆ are the residuals obtained when

More information

Econometric Methods. Prediction / Violation of A-Assumptions. Burcu Erdogan. Universität Trier WS 2011/2012

Econometric Methods. Prediction / Violation of A-Assumptions. Burcu Erdogan. Universität Trier WS 2011/2012 Econometric Methods Prediction / Violation of A-Assumptions Burcu Erdogan Universität Trier WS 2011/2012 (Universität Trier) Econometric Methods 30.11.2011 1 / 42 Moving on to... 1 Prediction 2 Violation

More information

1 Least Squares Estimation - multiple regression.

1 Least Squares Estimation - multiple regression. Introduction to multiple regression. Fall 2010 1 Least Squares Estimation - multiple regression. Let y = {y 1,, y n } be a n 1 vector of dependent variable observations. Let β = {β 0, β 1 } be the 2 1

More information

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company Multiple Regression Inference for Multiple Regression and A Case Study IPS Chapters 11.1 and 11.2 2009 W.H. Freeman and Company Objectives (IPS Chapters 11.1 and 11.2) Multiple regression Data for multiple

More information

Quantitative Methods I: Regression diagnostics

Quantitative Methods I: Regression diagnostics Quantitative Methods I: Regression University College Dublin 10 December 2014 1 Assumptions and errors 2 3 4 Outline Assumptions and errors 1 Assumptions and errors 2 3 4 Assumptions: specification Linear

More information

Lecture 14 Simple Linear Regression

Lecture 14 Simple Linear Regression Lecture 4 Simple Linear Regression Ordinary Least Squares (OLS) Consider the following simple linear regression model where, for each unit i, Y i is the dependent variable (response). X i is the independent

More information

The regression model with one stochastic regressor.

The regression model with one stochastic regressor. The regression model with one stochastic regressor. 3150/4150 Lecture 6 Ragnar Nymoen 30 January 2012 We are now on Lecture topic 4 The main goal in this lecture is to extend the results of the regression

More information

Inference for Regression Inference about the Regression Model and Using the Regression Line

Inference for Regression Inference about the Regression Model and Using the Regression Line Inference for Regression Inference about the Regression Model and Using the Regression Line PBS Chapter 10.1 and 10.2 2009 W.H. Freeman and Company Objectives (PBS Chapter 10.1 and 10.2) Inference about

More information

Advanced Econometrics I

Advanced Econometrics I Lecture Notes Autumn 2010 Dr. Getinet Haile, University of Mannheim 1. Introduction Introduction & CLRM, Autumn Term 2010 1 What is econometrics? Econometrics = economic statistics economic theory mathematics

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 6: Model complexity scores (v3) Ramesh Johari ramesh.johari@stanford.edu Fall 2015 1 / 34 Estimating prediction error 2 / 34 Estimating prediction error We saw how we can estimate

More information

Linear models. Linear models are computationally convenient and remain widely used in. applied econometric research

Linear models. Linear models are computationally convenient and remain widely used in. applied econometric research Linear models Linear models are computationally convenient and remain widely used in applied econometric research Our main focus in these lectures will be on single equation linear models of the form y

More information

Ref.: Spring SOS3003 Applied data analysis for social science Lecture note

Ref.:   Spring SOS3003 Applied data analysis for social science Lecture note SOS3003 Applied data analysis for social science Lecture note 05-2010 Erling Berge Department of sociology and political science NTNU Spring 2010 Erling Berge 2010 1 Literature Regression criticism I Hamilton

More information

11 Hypothesis Testing

11 Hypothesis Testing 28 11 Hypothesis Testing 111 Introduction Suppose we want to test the hypothesis: H : A q p β p 1 q 1 In terms of the rows of A this can be written as a 1 a q β, ie a i β for each row of A (here a i denotes

More information

28. SIMPLE LINEAR REGRESSION III

28. SIMPLE LINEAR REGRESSION III 28. SIMPLE LINEAR REGRESSION III Fitted Values and Residuals To each observed x i, there corresponds a y-value on the fitted line, y = βˆ + βˆ x. The are called fitted values. ŷ i They are the values of

More information

THE ROYAL STATISTICAL SOCIETY 2008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS

THE ROYAL STATISTICAL SOCIETY 2008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS THE ROYAL STATISTICAL SOCIETY 008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS The Society provides these solutions to assist candidates preparing for the examinations

More information

Chapter 13. Multiple Regression and Model Building

Chapter 13. Multiple Regression and Model Building Chapter 13 Multiple Regression and Model Building Multiple Regression Models The General Multiple Regression Model y x x x 0 1 1 2 2... k k y is the dependent variable x, x,..., x 1 2 k the model are the

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html 1 / 42 Passenger car mileage Consider the carmpg dataset taken from

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Specification errors in linear regression models

Specification errors in linear regression models Specification errors in linear regression models Jean-Marie Dufour McGill University First version: February 2002 Revised: December 2011 This version: December 2011 Compiled: December 9, 2011, 22:34 This

More information

Brief Suggested Solutions

Brief Suggested Solutions DEPARTMENT OF ECONOMICS UNIVERSITY OF VICTORIA ECONOMICS 366: ECONOMETRICS II SPRING TERM 5: ASSIGNMENT TWO Brief Suggested Solutions Question One: Consider the classical T-observation, K-regressor linear

More information

Econ 582 Fixed Effects Estimation of Panel Data

Econ 582 Fixed Effects Estimation of Panel Data Econ 582 Fixed Effects Estimation of Panel Data Eric Zivot May 28, 2012 Panel Data Framework = x 0 β + = 1 (individuals); =1 (time periods) y 1 = X β ( ) ( 1) + ε Main question: Is x uncorrelated with?

More information

Multivariate Regression (Chapter 10)

Multivariate Regression (Chapter 10) Multivariate Regression (Chapter 10) This week we ll cover multivariate regression and maybe a bit of canonical correlation. Today we ll mostly review univariate multivariate regression. With multivariate

More information

General Linear Model (Chapter 4)

General Linear Model (Chapter 4) General Linear Model (Chapter 4) Outcome variable is considered continuous Simple linear regression Scatterplots OLS is BLUE under basic assumptions MSE estimates residual variance testing regression coefficients

More information

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015

Part IB Statistics. Theorems with proof. Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua. Lent 2015 Part IB Statistics Theorems with proof Based on lectures by D. Spiegelhalter Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

18.S096 Problem Set 3 Fall 2013 Regression Analysis Due Date: 10/8/2013

18.S096 Problem Set 3 Fall 2013 Regression Analysis Due Date: 10/8/2013 18.S096 Problem Set 3 Fall 013 Regression Analysis Due Date: 10/8/013 he Projection( Hat ) Matrix and Case Influence/Leverage Recall the setup for a linear regression model y = Xβ + ɛ where y and ɛ are

More information

REGRESSION ANALYSIS AND INDICATOR VARIABLES

REGRESSION ANALYSIS AND INDICATOR VARIABLES REGRESSION ANALYSIS AND INDICATOR VARIABLES Thesis Submitted in partial fulfillment of the requirements for the award of degree of Masters of Science in Mathematics and Computing Submitted by Sweety Arora

More information

Econ 510 B. Brown Spring 2014 Final Exam Answers

Econ 510 B. Brown Spring 2014 Final Exam Answers Econ 510 B. Brown Spring 2014 Final Exam Answers Answer five of the following questions. You must answer question 7. The question are weighted equally. You have 2.5 hours. You may use a calculator. Brevity

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Steps in Regression Analysis

Steps in Regression Analysis MGMG 522 : Session #2 Learning to Use Regression Analysis & The Classical Model (Ch. 3 & 4) 2-1 Steps in Regression Analysis 1. Review the literature and develop the theoretical model 2. Specify the model:

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

OPTIMIZATION OF FIRST ORDER MODELS

OPTIMIZATION OF FIRST ORDER MODELS Chapter 2 OPTIMIZATION OF FIRST ORDER MODELS One should not multiply explanations and causes unless it is strictly necessary William of Bakersville in Umberto Eco s In the Name of the Rose 1 In Response

More information

Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals. Regression Output. Conditions for inference.

Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals. Regression Output. Conditions for inference. Understanding regression output from software Nature vs. nurture? Lecture 18 - Regression: Inference, Outliers, and Intervals In 1966 Cyril Burt published a paper called The genetic determination of differences

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Reading: Hoff Chapter 9 November 4, 2009 Problem Data: Observe pairs (Y i,x i ),i = 1,... n Response or dependent variable Y Predictor or independent variable X GOALS: Exploring

More information

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A )

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A ) Econ 60 Matrix Differentiation Let a and x are k vectors and A is an k k matrix. a x a x = a = a x Ax =A + A x Ax x =A + A x Ax = xx A We don t want to prove the claim rigorously. But a x = k a i x i i=

More information

Ordinary Least Squares Regression

Ordinary Least Squares Regression Ordinary Least Squares Regression Goals for this unit More on notation and terminology OLS scalar versus matrix derivation Some Preliminaries In this class we will be learning to analyze Cross Section

More information