A multi-state model for the prognosis of non-mild acute pancreatitis

Size: px
Start display at page:

Download "A multi-state model for the prognosis of non-mild acute pancreatitis"

Transcription

1 A multi-state model for the prognosis of non-mild acute pancreatitis Lore Zumeta Olaskoaga 1, Felix Zubia Olaskoaga 2, Guadalupe Gómez Melis 1 1 Universitat Politècnica de Catalunya 2 Intensive Care Unit, Donostia University Hospital, Donostia-San Sebastián March 6th, 2018

2 Outline Background Materials Methods Application Future work References

3 Acute Pancreatitis (AP) What is Acute Pancreatitis? An inflammatory condition of the pancreas characterized by symptoms of strong abdominal pain, nausea, vomiting, increased heart rate, fever and swollen and tender abdomen A reversible process, most people with AP recover completely. It may range from mild discomfort to a severe, life-threatening illness. The major causes are biliary lithiasis and alcohol consumption. 1/23

4 Motivation The most severe forms, and consequently patients with AP admitted to Intensive Care Unit (ICU), showed high mortality. Prediction of AP mortality is not straightforward due to the low incidence of the most severe forms and because its fluctuating clinical course. 2/23

5 Objectives Clinical goal Study of the clinical evolution of non-mild AP patients that enter to ICU. Methodological goal Apply multi-state models to obtain risk factors to help for an adequate prognosis of AP. Objective of the talk Describe the clinical problem, introduce the statistical methodology and show preliminary results. 3/23

6 Motivating dataset A prospective observational study. Carried out in Donostia University Hospital (Gipuzkoa). Patients (N = 286) that entered to the Intensive Care Unit with a diagnosis of Acute Pancreatitis. Follow-up: until their complete recovery (no longer than 31 Aug, 2017). Two treatment protocols conducted: one between 2001 and 2007 (93) and other from 2008 to mid-2017 (193). 4/23

7 Complete process for Acute Pancreatitis 5/23

8 Classical Survival data study Multi-state modeling In contrast to the classical statistical methods for analyzing survival data, multi-state models present many advantages: Study of multiple events of interest. The influence of the time at which intermediate events occur. Influence of prognostic factors on each of the intermediate event. Account for competing risks, unbiased estimates. Potential to obtain dynamic predictions. Predictions of the clinical prognosis of a patient at a certain point in his/her illness course. 6/23

9 The multi-state model 7/23

10 The multi-state model 7/23

11 The multi-state model 7/23

12 The multi-state model Notation: X = {X (t) : t 0, X (0) = 1} multi-state process. S = {1, 2, 3, 4} = {ICU, Hospital, Death, Home} state space. F t = σ{x (s) : s t} filtration of the process. 7/23

13 Characterization of the multi-state model (i) Transition probability between state i and state j for s t, P ij (s, t; F s ) = P(X t = j X s = i; F s ). (1) Transition probability 4 4 matrix for s t, (ii) Transition intensities, P(s, t) = {P ij (s, t; F s ); i, j S = {1, 2, 3, 4}} (2) 1 α ij (t; F t ) = lim t 0 + t P ij(t, t + t; F t ). (3) (iii) Cumulative (integrated) transition intensities, A ij (t; F t ) = t 0 α ij (u; F u ). (4) 8/23

14 Characterization of the multi-state model Assuming Markov property: (i) Transition probability between state i and state j for s t, P ij (s, t) = P(X t = j X s = i). (1) Transition probability 4 4 matrix for s t, (ii) Transition intensities, P(s, t) = {P ij (s, t); i, j S = {1, 2, 3, 4}} (2) 1 α ij (t) = lim t 0 + t P ij(t, t + t). (3) (iii) Cumulative (integrated) transition intensities, A ij (t) = t 0 α ij (u). (4) 8/23

15 Characterization of the multi-state model Examples: (i) P 14 (0, 21) = P(X 21 = 4 X 0 = 1). Represents the probability that a patient is completely recovered after 3 weeks given that at time 0 she/he was in ICU. (ii) α 13 (5) = 1 lim t 0 + t P 13(5, 5 + t). Instantaneous risk of experiencing the 1 3 transition at time 5. Rate of dying in ICU at the 5th day. (iii) A 13 (5) = 5 0 α 13(u). Cumulative risk of dying in ICU by time 5. 8/23

16 Transition probability matrix Assuming Markov property, 1 P 12 (s, t) P 13 (s, t) P 14 (s, t) P 12 (s, t) P 13 (s, t) P 14 (s, t) P(s, t) = 0 1 P 23 (s, t) P 24 (s, t) P 23 (s, t) P 24 (s, t) , and this can be recovered from the transition intensities, A(t), through product integration P(s, t) = (I + da(u)). u (s,t] 9/23

17 Transition probability matrix: estimation To obtain ˆP(s, t) it is enough to compute the Aalen-Johansen estimator of the cumulative transition intensity da: dâij(t) = dn ij(t) Y i (t),  ij (t) = u t dâij(u), i j and  ii (t) = i j dâij(t). Being, N ij (t) = number of observed direct transitions from state i to state j up to time t Y i (t) = number of individuals under observation in state i just before time t da(t): matrix of elements d(a ij (t)) i,j = (α ij (t)) i,j dt 10/23

18 Overall survival time n Events Median 95% CI period: period: Survival functions according to treatment protocol Treatment S^(t) Time to death [days] 11/23

19 Model features Model with 4 states and 4 transitions. All the patients follow-up start at ICU, i.e. X (0) = 1. Overall 5 possible trajectories (see next slide). ICU and Hospital states are transient, Death and Home absorbing. We assume Markov property. We fit a non-parametric model, here. 12/23

20 All the possible paths 13/23

21 Multi-state modeling: observed transitions All the possible trajectories, to From ICU Hospital Death Home no event total entering ICU (80.4) 56 (19.5) Hospital (4.8) 219 (95.2) Death (100) 67 Home (100) 219 Table: Number of patients experiencing each transition during the follow-up. Frequencies and Proportions 1 1 Via paths() function from mstate R package 14/23

22 Multi-state modeling: duration of stay Group Group State N Min. Max. Median Mean N Min. Max. Median Mean ICU Hospital Table: Duration of stay (in days) in the two transient states 15/23

23 MS modeling: cumulative transition intensities period protocol period protocol ICU > Hospital ICU > Death Hospital > Death Hospital > Home ICU > Hospital ICU > Death Hospital > Death Hospital > Home Cumulative hazard Cumulative hazard Days from ICU entrance Days from ICU entrance Figure: Estimated cumulative transition intensities, Âij, per each i j transition. Left first period protocol group, right second period protocol group. 16/23

24 Multi-state modeling: transition probabilities Fixing a starting time of s= period protocol period protocol Home Probability Probability Home 0.2 Death 0.2 Death Hospital 0.0 ICU Days from ICU entrance Days from ICU entrance Hospital ICU Figure: Transition probabilities, starting in state 1 (ICU) at time 0.5, i.e. P 1j (0.5, t), for all j = 1, 2, 3, 4 and t 0. Left first period protocol group, right second period protocol group. 17/23

25 Multi-state modeling: transition probabilities Fixing a starting time of s=0.5 and t=21 days, 3 weeks period protocol period protocol Home Probability Probability Home 0.2 Death 0.2 Death Hospital 0.0 ICU Days from ICU entrance Days from ICU entrance Hospital ICU Figure: Transition probabilities, starting in state 1 (ICU) at time 0.5, i.e. P 1j (0.5, t) for all j = 1, 2, 3, 4 and t 0. Left first period protocol group, right second period protocol group. 17/23

26 Multi-state modeling: transition probabilities period protocol period protocol I H D Rec. I H ˆP(0.5, 21) = D Rec I H D Rec. I H ˆP(0.5, 21) = D Rec I H D Rec. I H s.e. : D Rec I H D Rec. I H s.e. : D Rec Via msfit() and probtrans() functions from mstate R package 18/23

27 Multi-state modeling: transition probabilities Another representation, period protocol period protocol ICU Hospital Death Home ICU Hospital Death Home Probability Probability Days from ICU entrance Days from ICU entrance Figure: Transition probabilities, starting in state 1 (ICU) at time 0.5, i.e. P 1j (0.5, t) for all j = 1, 2, 3, 4 and t 0. Left first period protocol group, right second period protocol group. 19/23

28 Future work Fit a model to: determine those risk factors that have a stronger influence in the course of patients with AP. Prediction. Develop a predictive process to obtain predictions of the clinical prognosis. Build up a shiny app. 20/23

29 Future work: fitting Semi-parametric approach, Cox models: (Semi-)Markov stratified hazards (Semi-)Markov proportional hazards ICU Hospital α 12 (t Z 12 ) = α 12,0 (t) exp(β T Z 12 ) α 12 (t Z 12 ) = α 12,0 (t) exp(β T Z 12 ) ICU Death α 13 (t Z 13 ) = α 13,0 (t) exp(β T Z 13 ) α 13 (t Z 13 ) = α 3,0 (t) exp(β T Z 13 ) Hospital Death α 23 (t Z 23 ) = α 23,0 (t) exp(β T Z 23 ) α 23 (t Z 23 ) = α 3,0 (t) exp(β T Z 23 ) Hospital Home α 24 (t Z 24 ) = α 24,0 (t) exp(β T Z 24 ) α 24 (t Z 24 ) = α 24,0 (t) exp(β T Z 24 ) Covariates: period, age, bmi, gender, etiology, surgery, mechanical ventilation. Global covariates. Single effect estimate assumed to be common for all transitions. Transition-specific. Different covariate effect estimates accross all transition. 21/23

30 Future work: prediction Based on the best fit: estimate the conditional probability of some clinical feature event, given an history, and a set of values for prognostic factors Z of a patient. Given an alcoholic 67 years-old male patient who is in ICU since 10 days, what is the probability of being discharged 10 days later, i.e. after 20 days from admission? How does this probability compare to a baseline patient? 22/23

31 References Di M-Y., Liu H., Yang Z-Y., Bonis P. A., Tang J-L, Lau J.(2016) Prediction Models of Mortality in Acute Pancreatitis in Adults: A Systematic Review. Annals of Internal Medicine. 165(7): Forsmark C. E., Yadav D. (2016) Predicting the Prognosis of Acute Pancreatitis. Annals of Internal Medicine. 165(7): Meira-Machado L., Uña-Álvarez, J. De, Cadarso-Suárez, C., Andersen P. K. (2009). A multi-state model for the analysis of time-to-event data Stat. Methods Med Res. Vol. 18(2), Hougaard P. (2000) Analysis of multivariate survival data, Springer, Chapter 5. Porta N., Calle M. Luz, Malats N. and Gómez L. (2012). A dynamic model for the risk of bladder cancer progression. Statistics in Medicine. Vol. 31(3), Wreede L. C. de, Fiocco M. and Putter H. (2011).mstate: An R Package for the Analysis of Competing Risks and Multi-State Models. Journal of Statistical Software. Vol. 38(7), /23

32 Moltes gràcies!

33 Independent censoring? Watch out! Those censored individuals at time t are NOT representative for those still at risk at that time.

34 We should consider another state (Home): competing event of total recovery. A subject that is censored because of failure from a competing event risk, will with certainty NOT experience the event of interest.

35 Kaplan-Meier BIASED! It takes competing events as censored. Example The event of interest: the onset of a disease. Interested in: estimate F (t). Obviously, individuals may die without getting the disease. KM could consider death without the disease as independent censoring. An hypothetical population where individuals could not never die without the disease.

36 Make inference for disease risks and rates acknowledging the presence of the competing risks group group 1.0 Death 1.0 Death Probability Discharge Probability Discharge Days from ICU admission Days from ICU admission Figure: Cumulative incidence estimates of death and discharge, shown as survival and incidence curves, respectively; naïve Kaplan-Meier estimates are shown in grey

A multi-state model for the prognosis of non-mild acute pancreatitis

A multi-state model for the prognosis of non-mild acute pancreatitis A multi-state model for the prognosis of non-mild acute pancreatitis Lore Zumeta Olaskoaga 1, Felix Zubia Olaskoaga 2, Marta Bofill Roig 1, Guadalupe Gómez Melis 1 1 Universitat Politècnica de Catalunya

More information

Multi-state models: prediction

Multi-state models: prediction Department of Medical Statistics and Bioinformatics Leiden University Medical Center Course on advanced survival analysis, Copenhagen Outline Prediction Theory Aalen-Johansen Computational aspects Applications

More information

Philosophy and Features of the mstate package

Philosophy and Features of the mstate package Introduction Mathematical theory Practice Discussion Philosophy and Features of the mstate package Liesbeth de Wreede, Hein Putter Department of Medical Statistics and Bioinformatics Leiden University

More information

Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models

Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models 26 March 2014 Overview Continuously observed data Three-state illness-death General robust estimator Interval

More information

Multi-state Models: An Overview

Multi-state Models: An Overview Multi-state Models: An Overview Andrew Titman Lancaster University 14 April 2016 Overview Introduction to multi-state modelling Examples of applications Continuously observed processes Intermittently observed

More information

Journal of Statistical Software

Journal of Statistical Software JSS Journal of Statistical Software January 2011, Volume 38, Issue 7. http://www.jstatsoft.org/ mstate: An R Package for the Analysis of Competing Risks and Multi-State Models Liesbeth C. de Wreede Leiden

More information

A multistate additive relative survival semi-markov model

A multistate additive relative survival semi-markov model 46 e Journées de Statistique de la SFdS A multistate additive semi-markov Florence Gillaizeau,, & Etienne Dantan & Magali Giral, & Yohann Foucher, E-mail: florence.gillaizeau@univ-nantes.fr EA 4275 - SPHERE

More information

Multi-state models: a flexible approach for modelling complex event histories in epidemiology

Multi-state models: a flexible approach for modelling complex event histories in epidemiology Multi-state models: a flexible approach for modelling complex event histories in epidemiology Ahmadou Alioum Centre de Recherche INSERM U897 "Epidémiologie et Biostatistique Institut de Santé Publique,

More information

Nonparametric Model Construction

Nonparametric Model Construction Nonparametric Model Construction Chapters 4 and 12 Stat 477 - Loss Models Chapters 4 and 12 (Stat 477) Nonparametric Model Construction Brian Hartman - BYU 1 / 28 Types of data Types of data For non-life

More information

Understanding product integration. A talk about teaching survival analysis.

Understanding product integration. A talk about teaching survival analysis. Understanding product integration. A talk about teaching survival analysis. Jan Beyersmann, Arthur Allignol, Martin Schumacher. Freiburg, Germany DFG Research Unit FOR 534 jan@fdm.uni-freiburg.de It is

More information

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL The Cox PH model: λ(t Z) = λ 0 (t) exp(β Z). How do we estimate the survival probability, S z (t) = S(t Z) = P (T > t Z), for an individual with covariates

More information

Ph.D. course: Regression models. Introduction. 19 April 2012

Ph.D. course: Regression models. Introduction. 19 April 2012 Ph.D. course: Regression models Introduction PKA & LTS Sect. 1.1, 1.2, 1.4 19 April 2012 www.biostat.ku.dk/~pka/regrmodels12 Per Kragh Andersen 1 Regression models The distribution of one outcome variable

More information

Lecture 7 Time-dependent Covariates in Cox Regression

Lecture 7 Time-dependent Covariates in Cox Regression Lecture 7 Time-dependent Covariates in Cox Regression So far, we ve been considering the following Cox PH model: λ(t Z) = λ 0 (t) exp(β Z) = λ 0 (t) exp( β j Z j ) where β j is the parameter for the the

More information

Ph.D. course: Regression models. Regression models. Explanatory variables. Example 1.1: Body mass index and vitamin D status

Ph.D. course: Regression models. Regression models. Explanatory variables. Example 1.1: Body mass index and vitamin D status Ph.D. course: Regression models Introduction PKA & LTS Sect. 1.1, 1.2, 1.4 25 April 2013 www.biostat.ku.dk/~pka/regrmodels13 Per Kragh Andersen Regression models The distribution of one outcome variable

More information

Estimating transition probabilities for the illness-death model The Aalen-Johansen estimator under violation of the Markov assumption Torunn Heggland

Estimating transition probabilities for the illness-death model The Aalen-Johansen estimator under violation of the Markov assumption Torunn Heggland Estimating transition probabilities for the illness-death model The Aalen-Johansen estimator under violation of the Markov assumption Torunn Heggland Master s Thesis for the degree Modelling and Data Analysis

More information

Direct likelihood inference on the cause-specific cumulative incidence function: a flexible parametric regression modelling approach

Direct likelihood inference on the cause-specific cumulative incidence function: a flexible parametric regression modelling approach Direct likelihood inference on the cause-specific cumulative incidence function: a flexible parametric regression modelling approach Sarwar I Mozumder 1, Mark J Rutherford 1, Paul C Lambert 1,2 1 Biostatistics

More information

Multistate models in survival and event history analysis

Multistate models in survival and event history analysis Multistate models in survival and event history analysis Dorota M. Dabrowska UCLA November 8, 2011 Research supported by the grant R01 AI067943 from NIAID. The content is solely the responsibility of the

More information

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 Department of Statistics North Carolina State University Presented by: Butch Tsiatis, Department of Statistics, NCSU

More information

MAS3301 / MAS8311 Biostatistics Part II: Survival

MAS3301 / MAS8311 Biostatistics Part II: Survival MAS3301 / MAS8311 Biostatistics Part II: Survival M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2009-10 1 13 The Cox proportional hazards model 13.1 Introduction In the

More information

Extensions of Cox Model for Non-Proportional Hazards Purpose

Extensions of Cox Model for Non-Proportional Hazards Purpose PhUSE Annual Conference 2013 Paper SP07 Extensions of Cox Model for Non-Proportional Hazards Purpose Author: Jadwiga Borucka PAREXEL, Warsaw, Poland Brussels 13 th - 16 th October 2013 Presentation Plan

More information

Estimating Causal Effects of Organ Transplantation Treatment Regimes

Estimating Causal Effects of Organ Transplantation Treatment Regimes Estimating Causal Effects of Organ Transplantation Treatment Regimes David M. Vock, Jeffrey A. Verdoliva Boatman Division of Biostatistics University of Minnesota July 31, 2018 1 / 27 Hot off the Press

More information

Analysis of competing risks data and simulation of data following predened subdistribution hazards

Analysis of competing risks data and simulation of data following predened subdistribution hazards Analysis of competing risks data and simulation of data following predened subdistribution hazards Bernhard Haller Institut für Medizinische Statistik und Epidemiologie Technische Universität München 27.05.2013

More information

I N S T I T U T D E S T A T I S T I Q U E B I O S T A T I S T I Q U E E T S C I E N C E S A C T U A R I E L L E S (I S B A)

I N S T I T U T D E S T A T I S T I Q U E B I O S T A T I S T I Q U E E T S C I E N C E S A C T U A R I E L L E S (I S B A) I N S T I T U T D E S T A T I S T I Q U E B I O S T A T I S T I Q U E E T S C I E N C E S A C T U A R I E L L E S (I S B A) UNIVERSITÉ CATHOLIQUE DE LOUVAIN D I S C U S S I O N P A P E R 153 ESTIMATION

More information

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements

[Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements [Part 2] Model Development for the Prediction of Survival Times using Longitudinal Measurements Aasthaa Bansal PhD Pharmaceutical Outcomes Research & Policy Program University of Washington 69 Biomarkers

More information

Multistate models and recurrent event models

Multistate models and recurrent event models Multistate models Multistate models and recurrent event models Patrick Breheny December 10 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/22 Introduction Multistate models In this final lecture,

More information

Package SimSCRPiecewise

Package SimSCRPiecewise Package SimSCRPiecewise July 27, 2016 Type Package Title 'Simulates Univariate and Semi-Competing Risks Data Given Covariates and Piecewise Exponential Baseline Hazards' Version 0.1.1 Author Andrew G Chapple

More information

Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model. Recap of Part 1. Per Kragh Andersen

Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model. Recap of Part 1. Per Kragh Andersen Recap of Part 1 Per Kragh Andersen Section of Biostatistics, University of Copenhagen DSBS Course Survival Analysis in Clinical Trials January 2018 1 / 65 Overview Definitions and examples Simple estimation

More information

Chapter 18. Sampling Distribution Models. Bin Zou STAT 141 University of Alberta Winter / 10

Chapter 18. Sampling Distribution Models. Bin Zou STAT 141 University of Alberta Winter / 10 Chapter 18 Sampling Distribution Models Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 10 Population VS Sample Example 18.1 Suppose a total of 10,000 patients in a hospital and

More information

3003 Cure. F. P. Treasure

3003 Cure. F. P. Treasure 3003 Cure F. P. reasure November 8, 2000 Peter reasure / November 8, 2000/ Cure / 3003 1 Cure A Simple Cure Model he Concept of Cure A cure model is a survival model where a fraction of the population

More information

Lecture 22 Survival Analysis: An Introduction

Lecture 22 Survival Analysis: An Introduction University of Illinois Department of Economics Spring 2017 Econ 574 Roger Koenker Lecture 22 Survival Analysis: An Introduction There is considerable interest among economists in models of durations, which

More information

Survival Analysis. 732G34 Statistisk analys av komplexa data. Krzysztof Bartoszek

Survival Analysis. 732G34 Statistisk analys av komplexa data. Krzysztof Bartoszek Survival Analysis 732G34 Statistisk analys av komplexa data Krzysztof Bartoszek (krzysztof.bartoszek@liu.se) 10, 11 I 2018 Department of Computer and Information Science Linköping University Survival analysis

More information

Multistate models and recurrent event models

Multistate models and recurrent event models and recurrent event models Patrick Breheny December 6 Patrick Breheny University of Iowa Survival Data Analysis (BIOS:7210) 1 / 22 Introduction In this final lecture, we will briefly look at two other

More information

STAT Section 2.1: Basic Inference. Basic Definitions

STAT Section 2.1: Basic Inference. Basic Definitions STAT 518 --- Section 2.1: Basic Inference Basic Definitions Population: The collection of all the individuals of interest. This collection may be or even. Sample: A collection of elements of the population.

More information

Survival Analysis I (CHL5209H)

Survival Analysis I (CHL5209H) Survival Analysis Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca January 7, 2015 31-1 Literature Clayton D & Hills M (1993): Statistical Models in Epidemiology. Not really

More information

2011/04 LEUKAEMIA IN WALES Welsh Cancer Intelligence and Surveillance Unit

2011/04 LEUKAEMIA IN WALES Welsh Cancer Intelligence and Surveillance Unit 2011/04 LEUKAEMIA IN WALES 1994-2008 Welsh Cancer Intelligence and Surveillance Unit Table of Contents 1 Definitions and Statistical Methods... 2 2 Results 7 2.1 Leukaemia....... 7 2.2 Acute Lymphoblastic

More information

Multivariate Survival Analysis

Multivariate Survival Analysis Multivariate Survival Analysis Previously we have assumed that either (X i, δ i ) or (X i, δ i, Z i ), i = 1,..., n, are i.i.d.. This may not always be the case. Multivariate survival data can arise in

More information

Survival Analysis Math 434 Fall 2011

Survival Analysis Math 434 Fall 2011 Survival Analysis Math 434 Fall 2011 Part IV: Chap. 8,9.2,9.3,11: Semiparametric Proportional Hazards Regression Jimin Ding Math Dept. www.math.wustl.edu/ jmding/math434/fall09/index.html Basic Model Setup

More information

Modeling Prediction of the Nosocomial Pneumonia with a Multistate model

Modeling Prediction of the Nosocomial Pneumonia with a Multistate model Modeling Prediction of the Nosocomial Pneumonia with a Multistate model M.Nguile Makao 1 PHD student Director: J.F. Timsit 2 Co-Directors: B Liquet 3 & J.F. Coeurjolly 4 1 Team 11 Inserm U823-Joseph Fourier

More information

Survival Analysis. Stat 526. April 13, 2018

Survival Analysis. Stat 526. April 13, 2018 Survival Analysis Stat 526 April 13, 2018 1 Functions of Survival Time Let T be the survival time for a subject Then P [T < 0] = 0 and T is a continuous random variable The Survival function is defined

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY OF CALIFORNIA, SAN DIEGO Estimation of the primary hazard ratio in the presence of a secondary covariate with non-proportional hazards An undergraduate honors thesis submitted to the Department

More information

Instrumental variables estimation in the Cox Proportional Hazard regression model

Instrumental variables estimation in the Cox Proportional Hazard regression model Instrumental variables estimation in the Cox Proportional Hazard regression model James O Malley, Ph.D. Department of Biomedical Data Science The Dartmouth Institute for Health Policy and Clinical Practice

More information

Pricing and Risk Analysis of a Long-Term Care Insurance Contract in a non-markov Multi-State Model

Pricing and Risk Analysis of a Long-Term Care Insurance Contract in a non-markov Multi-State Model Pricing and Risk Analysis of a Long-Term Care Insurance Contract in a non-markov Multi-State Model Quentin Guibert Univ Lyon, Université Claude Bernard Lyon 1, ISFA, Laboratoire SAF EA2429, F-69366, Lyon,

More information

Censoring and Truncation - Highlighting the Differences

Censoring and Truncation - Highlighting the Differences Censoring and Truncation - Highlighting the Differences Micha Mandel The Hebrew University of Jerusalem, Jerusalem, Israel, 91905 July 9, 2007 Micha Mandel is a Lecturer, Department of Statistics, The

More information

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Xuelin Huang Department of Biostatistics M. D. Anderson Cancer Center The University of Texas Joint Work with Jing Ning, Sangbum

More information

Lecture 9. Statistics Survival Analysis. Presented February 23, Dan Gillen Department of Statistics University of California, Irvine

Lecture 9. Statistics Survival Analysis. Presented February 23, Dan Gillen Department of Statistics University of California, Irvine Statistics 255 - Survival Analysis Presented February 23, 2016 Dan Gillen Department of Statistics University of California, Irvine 9.1 Survival analysis involves subjects moving through time Hazard may

More information

Multistate Modeling and Applications

Multistate Modeling and Applications Multistate Modeling and Applications Yang Yang Department of Statistics University of Michigan, Ann Arbor IBM Research Graduate Student Workshop: Statistics for a Smarter Planet Yang Yang (UM, Ann Arbor)

More information

4. Comparison of Two (K) Samples

4. Comparison of Two (K) Samples 4. Comparison of Two (K) Samples K=2 Problem: compare the survival distributions between two groups. E: comparing treatments on patients with a particular disease. Z: Treatment indicator, i.e. Z = 1 for

More information

Long-Term Care with Multi-State Models

Long-Term Care with Multi-State Models Long-Term Care with Multi-State Models Quentin Guibert ISFA, Université de Lyon, Université Claude-Bernard Lyon-I Autorité de Contrôle Prudentiel et de Résolution Email: quentin.guibert@acpr.banque-france.fr

More information

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What? You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?) I m not goin stop (What?) I m goin work harder (What?) Sir David

More information

Log-linearity for Cox s regression model. Thesis for the Degree Master of Science

Log-linearity for Cox s regression model. Thesis for the Degree Master of Science Log-linearity for Cox s regression model Thesis for the Degree Master of Science Zaki Amini Master s Thesis, Spring 2015 i Abstract Cox s regression model is one of the most applied methods in medical

More information

Session 9: Introduction to Sieve Analysis of Pathogen Sequences, for Assessing How VE Depends on Pathogen Genomics Part I

Session 9: Introduction to Sieve Analysis of Pathogen Sequences, for Assessing How VE Depends on Pathogen Genomics Part I Session 9: Introduction to Sieve Analysis of Pathogen Sequences, for Assessing How VE Depends on Pathogen Genomics Part I Peter B Gilbert Vaccine and Infectious Disease Division, Fred Hutchinson Cancer

More information

Frailty Models and Copulas: Similarities and Differences

Frailty Models and Copulas: Similarities and Differences Frailty Models and Copulas: Similarities and Differences KLARA GOETHALS, PAUL JANSSEN & LUC DUCHATEAU Department of Physiology and Biometrics, Ghent University, Belgium; Center for Statistics, Hasselt

More information

Estimation for Modified Data

Estimation for Modified Data Definition. Estimation for Modified Data 1. Empirical distribution for complete individual data (section 11.) An observation X is truncated from below ( left truncated) at d if when it is at or below d

More information

NONPARAMETRIC ADJUSTMENT FOR MEASUREMENT ERROR IN TIME TO EVENT DATA: APPLICATION TO RISK PREDICTION MODELS

NONPARAMETRIC ADJUSTMENT FOR MEASUREMENT ERROR IN TIME TO EVENT DATA: APPLICATION TO RISK PREDICTION MODELS BIRS 2016 1 NONPARAMETRIC ADJUSTMENT FOR MEASUREMENT ERROR IN TIME TO EVENT DATA: APPLICATION TO RISK PREDICTION MODELS Malka Gorfine Tel Aviv University, Israel Joint work with Danielle Braun and Giovanni

More information

Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation

Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation Patrick J. Heagerty PhD Department of Biostatistics University of Washington 166 ISCB 2010 Session Four Outline Examples

More information

Empirical Processes & Survival Analysis. The Functional Delta Method

Empirical Processes & Survival Analysis. The Functional Delta Method STAT/BMI 741 University of Wisconsin-Madison Empirical Processes & Survival Analysis Lecture 3 The Functional Delta Method Lu Mao lmao@biostat.wisc.edu 3-1 Objectives By the end of this lecture, you will

More information

Direct likelihood inference on the cause-specific cumulative incidence function: a flexible parametric regression modelling approach

Direct likelihood inference on the cause-specific cumulative incidence function: a flexible parametric regression modelling approach Research Article Received XXXX (www.interscience.wiley.com) DOI: 10.1002/sim.0000 Direct likelihood inference on the cause-specific cumulative incidence function: a flexible parametric regression modelling

More information

Multivariate Survival Data With Censoring.

Multivariate Survival Data With Censoring. 1 Multivariate Survival Data With Censoring. Shulamith Gross and Catherine Huber-Carol Baruch College of the City University of New York, Dept of Statistics and CIS, Box 11-220, 1 Baruch way, 10010 NY.

More information

DAGStat Event History Analysis.

DAGStat Event History Analysis. DAGStat 2016 Event History Analysis Robin.Henderson@ncl.ac.uk 1 / 75 Schedule 9.00 Introduction 10.30 Break 11.00 Regression Models, Frailty and Multivariate Survival 12.30 Lunch 13.30 Time-Variation and

More information

Incorporation of nested frailties into multi-state models with an application to event-history analysis for multicenter clinical trials

Incorporation of nested frailties into multi-state models with an application to event-history analysis for multicenter clinical trials Incorporation of nested frailties into multi-state models with an application to event-history analysis for multicenter clinical trials Federico Rotolo? [federico.rotolo@stat.unipd.it] Catherine Legrand

More information

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks Y. Xu, D. Scharfstein, P. Mueller, M. Daniels Johns Hopkins, Johns Hopkins, UT-Austin, UF JSM 2018, Vancouver 1 What are semi-competing

More information

Estimation of Conditional Kendall s Tau for Bivariate Interval Censored Data

Estimation of Conditional Kendall s Tau for Bivariate Interval Censored Data Communications for Statistical Applications and Methods 2015, Vol. 22, No. 6, 599 604 DOI: http://dx.doi.org/10.5351/csam.2015.22.6.599 Print ISSN 2287-7843 / Online ISSN 2383-4757 Estimation of Conditional

More information

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models

Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Individualized Treatment Effects with Censored Data via Nonparametric Accelerated Failure Time Models Nicholas C. Henderson Thomas A. Louis Gary Rosner Ravi Varadhan Johns Hopkins University July 31, 2018

More information

Scalable Joint Modeling of Longitudinal and Point Process Data:

Scalable Joint Modeling of Longitudinal and Point Process Data: Scalable Joint Modeling of Longitudinal and Point Process Data: Disease Trajectory Prediction and Improving Management of Chronic Kidney Disease Joe Futoma (jdf38@duke.edu) UAI Bayesian Applications Workshop,

More information

Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification. Todd MacKenzie, PhD

Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification. Todd MacKenzie, PhD Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification Todd MacKenzie, PhD Collaborators A. James O Malley Tor Tosteson Therese Stukel 2 Overview 1. Instrumental variable

More information

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES Cox s regression analysis Time dependent explanatory variables Henrik Ravn Bandim Health Project, Statens Serum Institut 4 November 2011 1 / 53

More information

Presmoothing the transition probabilities in the illness-death model

Presmoothing the transition probabilities in the illness-death model Presmoothing the transition probabilities in the illness-death model Ana Paula Amorim, Jacobo De Uña-Álvarez, Luís Meira-Machado To cite this version: Ana Paula Amorim, Jacobo De Uña-Álvarez, Luís Meira-Machado.

More information

Lecture 11. Interval Censored and. Discrete-Time Data. Statistics Survival Analysis. Presented March 3, 2016

Lecture 11. Interval Censored and. Discrete-Time Data. Statistics Survival Analysis. Presented March 3, 2016 Statistics 255 - Survival Analysis Presented March 3, 2016 Motivating Dan Gillen Department of Statistics University of California, Irvine 11.1 First question: Are the data truly discrete? : Number of

More information

Lecture 4 - Survival Models

Lecture 4 - Survival Models Lecture 4 - Survival Models Survival Models Definition and Hazards Kaplan Meier Proportional Hazards Model Estimation of Survival in R GLM Extensions: Survival Models Survival Models are a common and incredibly

More information

An Overview of Methods for Applying Semi-Markov Processes in Biostatistics.

An Overview of Methods for Applying Semi-Markov Processes in Biostatistics. An Overview of Methods for Applying Semi-Markov Processes in Biostatistics. Charles J. Mode Department of Mathematics and Computer Science Drexel University Philadelphia, PA 19104 Overview of Topics. I.

More information

Joint Modeling of Longitudinal Item Response Data and Survival

Joint Modeling of Longitudinal Item Response Data and Survival Joint Modeling of Longitudinal Item Response Data and Survival Jean-Paul Fox University of Twente Department of Research Methodology, Measurement and Data Analysis Faculty of Behavioural Sciences Enschede,

More information

Chapter 4 Fall Notations: t 1 < t 2 < < t D, D unique death times. d j = # deaths at t j = n. Y j = # at risk /alive at t j = n

Chapter 4 Fall Notations: t 1 < t 2 < < t D, D unique death times. d j = # deaths at t j = n. Y j = # at risk /alive at t j = n Bios 323: Applied Survival Analysis Qingxia (Cindy) Chen Chapter 4 Fall 2012 4.2 Estimators of the survival and cumulative hazard functions for RC data Suppose X is a continuous random failure time with

More information

A GENERALIZED ADDITIVE REGRESSION MODEL FOR SURVIVAL TIMES 1. By Thomas H. Scheike University of Copenhagen

A GENERALIZED ADDITIVE REGRESSION MODEL FOR SURVIVAL TIMES 1. By Thomas H. Scheike University of Copenhagen The Annals of Statistics 21, Vol. 29, No. 5, 1344 136 A GENERALIZED ADDITIVE REGRESSION MODEL FOR SURVIVAL TIMES 1 By Thomas H. Scheike University of Copenhagen We present a non-parametric survival model

More information

9 Estimating the Underlying Survival Distribution for a

9 Estimating the Underlying Survival Distribution for a 9 Estimating the Underlying Survival Distribution for a Proportional Hazards Model So far the focus has been on the regression parameters in the proportional hazards model. These parameters describe the

More information

A comparison of methods to estimate time-dependent correlated gamma frailty models

A comparison of methods to estimate time-dependent correlated gamma frailty models DEPARTMENT OF MATHEMATICS MASTER THESIS APPLIED MATHEMATICS A comparison of methods to estimate time-dependent correlated gamma frailty models Author: Frank W.N. Boesten Thesis Advisor: Dr. M. Fiocco (MI

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 4: and multivariable regression Fatma Shebl, MD, MS, MPH, PhD Assistant Professor Chronic Disease Epidemiology Department Yale School of Public Health Fatma.shebl@yale.edu

More information

1 The problem of survival analysis

1 The problem of survival analysis 1 The problem of survival analysis Survival analysis concerns analyzing the time to the occurrence of an event. For instance, we have a dataset in which the times are 1, 5, 9, 20, and 22. Perhaps those

More information

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model Other Survival Models (1) Non-PH models We briefly discussed the non-proportional hazards (non-ph) model λ(t Z) = λ 0 (t) exp{β(t) Z}, where β(t) can be estimated by: piecewise constants (recall how);

More information

JOINT STRATEGIC NEEDS ASSESSMENT (JSNA) Key findings from the Leicestershire JSNA and Charnwood summary

JOINT STRATEGIC NEEDS ASSESSMENT (JSNA) Key findings from the Leicestershire JSNA and Charnwood summary JOINT STRATEGIC NEEDS ASSESSMENT (JSNA) Key findings from the Leicestershire JSNA and Charnwood summary 1 What is a JSNA? Joint Strategic Needs Assessment (JSNA) identifies the big picture in terms of

More information

Logistic regression model for survival time analysis using time-varying coefficients

Logistic regression model for survival time analysis using time-varying coefficients Logistic regression model for survival time analysis using time-varying coefficients Accepted in American Journal of Mathematical and Management Sciences, 2016 Kenichi SATOH ksatoh@hiroshima-u.ac.jp Research

More information

Parametric and Non Homogeneous semi-markov Process for HIV Control

Parametric and Non Homogeneous semi-markov Process for HIV Control Parametric and Non Homogeneous semi-markov Process for HIV Control Eve Mathieu 1, Yohann Foucher 1, Pierre Dellamonica 2, and Jean-Pierre Daures 1 1 Clinical Research University Institute. Biostatistics

More information

Longitudinal breast density as a marker of breast cancer risk

Longitudinal breast density as a marker of breast cancer risk Longitudinal breast density as a marker of breast cancer risk C. Armero (1), M. Rué (2), A. Forte (1), C. Forné (2), H. Perpiñán (1), M. Baré (3), and G. Gómez (4) (1) BIOstatnet and Universitat de València,

More information

Journal of Statistical Software

Journal of Statistical Software JSS Journal of Statistical Software January 2011, Volume 38, Issue 2. http://www.jstatsoft.org/ Analyzing Competing Risk Data Using the R timereg Package Thomas H. Scheike University of Copenhagen Mei-Jie

More information

Optimal Treatment Regimes for Survival Endpoints from a Classification Perspective. Anastasios (Butch) Tsiatis and Xiaofei Bai

Optimal Treatment Regimes for Survival Endpoints from a Classification Perspective. Anastasios (Butch) Tsiatis and Xiaofei Bai Optimal Treatment Regimes for Survival Endpoints from a Classification Perspective Anastasios (Butch) Tsiatis and Xiaofei Bai Department of Statistics North Carolina State University 1/35 Optimal Treatment

More information

Longitudinal + Reliability = Joint Modeling

Longitudinal + Reliability = Joint Modeling Longitudinal + Reliability = Joint Modeling Carles Serrat Institute of Statistics and Mathematics Applied to Building CYTED-HAROSA International Workshop November 21-22, 2013 Barcelona Mainly from Rizopoulos,

More information

CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity. Outline:

CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity. Outline: CASE STUDY: Bayesian Incidence Analyses from Cross-Sectional Data with Multiple Markers of Disease Severity Outline: 1. NIEHS Uterine Fibroid Study Design of Study Scientific Questions Difficulties 2.

More information

Cairns Hospital: Suspected Acute Coronary Syndrome Pathways. DO NOT USE if a non cardiac cause for the chest pain can be diagnosed

Cairns Hospital: Suspected Acute Coronary Syndrome Pathways. DO NOT USE if a non cardiac cause for the chest pain can be diagnosed Cairns Hospital: Suspected Acute Coronary Syndrome Pathways DO NOT USE if a non cardiac cause for the chest pain can be diagnosed Clinical pathways never replace clinical judgement. Care outlined on this

More information

Frailty Modeling for clustered survival data: a simulation study

Frailty Modeling for clustered survival data: a simulation study Frailty Modeling for clustered survival data: a simulation study IAA Oslo 2015 Souad ROMDHANE LaREMFiQ - IHEC University of Sousse (Tunisia) souad_romdhane@yahoo.fr Lotfi BELKACEM LaREMFiQ - IHEC University

More information

Concepts and Tests for Trend in Recurrent Event Processes

Concepts and Tests for Trend in Recurrent Event Processes JIRSS (2013) Vol. 12, No. 1, pp 35-69 Concepts and Tests for Trend in Recurrent Event Processes R. J. Cook, J. F. Lawless Department of Statistics and Actuarial Science, University of Waterloo, Ontario,

More information

Survival Regression Models

Survival Regression Models Survival Regression Models David M. Rocke May 18, 2017 David M. Rocke Survival Regression Models May 18, 2017 1 / 32 Background on the Proportional Hazards Model The exponential distribution has constant

More information

POWER AND SAMPLE SIZE DETERMINATIONS IN DYNAMIC RISK PREDICTION. by Zhaowen Sun M.S., University of Pittsburgh, 2012

POWER AND SAMPLE SIZE DETERMINATIONS IN DYNAMIC RISK PREDICTION. by Zhaowen Sun M.S., University of Pittsburgh, 2012 POWER AND SAMPLE SIZE DETERMINATIONS IN DYNAMIC RISK PREDICTION by Zhaowen Sun M.S., University of Pittsburgh, 2012 B.S.N., Wuhan University, China, 2010 Submitted to the Graduate Faculty of the Graduate

More information

Analysing longitudinal data when the visit times are informative

Analysing longitudinal data when the visit times are informative Analysing longitudinal data when the visit times are informative Eleanor Pullenayegum, PhD Scientist, Hospital for Sick Children Associate Professor, University of Toronto eleanor.pullenayegum@sickkids.ca

More information

Distributed analysis in multi-center studies

Distributed analysis in multi-center studies Distributed analysis in multi-center studies Sharing of individual-level data across health plans or healthcare delivery systems continues to be challenging due to concerns about loss of patient privacy,

More information

Cox s proportional hazards model and Cox s partial likelihood

Cox s proportional hazards model and Cox s partial likelihood Cox s proportional hazards model and Cox s partial likelihood Rasmus Waagepetersen October 12, 2018 1 / 27 Non-parametric vs. parametric Suppose we want to estimate unknown function, e.g. survival function.

More information

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data Malaysian Journal of Mathematical Sciences 11(3): 33 315 (217) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Approximation of Survival Function by Taylor

More information

Lecture 5 Models and methods for recurrent event data

Lecture 5 Models and methods for recurrent event data Lecture 5 Models and methods for recurrent event data Recurrent and multiple events are commonly encountered in longitudinal studies. In this chapter we consider ordered recurrent and multiple events.

More information

Time-dependent covariates

Time-dependent covariates Time-dependent covariates Rasmus Waagepetersen November 5, 2018 1 / 10 Time-dependent covariates Our excursion into the realm of counting process and martingales showed that it poses no problems to introduce

More information

Parametric multistate survival analysis: New developments

Parametric multistate survival analysis: New developments Parametric multistate survival analysis: New developments Michael J. Crowther Biostatistics Research Group Department of Health Sciences University of Leicester, UK michael.crowther@le.ac.uk Victorian

More information

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology Group Sequential Tests for Delayed Responses Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Lisa Hampson Department of Mathematics and Statistics,

More information