In the bivariate regression model, the original parameterization is. Y i = β 1 + β 2 X2 + β 2 X2. + β 2 (X 2i X 2 ) + ε i (2)

Size: px
Start display at page:

Download "In the bivariate regression model, the original parameterization is. Y i = β 1 + β 2 X2 + β 2 X2. + β 2 (X 2i X 2 ) + ε i (2)"

Transcription

1 RNy, econ460 autumn 04 Lecture note Orthogonalization and re-parameterization 5..3 and 7.. in HN Orthogonalization of variables, for example X i and X means that variables that are correlated are made perfectly uncorrelated (orthogonal) by a transformation. In the context of a model, e.g., a regression equation, variables can be orthogonalized, without changing the statistical properties of the models disturbance, however one or more of the original coefficients will be changed as a consequence of the transformation. We then have a re-parameterization of the model (with the aim of achieving orthogonalization) In the bivariate regression model, the original parameterization is Y i β + β X i + ε i () If the assumptions of the model holds, the disturbance has so called classical properties. Now consider adding and subtracting β X : Y i β + β X + β (X i X ) + ε i () δ This is a reparameterization of the model because one of the parameters, the constant term, has changed. Importantly, the disturbance is unaffected, hence the statistical properties of the model is unaffected by the re-parameterization. This means that the maximized value of the likelihood function for () must be the same value as for (). The OLS/ML estimators of δ and β are uncorrelated, although the estimators of β and β are correlated, as you will know from elementary econometrics. In 7.. in HN, the original parameterization of the model equation is like: We know that the reparameterization Y i β + β X i + β 3 X 3i + ε i (3) Y i β + β X + β X + β (X i X ) + β 3 (X i X 3 ) + ε i (4) δ secures that the two regressors are uncorrelated with the intercept. They are still correlated however. In 7... a parameterization is shown that gives uncorrelated regressors as well. The likelihood function can easily be maximized with respect to the parameters of the fully orthogonalized model (thus extending the step-wise maximization for the first model equation Y i β + ε i ) Structural interpretation in HN In economics, the label structural model is often given to theoretical relationships that are linearized and supplemented with an additive disturbance, and then estimated. In addition to theoretical interpretability, the book suggests that a structural model should have the features:

2 . Parameter constancy with respect to changes in sample (for example extensions). Parameter invariance to regime shifts 3. Invariance with respect to variable addition, for example from other studies. At this point in the exposition, the book only illustrates requirement 3. by the simplest example of omitted variable bias. Where the true model contains a second regressor: Y i b + b X i + b 3 X i + v i (5) From elementary econometrics you are able to derive the bias expression of the OLS/ML estimator of ˆβ given that (5) is the true model. Projection matrices Reference: Davidson and MacKinnon Ch. In particular page 57-8, or a suitable book chapter on matrix algebra! The matrix M I X(X X) X (6) is often called the residual maker. That nickname is easy to understand, since: My (I X(X X) X )y y X(X X) X y y X ˆβ ˆε M plays a central role in many derivations. The following properties are worth noting (and showing for yourself) : M M, symmetric matrix (7) M M, idempotent matrix (8) MX 0, regression of X on X gives perfect fit (9) Another way of interpreting MX 0 is that since M produces the OLS residuals, M is orthogonal to X. M does not affect the residuals: Since y Xβ + ε, we also have: Note that this gives: Mˆε M(y X ˆβ) My MX ˆβ ˆε (0) M ε M(y Xβ) ˆε. () ˆε ˆε ε Mε () which show that RSS is a quadratic form in the theoretical disturbances. A second important matrix in regression analysis is: which is called the prediction matrix, since P X(X X) X (3) ŷ X ˆβ X(X X) X y Py (4)

3 P is also symmetric and idempotent. In linear algebra, M and P are both known as projection matrices, Ch in DM, page 57, in particular gives the geometric interpretation. M and P are orthogonal: MP PM 0 (5) Since M and P are also complementary projections which gives and therefore: The scalar product y y then becomes: M I P, M + P I (6) (M + P)y Iy y ŷ + ˆε Py + My ŷ + ˆε (7) y y(y P + y M)(Py + My) ŷ ŷ + ˆε ˆε Written out, this is: Y i T SS Ŷ i ESS + ˆε i RSS You may be more used to write this famous decomposition as: (8) (Y i Ȳ ) } {{ } T SS (Ŷi Ŷ ) } {{ } ESS + ˆε i RSS (9) Question: Why is there no conflict between (8) and (9) as long as X contains a vector of ones (an intercept)? Alternative ways of writing RSS that sometimes come in handy: ˆε ˆε (y M )My y My y ˆε ˆε y (0) Partitioned regression ˆε ˆεy y y P Py y y y [ X(X X) X ] [ X(X X) X ] y () y y y X(X X) X y y y y X ˆβ y y ˆβ X y. We now let β [ ˆβ ˆβ ] where β has k parameters and β has k parameters. k + k k. [ The corresponding partitioning of X is X X n k X. The OLS estimated model with this notation: y X ˆβ +X ˆβ + ˆε, () We begin by writing out the normal equations: ˆε My. n k ] (X X) ˆβ X y 3

4 in terms of the partitioning: ( ) ( ) X X X X ˆβ X X X X ˆβ ( ) X y X. (3) y where we have used [ ] X X [X X ] X X see page 0 and Exercise.9 in DM. The vector of OLS estimators can therefore be expressed as: ( ) ( ) ˆβ X X X ( ) X X y ˆβ X X X X X. (4) y We need a result for the inverse of a partitioned matrix. There are several versions, but probably the most useful for us is: ( ) ( A A A A A A A ) A A A A A A (5) where With the aid of (5)-(7) it can be shown that A A A A A (6) A A A A A. (7) ( ) ˆβ ˆβ ( (X M X ) ) X M y (X M X ), (8) X M y where M and M are the two residual-makers: M I X (X X ) X (9) M I X (X X ) X. (30) As an application, start with: [ X ] [ X. X ι. X ] where ι X. n X... X k X... X k.. X n... X nk ι ι n so M I ι (ι ι) ι I ι (ι ι) ι M I ιι M ι 4

5 the so-called centering matrix. Show that it is: n M ι..... n n By using the general formula for partitioned regression above, we get ˆβ (X M X ) X M y ( [M ι X ] [M ι X ] ) [Mι X ] y [ (X X ) (X X ) ] (X X ) y (3) where X is the n (k ) matrix with the variable means in the k columns. In the exercise set to Seminar you are invited to show the same result for ˆβ more directly, without the use of the results from partitioned regression, by re-writing the regression model. Frisch-Waugh-Lovell (FWL) theorem The expression for ˆβ in (8) suggests that there is another simple method for finding ˆβ that involves M : We premultiply the model (), first with M and then with X : M y M X ˆβ + ˆε (3) X M y X M X ˆβ (33) where we have used M X 0 and M ˆε ˆε in (3) and X ˆε 0 in (3), since the influence of the k second variables has already been regressed out. We can find ˆβ from this normal equation: ˆβ It can be shown that the covariance matrix is ( ) Cov ˆβ ˆσ (X M X ). ( X M X ) X M y (34) where ˆσ denotes the unbiased estimator for the common variance of the disturbances: The corresponding expressions for ˆβ is: ˆσ ˆεˆε n k. ˆβ (X M X ) X M y (35) ( ) Cov ˆβ ˆσ (X M X ). Interpretation of (34):Use symmetry and idempotency of M : ˆβ ((M X ) (M X )) (M X ) M y Here, M y is the residual vector ˆε y X and M X are the matrix with k residuals obtained from regressing each variable in X on X, ˆε X X. But this means that ˆβ can be obtained by first running these two auxiliary regressions,saving the residuals in ˆε Y X and ˆε X X and then running a second regression with ˆε Y X as regressand, and with ˆε X X as the matrix with regressors: ˆβ (M X ) (M X ) ˆε X X ˆε X X (M X ) (M y ) (36) ˆε X X ˆε Y X 5

6 We have shown the Frisch-Waugh(-Lovell) theorem. [Followers of ECON 450 spring 03 of 04 will have seen a scalar version of this. The 450 lecture notes are still on those course pages]. In sum: If we want to estimate the partial effects on Y of changes in the variables in X (i.e., controlled for the influence of X ), we can do that in two ways. Either by estimating the full multivariate model y X ˆβ +X ˆβ + ˆε or, by following the above two-step procedure of obtaining residuals with X as regressor and then obtaining ˆβ from (36). Other applications: Trend correction Seasonal adjustment by seasonal dummy variables (DM p 69) Leverage (or influential observations), DM p

Reference: Davidson and MacKinnon Ch 2. In particular page

Reference: Davidson and MacKinnon Ch 2. In particular page RNy, econ460 autumn 03 Lecture note Reference: Davidson and MacKinnon Ch. In particular page 57-8. Projection matrices The matrix M I X(X X) X () is often called the residual maker. That nickname is easy

More information

ECON 4160, Autumn term Lecture 1

ECON 4160, Autumn term Lecture 1 ECON 4160, Autumn term 2017. Lecture 1 a) Maximum Likelihood based inference. b) The bivariate normal model Ragnar Nymoen University of Oslo 24 August 2017 1 / 54 Principles of inference I Ordinary least

More information

Lecture 6: Geometry of OLS Estimation of Linear Regession

Lecture 6: Geometry of OLS Estimation of Linear Regession Lecture 6: Geometry of OLS Estimation of Linear Regession Xuexin Wang WISE Oct 2013 1 / 22 Matrix Algebra An n m matrix A is a rectangular array that consists of nm elements arranged in n rows and m columns

More information

Introduction to Estimation Methods for Time Series models. Lecture 1

Introduction to Estimation Methods for Time Series models. Lecture 1 Introduction to Estimation Methods for Time Series models Lecture 1 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 1 SNS Pisa 1 / 19 Estimation

More information

FIRST MIDTERM EXAM ECON 7801 SPRING 2001

FIRST MIDTERM EXAM ECON 7801 SPRING 2001 FIRST MIDTERM EXAM ECON 780 SPRING 200 ECONOMICS DEPARTMENT, UNIVERSITY OF UTAH Problem 2 points Let y be a n-vector (It may be a vector of observations of a random variable y, but it does not matter how

More information

The Geometry of Linear Regression

The Geometry of Linear Regression Chapter 2 The Geometry of Linear Regression 21 Introduction In Chapter 1, we introduced regression models, both linear and nonlinear, and discussed how to estimate linear regression models by using the

More information

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18)

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) MichaelR.Roberts Department of Economics and Department of Statistics University of California

More information

ECON 3150/4150 spring term 2014: Exercise set for the first seminar and DIY exercises for the first few weeks of the course

ECON 3150/4150 spring term 2014: Exercise set for the first seminar and DIY exercises for the first few weeks of the course ECON 3150/4150 spring term 2014: Exercise set for the first seminar and DIY exercises for the first few weeks of the course Ragnar Nymoen 13 January 2014. Exercise set to seminar 1 (week 6, 3-7 Feb) This

More information

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A )

Econ 620. Matrix Differentiation. Let a and x are (k 1) vectors and A is an (k k) matrix. ) x. (a x) = a. x = a (x Ax) =(A + A (x Ax) x x =(A + A ) Econ 60 Matrix Differentiation Let a and x are k vectors and A is an k k matrix. a x a x = a = a x Ax =A + A x Ax x =A + A x Ax = xx A We don t want to prove the claim rigorously. But a x = k a i x i i=

More information

ECON 3150/4150, Spring term Lecture 7

ECON 3150/4150, Spring term Lecture 7 ECON 3150/4150, Spring term 2014. Lecture 7 The multivariate regression model (I) Ragnar Nymoen University of Oslo 4 February 2014 1 / 23 References to Lecture 7 and 8 SW Ch. 6 BN Kap 7.1-7.8 2 / 23 Omitted

More information

The multiple regression model; Indicator variables as regressors

The multiple regression model; Indicator variables as regressors The multiple regression model; Indicator variables as regressors Ragnar Nymoen University of Oslo 28 February 2013 1 / 21 This lecture (#12): Based on the econometric model specification from Lecture 9

More information

Ma 3/103: Lecture 24 Linear Regression I: Estimation

Ma 3/103: Lecture 24 Linear Regression I: Estimation Ma 3/103: Lecture 24 Linear Regression I: Estimation March 3, 2017 KC Border Linear Regression I March 3, 2017 1 / 32 Regression analysis Regression analysis Estimate and test E(Y X) = f (X). f is the

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

Econ 2120: Section 2

Econ 2120: Section 2 Econ 2120: Section 2 Part I - Linear Predictor Loose Ends Ashesh Rambachan Fall 2018 Outline Big Picture Matrix Version of the Linear Predictor and Least Squares Fit Linear Predictor Least Squares Omitted

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

The Multiple Regression Model Estimation

The Multiple Regression Model Estimation Lesson 5 The Multiple Regression Model Estimation Pilar González and Susan Orbe Dpt Applied Econometrics III (Econometrics and Statistics) Pilar González and Susan Orbe OCW 2014 Lesson 5 Regression model:

More information

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No.

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No. 7. LEAST SQUARES ESTIMATION 1 EXERCISE: Least-Squares Estimation and Uniqueness of Estimates 1. For n real numbers a 1,...,a n, what value of a minimizes the sum of squared distances from a to each of

More information

EC3062 ECONOMETRICS. THE MULTIPLE REGRESSION MODEL Consider T realisations of the regression equation. (1) y = β 0 + β 1 x β k x k + ε,

EC3062 ECONOMETRICS. THE MULTIPLE REGRESSION MODEL Consider T realisations of the regression equation. (1) y = β 0 + β 1 x β k x k + ε, THE MULTIPLE REGRESSION MODEL Consider T realisations of the regression equation (1) y = β 0 + β 1 x 1 + + β k x k + ε, which can be written in the following form: (2) y 1 y 2.. y T = 1 x 11... x 1k 1

More information

The Linear Regression Model

The Linear Regression Model The Linear Regression Model Carlo Favero Favero () The Linear Regression Model 1 / 67 OLS To illustrate how estimation can be performed to derive conditional expectations, consider the following general

More information

The Simple Regression Model. Part II. The Simple Regression Model

The Simple Regression Model. Part II. The Simple Regression Model Part II The Simple Regression Model As of Sep 22, 2015 Definition 1 The Simple Regression Model Definition Estimation of the model, OLS OLS Statistics Algebraic properties Goodness-of-Fit, the R-square

More information

L2: Two-variable regression model

L2: Two-variable regression model L2: Two-variable regression model Feng Li feng.li@cufe.edu.cn School of Statistics and Mathematics Central University of Finance and Economics Revision: September 4, 2014 What we have learned last time...

More information

E 4101/5101 Lecture 9: Non-stationarity

E 4101/5101 Lecture 9: Non-stationarity E 4101/5101 Lecture 9: Non-stationarity Ragnar Nymoen 30 March 2011 Introduction I Main references: Hamilton Ch 15,16 and 17. Davidson and MacKinnon Ch 14.3 and 14.4 Also read Ch 2.4 and Ch 2.5 in Davidson

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity

Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity R.G. Pierse 1 Omitted Variables Suppose that the true model is Y i β 1 + β X i + β 3 X 3i + u i, i 1,, n (1.1) where β 3 0 but that the

More information

Lecture 4: Heteroskedasticity

Lecture 4: Heteroskedasticity Lecture 4: Heteroskedasticity Econometric Methods Warsaw School of Economics (4) Heteroskedasticity 1 / 24 Outline 1 What is heteroskedasticity? 2 Testing for heteroskedasticity White Goldfeld-Quandt Breusch-Pagan

More information

FENG CHIA UNIVERSITY ECONOMETRICS I: HOMEWORK 4. Prof. Mei-Yuan Chen Spring 2008

FENG CHIA UNIVERSITY ECONOMETRICS I: HOMEWORK 4. Prof. Mei-Yuan Chen Spring 2008 FENG CHIA UNIVERSITY ECONOMETRICS I: HOMEWORK 4 Prof. Mei-Yuan Chen Spring 008. Partition and rearrange the matrix X as [x i X i ]. That is, X i is the matrix X excluding the column x i. Let u i denote

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Motivation for multiple regression

Motivation for multiple regression Motivation for multiple regression 1. Simple regression puts all factors other than X in u, and treats them as unobserved. Effectively the simple regression does not account for other factors. 2. The slope

More information

3 Multiple Linear Regression

3 Multiple Linear Regression 3 Multiple Linear Regression 3.1 The Model Essentially, all models are wrong, but some are useful. Quote by George E.P. Box. Models are supposed to be exact descriptions of the population, but that is

More information

Lecture 4: Regression Analysis

Lecture 4: Regression Analysis Lecture 4: Regression Analysis 1 Regression Regression is a multivariate analysis, i.e., we are interested in relationship between several variables. For corporate audience, it is sufficient to show correlation.

More information

Simple Linear Regression: The Model

Simple Linear Regression: The Model Simple Linear Regression: The Model task: quantifying the effect of change X in X on Y, with some constant β 1 : Y = β 1 X, linear relationship between X and Y, however, relationship subject to a random

More information

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u

So far our focus has been on estimation of the parameter vector β in the. y = Xβ + u Interval estimation and hypothesis tests So far our focus has been on estimation of the parameter vector β in the linear model y i = β 1 x 1i + β 2 x 2i +... + β K x Ki + u i = x iβ + u i for i = 1, 2,...,

More information

Lecture 9 SLR in Matrix Form

Lecture 9 SLR in Matrix Form Lecture 9 SLR in Matrix Form STAT 51 Spring 011 Background Reading KNNL: Chapter 5 9-1 Topic Overview Matrix Equations for SLR Don t focus so much on the matrix arithmetic as on the form of the equations.

More information

Lecture 3: Multiple Regression

Lecture 3: Multiple Regression Lecture 3: Multiple Regression R.G. Pierse 1 The General Linear Model Suppose that we have k explanatory variables Y i = β 1 + β X i + β 3 X 3i + + β k X ki + u i, i = 1,, n (1.1) or Y i = β j X ji + u

More information

Problem Set - Instrumental Variables

Problem Set - Instrumental Variables Problem Set - Instrumental Variables 1. Consider a simple model to estimate the effect of personal computer (PC) ownership on college grade point average for graduating seniors at a large public university:

More information

14 Multiple Linear Regression

14 Multiple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 14 Multiple Linear Regression 14.1 The multiple linear regression model In simple linear regression, the response variable y is expressed in

More information

Econometrics I. Professor William Greene Stern School of Business Department of Economics 3-1/29. Part 3: Least Squares Algebra

Econometrics I. Professor William Greene Stern School of Business Department of Economics 3-1/29. Part 3: Least Squares Algebra Econometrics I Professor William Greene Stern School of Business Department of Economics 3-1/29 Econometrics I Part 3 Least Squares Algebra 3-2/29 Vocabulary Some terms to be used in the discussion. Population

More information

Non-Spherical Errors

Non-Spherical Errors Non-Spherical Errors Krishna Pendakur February 15, 2016 1 Efficient OLS 1. Consider the model Y = Xβ + ε E [X ε = 0 K E [εε = Ω = σ 2 I N. 2. Consider the estimated OLS parameter vector ˆβ OLS = (X X)

More information

LECTURE 2 LINEAR REGRESSION MODEL AND OLS

LECTURE 2 LINEAR REGRESSION MODEL AND OLS SEPTEMBER 29, 2014 LECTURE 2 LINEAR REGRESSION MODEL AND OLS Definitions A common question in econometrics is to study the effect of one group of variables X i, usually called the regressors, on another

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

Greene, Econometric Analysis (7th ed, 2012)

Greene, Econometric Analysis (7th ed, 2012) EC771: Econometrics, Spring 2012 Greene, Econometric Analysis (7th ed, 2012) Chapters 2 3: Classical Linear Regression The classical linear regression model is the single most useful tool in econometrics.

More information

The regression model with one fixed regressor cont d

The regression model with one fixed regressor cont d The regression model with one fixed regressor cont d 3150/4150 Lecture 4 Ragnar Nymoen 27 January 2012 The model with transformed variables Regression with transformed variables I References HGL Ch 2.8

More information

INTRODUCTORY ECONOMETRICS

INTRODUCTORY ECONOMETRICS INTRODUCTORY ECONOMETRICS Lesson 2b Dr Javier Fernández etpfemaj@ehu.es Dpt. of Econometrics & Statistics UPV EHU c J Fernández (EA3-UPV/EHU), February 21, 2009 Introductory Econometrics - p. 1/192 GLRM:

More information

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017

Quantitative Analysis of Financial Markets. Summary of Part II. Key Concepts & Formulas. Christopher Ting. November 11, 2017 Summary of Part II Key Concepts & Formulas Christopher Ting November 11, 2017 christopherting@smu.edu.sg http://www.mysmu.edu/faculty/christophert/ Christopher Ting 1 of 16 Why Regression Analysis? Understand

More information

The regression model with one stochastic regressor.

The regression model with one stochastic regressor. The regression model with one stochastic regressor. 3150/4150 Lecture 6 Ragnar Nymoen 30 January 2012 We are now on Lecture topic 4 The main goal in this lecture is to extend the results of the regression

More information

Applied Statistics and Econometrics

Applied Statistics and Econometrics Applied Statistics and Econometrics Lecture 6 Saul Lach September 2017 Saul Lach () Applied Statistics and Econometrics September 2017 1 / 53 Outline of Lecture 6 1 Omitted variable bias (SW 6.1) 2 Multiple

More information

Panel Data Models. James L. Powell Department of Economics University of California, Berkeley

Panel Data Models. James L. Powell Department of Economics University of California, Berkeley Panel Data Models James L. Powell Department of Economics University of California, Berkeley Overview Like Zellner s seemingly unrelated regression models, the dependent and explanatory variables for panel

More information

PANEL DATA RANDOM AND FIXED EFFECTS MODEL. Professor Menelaos Karanasos. December Panel Data (Institute) PANEL DATA December / 1

PANEL DATA RANDOM AND FIXED EFFECTS MODEL. Professor Menelaos Karanasos. December Panel Data (Institute) PANEL DATA December / 1 PANEL DATA RANDOM AND FIXED EFFECTS MODEL Professor Menelaos Karanasos December 2011 PANEL DATA Notation y it is the value of the dependent variable for cross-section unit i at time t where i = 1,...,

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

Lecture 19 - Decomposing a Time Series into its Trend and Cyclical Components

Lecture 19 - Decomposing a Time Series into its Trend and Cyclical Components Lecture 19 - Decomposing a Time Series into its Trend and Cyclical Components It is often assumed that many macroeconomic time series are subject to two sorts of forces: those that influence the long-run

More information

Section I. Define or explain the following terms (3 points each) 1. centered vs. uncentered 2 R - 2. Frisch theorem -

Section I. Define or explain the following terms (3 points each) 1. centered vs. uncentered 2 R - 2. Frisch theorem - First Exam: Economics 388, Econometrics Spring 006 in R. Butler s class YOUR NAME: Section I (30 points) Questions 1-10 (3 points each) Section II (40 points) Questions 11-15 (10 points each) Section III

More information

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley Review of Classical Least Squares James L. Powell Department of Economics University of California, Berkeley The Classical Linear Model The object of least squares regression methods is to model and estimate

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Business Statistics. Tommaso Proietti. Linear Regression. DEF - Università di Roma 'Tor Vergata'

Business Statistics. Tommaso Proietti. Linear Regression. DEF - Università di Roma 'Tor Vergata' Business Statistics Tommaso Proietti DEF - Università di Roma 'Tor Vergata' Linear Regression Specication Let Y be a univariate quantitative response variable. We model Y as follows: Y = f(x) + ε where

More information

Empirical Economic Research, Part II

Empirical Economic Research, Part II Based on the text book by Ramanathan: Introductory Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna December 7, 2011 Outline Introduction

More information

Variable Selection and Model Building

Variable Selection and Model Building LINEAR REGRESSION ANALYSIS MODULE XIII Lecture - 37 Variable Selection and Model Building Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur The complete regression

More information

Regression #2. Econ 671. Purdue University. Justin L. Tobias (Purdue) Regression #2 1 / 24

Regression #2. Econ 671. Purdue University. Justin L. Tobias (Purdue) Regression #2 1 / 24 Regression #2 Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #2 1 / 24 Estimation In this lecture, we address estimation of the linear regression model. There are many objective functions

More information

Andreas Steinhauer, University of Zurich Tobias Wuergler, University of Zurich. September 24, 2010

Andreas Steinhauer, University of Zurich Tobias Wuergler, University of Zurich. September 24, 2010 L C M E F -S IV R Andreas Steinhauer, University of Zurich Tobias Wuergler, University of Zurich September 24, 2010 Abstract This paper develops basic algebraic concepts for instrumental variables (IV)

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression September 24, 2008 Reading HH 8, GIll 4 Simple Linear Regression p.1/20 Problem Data: Observe pairs (Y i,x i ),i = 1,...n Response or dependent variable Y Predictor or independent

More information

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012

Problem Set #6: OLS. Economics 835: Econometrics. Fall 2012 Problem Set #6: OLS Economics 835: Econometrics Fall 202 A preliminary result Suppose we have a random sample of size n on the scalar random variables (x, y) with finite means, variances, and covariance.

More information

Advanced Econometrics I

Advanced Econometrics I Lecture Notes Autumn 2010 Dr. Getinet Haile, University of Mannheim 1. Introduction Introduction & CLRM, Autumn Term 2010 1 What is econometrics? Econometrics = economic statistics economic theory mathematics

More information

Advanced Econometrics

Advanced Econometrics Based on the textbook by Verbeek: A Guide to Modern Econometrics Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna May 16, 2013 Outline Univariate

More information

Solutions for Econometrics I Homework No.1

Solutions for Econometrics I Homework No.1 Solutions for Econometrics I Homework No.1 due 2006-02-20 Feldkircher, Forstner, Ghoddusi, Grafenhofer, Pichler, Reiss, Yan, Zeugner Exercise 1.1 Structural form of the problem: 1. q d t = α 0 + α 1 p

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

E 4160 Autumn term Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test

E 4160 Autumn term Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test E 4160 Autumn term 2016. Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test Ragnar Nymoen Department of Economics, University of Oslo 24 October

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

Math 423/533: The Main Theoretical Topics

Math 423/533: The Main Theoretical Topics Math 423/533: The Main Theoretical Topics Notation sample size n, data index i number of predictors, p (p = 2 for simple linear regression) y i : response for individual i x i = (x i1,..., x ip ) (1 p)

More information

ECON 3150/4150, Spring term Lecture 6

ECON 3150/4150, Spring term Lecture 6 ECON 3150/4150, Spring term 2013. Lecture 6 Review of theoretical statistics for econometric modelling (II) Ragnar Nymoen University of Oslo 31 January 2013 1 / 25 References to Lecture 3 and 6 Lecture

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij =

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij = 20. ONE-WAY ANALYSIS OF VARIANCE 1 20.1. Balanced One-Way Classification Cell means parametrization: Y ij = µ i + ε ij, i = 1,..., I; j = 1,..., J, ε ij N(0, σ 2 ), In matrix form, Y = Xβ + ε, or 1 Y J

More information

4 Multiple Linear Regression

4 Multiple Linear Regression 4 Multiple Linear Regression 4. The Model Definition 4.. random variable Y fits a Multiple Linear Regression Model, iff there exist β, β,..., β k R so that for all (x, x 2,..., x k ) R k where ε N (, σ

More information

MAT2377. Rafa l Kulik. Version 2015/November/26. Rafa l Kulik

MAT2377. Rafa l Kulik. Version 2015/November/26. Rafa l Kulik MAT2377 Rafa l Kulik Version 2015/November/26 Rafa l Kulik Bivariate data and scatterplot Data: Hydrocarbon level (x) and Oxygen level (y): x: 0.99, 1.02, 1.15, 1.29, 1.46, 1.36, 0.87, 1.23, 1.55, 1.40,

More information

Lecture 14 Simple Linear Regression

Lecture 14 Simple Linear Regression Lecture 4 Simple Linear Regression Ordinary Least Squares (OLS) Consider the following simple linear regression model where, for each unit i, Y i is the dependent variable (response). X i is the independent

More information

Multiple Regression Model: I

Multiple Regression Model: I Multiple Regression Model: I Suppose the data are generated according to y i 1 x i1 2 x i2 K x ik u i i 1...n Define y 1 x 11 x 1K 1 u 1 y y n X x n1 x nk K u u n So y n, X nxk, K, u n Rks: In many applications,

More information

Econ 582 Fixed Effects Estimation of Panel Data

Econ 582 Fixed Effects Estimation of Panel Data Econ 582 Fixed Effects Estimation of Panel Data Eric Zivot May 28, 2012 Panel Data Framework = x 0 β + = 1 (individuals); =1 (time periods) y 1 = X β ( ) ( 1) + ε Main question: Is x uncorrelated with?

More information

The regression model with one stochastic regressor (part II)

The regression model with one stochastic regressor (part II) The regression model with one stochastic regressor (part II) 3150/4150 Lecture 7 Ragnar Nymoen 6 Feb 2012 We will finish Lecture topic 4: The regression model with stochastic regressor We will first look

More information

ECON 4160, Spring term 2015 Lecture 7

ECON 4160, Spring term 2015 Lecture 7 ECON 4160, Spring term 2015 Lecture 7 Identification and estimation of SEMs (Part 1) Ragnar Nymoen Department of Economics 8 Oct 2015 1 / 55 HN Ch 15 References to Davidson and MacKinnon, Ch 8.1-8.5 Ch

More information

Reliability of inference (1 of 2 lectures)

Reliability of inference (1 of 2 lectures) Reliability of inference (1 of 2 lectures) Ragnar Nymoen University of Oslo 5 March 2013 1 / 19 This lecture (#13 and 14): I The optimality of the OLS estimators and tests depend on the assumptions of

More information

Regression: Ordinary Least Squares

Regression: Ordinary Least Squares Regression: Ordinary Least Squares Mark Hendricks Autumn 2017 FINM Intro: Regression Outline Regression OLS Mathematics Linear Projection Hendricks, Autumn 2017 FINM Intro: Regression: Lecture 2/32 Regression

More information

Advanced Quantitative Methods: ordinary least squares

Advanced Quantitative Methods: ordinary least squares Advanced Quantitative Methods: Ordinary Least Squares University College Dublin 31 January 2012 1 2 3 4 5 Terminology y is the dependent variable referred to also (by Greene) as a regressand X are the

More information

Lecture 13: Simple Linear Regression in Matrix Format. 1 Expectations and Variances with Vectors and Matrices

Lecture 13: Simple Linear Regression in Matrix Format. 1 Expectations and Variances with Vectors and Matrices Lecture 3: Simple Linear Regression in Matrix Format To move beyond simple regression we need to use matrix algebra We ll start by re-expressing simple linear regression in matrix form Linear algebra is

More information

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y Predictor or Independent variable x Model with error: for i = 1,..., n, y i = α + βx i + ε i ε i : independent errors (sampling, measurement,

More information

Lecture 19 Multiple (Linear) Regression

Lecture 19 Multiple (Linear) Regression Lecture 19 Multiple (Linear) Regression Thais Paiva STA 111 - Summer 2013 Term II August 1, 2013 1 / 30 Thais Paiva STA 111 - Summer 2013 Term II Lecture 19, 08/01/2013 Lecture Plan 1 Multiple regression

More information

Interpreting Regression Results

Interpreting Regression Results Interpreting Regression Results Carlo Favero Favero () Interpreting Regression Results 1 / 42 Interpreting Regression Results Interpreting regression results is not a simple exercise. We propose to split

More information

Multivariate Regression Analysis

Multivariate Regression Analysis Matrices and vectors The model from the sample is: Y = Xβ +u with n individuals, l response variable, k regressors Y is a n 1 vector or a n l matrix with the notation Y T = (y 1,y 2,...,y n ) 1 x 11 x

More information

Topic 10: Panel Data Analysis

Topic 10: Panel Data Analysis Topic 10: Panel Data Analysis Advanced Econometrics (I) Dong Chen School of Economics, Peking University 1 Introduction Panel data combine the features of cross section data time series. Usually a panel

More information

Time Invariant Variables and Panel Data Models : A Generalised Frisch- Waugh Theorem and its Implications

Time Invariant Variables and Panel Data Models : A Generalised Frisch- Waugh Theorem and its Implications Time Invariant Variables and Panel Data Models : A Generalised Frisch- Waugh Theorem and its Implications Jaya Krishnakumar No 2004.01 Cahiers du département d économétrie Faculté des sciences économiques

More information

Lecture 13: Simple Linear Regression in Matrix Format

Lecture 13: Simple Linear Regression in Matrix Format See updates and corrections at http://www.stat.cmu.edu/~cshalizi/mreg/ Lecture 13: Simple Linear Regression in Matrix Format 36-401, Section B, Fall 2015 13 October 2015 Contents 1 Least Squares in Matrix

More information

Regression. ECO 312 Fall 2013 Chris Sims. January 12, 2014

Regression. ECO 312 Fall 2013 Chris Sims. January 12, 2014 ECO 312 Fall 2013 Chris Sims Regression January 12, 2014 c 2014 by Christopher A. Sims. This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License What

More information

Regression diagnostics

Regression diagnostics Regression diagnostics Kerby Shedden Department of Statistics, University of Michigan November 5, 018 1 / 6 Motivation When working with a linear model with design matrix X, the conventional linear model

More information

We begin by thinking about population relationships.

We begin by thinking about population relationships. Conditional Expectation Function (CEF) We begin by thinking about population relationships. CEF Decomposition Theorem: Given some outcome Y i and some covariates X i there is always a decomposition where

More information

Linear Regression. September 27, Chapter 3. Chapter 3 September 27, / 77

Linear Regression. September 27, Chapter 3. Chapter 3 September 27, / 77 Linear Regression Chapter 3 September 27, 2016 Chapter 3 September 27, 2016 1 / 77 1 3.1. Simple linear regression 2 3.2 Multiple linear regression 3 3.3. The least squares estimation 4 3.4. The statistical

More information

Linear Regression. Junhui Qian. October 27, 2014

Linear Regression. Junhui Qian. October 27, 2014 Linear Regression Junhui Qian October 27, 2014 Outline The Model Estimation Ordinary Least Square Method of Moments Maximum Likelihood Estimation Properties of OLS Estimator Unbiasedness Consistency Efficiency

More information

9. Least squares data fitting

9. Least squares data fitting L. Vandenberghe EE133A (Spring 2017) 9. Least squares data fitting model fitting regression linear-in-parameters models time series examples validation least squares classification statistics interpretation

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON3150/ECON4150 Introductory Econometrics Date of exam: Wednesday, May 15, 013 Grades are given: June 6, 013 Time for exam: :30 p.m. 5:30 p.m. The problem

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

REVIEW (MULTIVARIATE LINEAR REGRESSION) Explain/Obtain the LS estimator () of the vector of coe cients (b)

REVIEW (MULTIVARIATE LINEAR REGRESSION) Explain/Obtain the LS estimator () of the vector of coe cients (b) REVIEW (MULTIVARIATE LINEAR REGRESSION) Explain/Obtain the LS estimator () of the vector of coe cients (b) Explain/Obtain the variance-covariance matrix of Both in the bivariate case (two regressors) and

More information