Lecture 5 Models and methods for recurrent event data

Size: px
Start display at page:

Download "Lecture 5 Models and methods for recurrent event data"

Transcription

1 Lecture 5 Models and methods for recurrent event data Recurrent and multiple events are commonly encountered in longitudinal studies. In this chapter we consider ordered recurrent and multiple events. Recurrent events (focused topic) - time-to-events model (point process model) - time-between-events model (gap times model) - e.g. repeated infections/hospitalizations/tumor occurrences Ordered multiple events - HIV AIDS death - birth onset age of a genetic disease death - disease staging I II III IV Unordered multiple events

2 Time-to-events and time-between-events models Time-to-events models - Interest focuses on occurrence rate of recurrent events over time. - Time is measured from time-origin to events. - Time-origin could be a fixed calendar time, onset of treatment, or a biological event. - Outcome variables of interest are gap times between events. - This type of models are more relevant when cycling pattern of recurrent events is strong; for example, women s menstrual cycles.

3 5.1 Time-to-events models Consider a continuous point process N(t), where N(t) represents the number of events occurring at or prior to t, 0 t τ. Intensity function. Intensity function of a continuous point process in [0, τ] is conventionally defined as the occurrence rate of events given the event history, λ(t N H (t)) = lim t 0 + Pr(N(t + ) N(t) > 0 N H (t)), where N H (t) = {N(u) : 0 u t} represents the history of the point process before or at t, t [0, τ].

4 Remarks - The intensity function uniquely determines the probability structure of the point process under regularity conditions. - For recurrent events, the so-called conditional regression models are constructed on the basis of the intensity function.

5 Rate function. In contrast with the conditional interpretation of the intensity function, a rate function λ(t), t [0, τ], is defined as the average number of events in unit time at t for subjects in the random population. More precisely, λ(t) = Pr(N(t + ) N(t) > 0) lim 0 + namely, the occurrence rate at t unconditionally on the event history H(t).,

6 Remarks - In general, a rate function itself does not fully determine the probability structure of the point process. - The rate function is conceptually and quantitatively different from the intensity function, and it coincide with the intensity function only when the process is memoryless. - For recurrent events, the so-called marginal regression models are constructed on the basis of the rate function

7 Define the cumulative rate function as Λ(t) = t 0 λ(u)du, t [0, T 0 ]. The CRF Λ(t) is also expectation of the number of recurrent events occurring in [0, t]. Note that E[N(t)] = Λ(t) we frequently write E[dN(t)] = λ(t)dt

8 5.1.1 Poisson process models Poisson process is a counting process model for multiple events occurring over a fixed time interval [0, τ], τ > 0. The Poisson distribution is the probability distribution for the total number of events, M. The Poisson distribution is sometimes used for modelling a count variable in other situations.

9 A point process is a stationary Poisson process if the following three conditions are satisfied (sketch): 1. The probability that exactly one event occurs in a small interval [t, t + h] is approximately λh, where λ is called the intensity (or rate) of events, λ > The probability that 2 or more events occur at the same time is approximately The numbers of events in disjoint regions are independent. ( ) Let µ = λτ > 0. The pdf of M is f M (m) = e µ µ m, m = 0, 1, 2,.... A Poisson process is called a non-stationary Poisson process if the occurrence rate, λ(t), is time dependent. m!

10 5.1.2 Nonparametric estimation of CRF Data. Let t i1 t i,mi be the ordered event times with m i defined as the index for the last observed event. The observed data include {(m i, c i, t i1,..., t i,mi ) : i = 1,..., n}. Population. Note that for a single event process (univariate survival time), the risk population at t is composed of subjects who have not failed prior to t, thus the risk population varies with different values of t. In contrast, for a recurrent event process, the risk population at different t s always coincides with the target population defined at 0. Risk set. Let C i represent the terminating time (censoring time) for observing N(t). The risk set at t is defined as {i : C i t} which includes subjects who are under observation at t. Define R i (t) = I(C i > t) as the risk-set indicator, and R(t) = n i=1 R i(t). Independent censoring. If C i is independent of N i ( ), the risk set forms a random sample from the risk population at t.

11 Under independent censoring assumption, for t > 0 and positive-valued but small, a crude estimate of the occurrence probability in (t, t] can constructed as λ(t) n i=1 mi j=1 I(t ij (t, t]) R(t), (1) with I( ) representing the indicator function. The estimate is essentially an empirical measure with time-dependent sample size R(t). A nonparametric estimate of the CRF corresponding to (1) can then be constructed as ˆΛ(t) = n m i i=1 j=1 I(t ij t) R(t ij ). (2) Nelson (88, JQT; 95, Technometrics)

12 5.1.3 Conditional Regression Models Anderson and Gill (1982, AS) proposed a time-to-events model which extended Cox s proportional hazards model from single event data to recurrent event data. Suppose the dates of recurrent events are recorded with a continuous scale (e.g., by days or weeks), and the outcome measures of interest are recurrent events occurring in the time interval [0, τ], where the constant τ > 0 is determined with the knowledge that recurrent events could potentially be observed up to τ, say 3 years. Let N H (t) be the recurrent event history and Z H (t) the possibly time-dependent covariate history prior to t. For t [0, τ], the AG model assumes the events occur over time with the occurrence rate λ(t N H (t), Z H (t)) = λ 0 (t)exp{x(t)β}, (3) where X(t) = φ(n H (t), Z H (t)) is a transformation of (N H (t), Z H (t))

13 Pros and cons of conditional regression model (i) The AG model can be thought of as a predicting model since the event history is included as a part of conditional statistics in the rate function. (ii) Use of the AG model to identify treatment effects is subject to constraints, since the model identifies treatment effects adjusted for subject-specific event history. In general, AG model is not ideal for identifying treatment effects or population risks. (iii) If the AG model chooses to use time-independent covariate, X(t) = X, the model is then required to be memoryless. For example, two subjects with the same X but different event histories would predict the same occurrence rate of events. Thus, if X =treatment indicator, two patients who receive the same treatment but have different hospitalization records would have the same level of risk for rehospitalization according to the AG model.

14 Statistical methods for conditional regression model AG extended the partial likelihood methods from univariate survival data to recurrent event data. The partial likelihood score function for β 0 can be derived as U(β, t) = n i=1 t 0 {X i (u) X(β, u)}dn i (u) (4) where Z(β, n i=1 t) = Ri(t)Xi(t) exp{βt 0 Xi(t)} n i=1 Ri(t) exp{βt 0 Xi(t)}. Martingale theory was also developed to establish the large sample properties (as an extension of martingale theory for univariate survival analysis).

15 5.1.4 Marginal Regression Models In stead of the conditional regression model, we may consider a marginal model where the event history, N(t), is not included as part of the conditional statistics: λ(t Z(t)) = λ 0 (t)exp{z(t)β}. The marginal model is generally ideal for identifying treatment effects and risk factors, but the estimation procedure of LWYY depends heavily on the independent censoring assumption. The LWYY estimates could be very biased when the follow-up is terminated by reasons associated with the recurrent events such as informative drop-out or death. Statistical inferences can be found in the articles of Pepe and Cai (1993, JASA) and Lin et al. (Huang, 2000, JRSS-B).

16 5.1.5 Semi-parametric latent variable models. With intension to deal with censoring due to death or informative drop-out, Wang et al. (2001, JASA) proposed a semi-parametric latent variable model for time-to-events data: λ(t Z, X) = Z λ 0 (t)exp{xβ} The model allows for informative censoring through the use of a latent variable. The model implies the marginal rate model λ(t X = x) = λ 0(t)exp{xβ}. where λ 0(t) = E[Z] λ 0 (t). The model has the feature of treating both the censoring and latent variable distributions as nonparametric components. The approach avoids modeling and estimating these nonparametric components by proper conditional likelihood techniques. As a related work, a joint model for recurrent events and a failure time was proposed and studied by Huang and Wang (2004, JASA).

17 5.2 Suppose the outcome measure of interest is time between successive events (gap time). When time-between-events is the variable of interest, the occurrence of each recurrent event is considered as the time origin for the occurrence of the next event. Recurrence times could be considered as a type of correlated failure time data in survival analysis. This type of correlated data are, however, different from the correlated data collected from families (e.g., twin data or sibling data) due to the ordering nature of recurrent events.

18 5.2.1 Specific features of data Informative m. For typical multivariate survival data such as family data, cluster size is usually assumed to be uncorrelated with failure times of a cluster. For recurrence time data, the number of recurrent events, m, is typically correlated with recurrence times in follow-up studies - large m is likely to imply shorter times and vice versa. In some applications, m is even used as the outcome measurement for analysis; e.g., in a Poisson model, m is the Poisson count variable. Induced informative censoring. Induced informative censoring is a special feature for ordered events. When the observation of the recurrent event process is censored at C, the censoring time for T j is max{c j 1 k=1 Y k, 0}, for each j = 2, 3,.... Because j 1 k=1 Y k is correlated with T j for j 2, recurrence times of order greater than one are observed subject to informative censoring even if the censoring time C is independent of N( ).

19 Intercepted sampling. The intercepted sampling is a well-known probability feature of renewal processes. It is a specific feature of recurrence time data because the sampling scheme to observe recurrence times in longitudinal studies is similar to the intercepted sampling of renewal processes. For simplicity of understanding, assume the recurrence times {Y j : j = 1, 2,...} are independent and identically distributed (iid). Let f, S and µ represent the density function, survival function and mean of Y j. Let T = C T m and R = T m+1 C be the so-called backward and forward recurrence times. When the censoring time, C, is sufficiently large so that an equilibrium condition is reached, the joint density of (T, R) can then be derived as p T,R (t, r) = f(t + r)i(t 0, r 0)/µ. (5)

20 The marginal density functions of Y, T and R can be derived, based on (1), as p Ym+1 (y) = yf(y)i(y 0)/µ, (6) p T (t) = S(t)I(t 0)/µ, (7) p R (r) = S(r)I(r 0)/µ. (8) The distribution of Y m+1 is referred to as the length-biased distribution. In most of the longitudinal studies, however, the censoring time is not very large and therefore the equilibrium condition is not satisfied. In these cases, although the above distributional results do not hold, the bias from Y m+1 is still significant and one should be careful when conducting statistical analysis. In general, because of the specific data features, standard statistical methods in survival analysis may or may not be appropriate for recurrence time data.

21 5.2.2 Transitional probability Model Let f j (y y i1,..., y i,j 1 ) denote the pdf of Y ij conditioning on (Y i1,..., Y i,j 1 ) = (y i1,..., y i,j 1 ). Suppose the censoring time C i is independent of the recurrent event process N i ( ). Note that the likelihood function is L n m i { f j (y ij y i1,..., y i,j 1 )}S mi+1(y + i,m y i+1 i1,..., y i,mi ) i=1 j=1 A transitional probability model can be constructed by placing distributional assumptions on the conditional probability f j (y y i1,..., y i,j 1 ). In applications, when a transitional probability model is used, it is frequently accompanied by a further 1st-order (or 2nd-order) markovian assumption that the conditional pdf of Y ij depends on (Y i1,..., Y i,j 1 ) only through Y i,j 1.

22 In a regression setting, when covariates x i is present, we assume that conditioning on x i the censoring time C i is independent of N i ( ). The likelihood function is modified as L n m i { f j (y ij x i, y i1,..., y i,j 1 )}S mi+1(y + i,m x i+1 i, y i1,..., y i,mi ) i=1 j=1

23 5.2.3 Parametric Frailty Model Frailty models are basically random-effects or latent-variable models, where the frailty is used to characterize a subject. Assume the following conditions: (i) Conditional on a subject-specific latent variable Z = z, the recurrence times {Y j : j = 1, 2,...} are independent. (ii) (Independent censoring) C and (N( ), Z) are independent. (iii) (Distributional assumption) Conditional on Z = z, Y j is distributed with pdf f j (y z; θ), θ Θ. The latent variable Z is distributed with pdf h(z; γ), γ Γ.

24 With Assumptions (i), (ii) and (iii), the likelihood function from the data can be formulated as L n i=1 f j (y ij z i ; θ)}s mi+1(y + i,m z i+1 i; θ)h(z i ; γ)dz i m i { j=1 The likelihood function is then maximized to derive estimates (MLEs) of theta and γ. Large sample distributions of the MLEs can be derived based on normal approximation.

25 In a regression setting when covariates x is present, Assumptions (i - iii) can be modified as (i) Conditional on x and a subject-specific latent variable Z = z, the recurrence times {Y j : j = 1, 2,...} are independently distributed. (ii) (Independent censoring) Conditional on x, C and (N( ), Z) are independent. (iii) (Distributional assumption) Conditional on x and Z = z, Y j is distributed with pdf f j (y z; θ), θ Θ. The latent variable Z is distributed with pdf h(z; γ), γ Γ.

26 With the modified assumptions, the likelihood function is expressed as n L i=1 f j (y ij x i, z i ; θ)}f mi+1(y + i,m x i+1 i, z i ; θ)h(z i ; γ)dz i. m i { j=1 It is, however, generally difficult to compute the MLE. In the literature EM algorithms and other computation algorithms have been developed to resolve the problem.

27 Appendix (optional reading) A.1 Nonparametric estimation of survival function estimation Recurrence times can be treated as a type of correlated survival data in statistical analysis. However, because of the ordinal nature of recurrence times, statistical methods which are appropriate for clustered survival data may not be applicable to recurrence time data. In many medical papers, recurrence time data are frequently analyzed by inappropriate methods as indicated by Aalen and Husebye (1991). Specifically, for estimating the marginal survival function, the Kaplan-Meier estimator derived from the pooled data is frequently used for exploratory analysis although the estimator is generally inappropriate for such analyses. Suppose recurrent events are of the same type and consider the problem of how to estimate the marginal survival function from univariate recurrence time data. Assume the following conditions are satisfied.

28 (i) (Conditional iid assumption) Conditional on a subject-specific latent variable Z = z, the recurrence times {Y j : j = 1, 2,...} are identically and independently distributed. (ii) (Independent censoring) C and (N( ), Z) are independent. Define the univariate recurrent survival function of Y j as S(y) Pr(Y j > y) = S(y z)dh(z), where S(y z) is the conditional survival function of Y j given Z = z, and H is the distribution function of Z.

29 Under (i) and (ii), let S = 1 S, the nonparametric likelihood function can be formulated as n i=1 d S(u ij z i )]S(u + i,m z i+1 i)dh(z i ). m i [ j=1 Conceptually, the likelihood function involves both infinite parameters (the conditional cdf s S( z i )) and a mixing distribution (H). With infinite parameters, the maximization of the likelihood function could be problematic and therefore it is not used as the tool for finding an estimator of S. Instead of the nonparametric likelihood approach, Wang and Chang (1999, JASA) proposed a class of nonparametric estimators for estimating S(y):

30 Define the observed recurrence times as { u u ij if j = 1,..., m i ij = u + i,m i+1 if j = m i + 1 Define m i = { m i if m i = 0 m i 1 if m i 1

31 Let w i = w(c i ), where w( ) is a positive-valued function. The total mass of the risk set at y is calculated as R (y) = n w i [ m i + 1 i=1 and the mass evaluated at y is d (y) = n [ w ii(m i 1) m i + 1 i=1 m i +1 j=1 m i +1 j=1 I(u ij y)] I(u ij = y)]. Let u (1), u (2),..., u (K) be the ordered and distinct uncensored times. The estimator takes the product limit expression, Ŝ n (y) = { 1 d (u (i) ) } R (u (i) ), u (i) y which is non-increasing in y and satisfies 0 Ŝn(y) 1. Further, this estimator also possesses proper large sample properties.

32 A.2 Semiparametric Regression Models Conditional proportional hazards model. Now, we are back to the general case that recurrent events may or may not be the same. Prentice, Williams and Peterson (1981, Biometrika) modeled time-between-event data by a conditional proportional hazards model as an extension of the usual proportional hazards model for univariate failure time data: λ(t N(t ) = j 1, N H (t), X H (t)) = λ 0j (t t j 1 )exp{z(t)γ j }, (9) for t t j 1. In the model, - N H (t) = {N(u) : 0 u t} is the event history up to t - X H (t) = {X(u) : 0 u t} is the covariate history up to t - λ 0j ( ) is the baseline hazard function - γ j is the regression parameter for the jth recurrence time

33 The possibly time-dependent covariate history up to t is denoted by X H (t). As an important requirement, the event history N H (t) must be part of the given knowledge (conditional statistics) in the PWP model. The time-dependent covariate vector Z(t) = φ(x H (t), N H (t)) is a transformation of (X H (t), N H (t)). This model serves as a proper model for predicting the future events given subject-specific covariates and event history information. However, since event history is part of the conditional statistics in the model, the PWP model does not serve as an appropriate model for identifying treatment or prevention effects. The PWP model has been further extended to include both globally defined parameters β and episode-specific parameters γ j (Chang and Wang, 1999, JASA): λ(t N(t ) = j 1, N H (t), X H (t)) = λ 0j (t t j 1 )exp{z(t)γ j + W (t)β}, (10) for t t j 1, where Z(t) and W (t) are functions of (X H (t), N H (t)).

34 Marginal regression models. In contrast with conditional regression models, marginal regression models do not include the event history N H (t) as part of the covariates and therefore serve as appropriate models for identifying treatment effects or population-based risk factors. Without conditioning on event history, limited techniques have been developed for the analysis of marginal regression models, with exceptions of Huang s accelerated failure time model (Y. Huang, 2000, JASA): log Y j = α j + x j β j + ɛ j, j = 1, 2,...

35 (cont d) Lin, Wei and Robins bivariate accelerated failure time model (1998, Biometrika): log Y 1 = α 1 + x 1 β 1 + ɛ 1, log Y 2 = α 2 + x 2 β 2 + ɛ 2 and Huang and Chen s proportional hazards model for Y j (2002, LIDA): λ(y x) = λ 0 (y)exp{xβ}, where x is the baseline covariates and λ 0 is the baseline hazards function shared by all the episodes. Note that the first two models only partially depend on N(t), and the third model is essentially a renewal model.

36 Trend models. In many applications the distributional pattern of recurrence times can be used as an index for the progression of a disease. Such a distributional pattern is important for understanding the natural history of a disease or for confirming long-term treatment effect. Assume (i) Within each subject, the recurrence times Y 1, Y 2,... are independently distributed with the survival functions S 0, S 1, S 2,..., and (ii) within each subject, the censoring time C is independent of N( ).

37 Assumption (i) can be viewed as a frailty condition where the conditional independence of recurrence times holds within each subject. Assumption (ii) implies that, within subject, the censoring mechanism is uninformative for the probability structure of event process. In applications, one might be interested in testing the null hypothesis (that is, (i)) that the duration distributions of different episodes Y 1, Y 2,... remain the same to confirm the stability of pattern of recurrence times, or to identify the treatment efficacy over time; see Wang and Chen (2001, Biometrics) for nonparametric and semiparametric approaches to deal with the problem.

Lecture 3. Truncation, length-bias and prevalence sampling

Lecture 3. Truncation, length-bias and prevalence sampling Lecture 3. Truncation, length-bias and prevalence sampling 3.1 Prevalent sampling Statistical techniques for truncated data have been integrated into survival analysis in last two decades. Truncation in

More information

Multivariate Survival Analysis

Multivariate Survival Analysis Multivariate Survival Analysis Previously we have assumed that either (X i, δ i ) or (X i, δ i, Z i ), i = 1,..., n, are i.i.d.. This may not always be the case. Multivariate survival data can arise in

More information

STAT331. Cox s Proportional Hazards Model

STAT331. Cox s Proportional Hazards Model STAT331 Cox s Proportional Hazards Model In this unit we introduce Cox s proportional hazards (Cox s PH) model, give a heuristic development of the partial likelihood function, and discuss adaptations

More information

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model Other Survival Models (1) Non-PH models We briefly discussed the non-proportional hazards (non-ph) model λ(t Z) = λ 0 (t) exp{β(t) Z}, where β(t) can be estimated by: piecewise constants (recall how);

More information

Semiparametric Regression

Semiparametric Regression Semiparametric Regression Patrick Breheny October 22 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/23 Introduction Over the past few weeks, we ve introduced a variety of regression models under

More information

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks

A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks A Bayesian Nonparametric Approach to Causal Inference for Semi-competing risks Y. Xu, D. Scharfstein, P. Mueller, M. Daniels Johns Hopkins, Johns Hopkins, UT-Austin, UF JSM 2018, Vancouver 1 What are semi-competing

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY OF CALIFORNIA, SAN DIEGO Estimation of the primary hazard ratio in the presence of a secondary covariate with non-proportional hazards An undergraduate honors thesis submitted to the Department

More information

Survival Analysis Math 434 Fall 2011

Survival Analysis Math 434 Fall 2011 Survival Analysis Math 434 Fall 2011 Part IV: Chap. 8,9.2,9.3,11: Semiparametric Proportional Hazards Regression Jimin Ding Math Dept. www.math.wustl.edu/ jmding/math434/fall09/index.html Basic Model Setup

More information

DAGStat Event History Analysis.

DAGStat Event History Analysis. DAGStat 2016 Event History Analysis Robin.Henderson@ncl.ac.uk 1 / 75 Schedule 9.00 Introduction 10.30 Break 11.00 Regression Models, Frailty and Multivariate Survival 12.30 Lunch 13.30 Time-Variation and

More information

Survival Analysis. Lu Tian and Richard Olshen Stanford University

Survival Analysis. Lu Tian and Richard Olshen Stanford University 1 Survival Analysis Lu Tian and Richard Olshen Stanford University 2 Survival Time/ Failure Time/Event Time We will introduce various statistical methods for analyzing survival outcomes What is the survival

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

Lecture 22 Survival Analysis: An Introduction

Lecture 22 Survival Analysis: An Introduction University of Illinois Department of Economics Spring 2017 Econ 574 Roger Koenker Lecture 22 Survival Analysis: An Introduction There is considerable interest among economists in models of durations, which

More information

Longitudinal + Reliability = Joint Modeling

Longitudinal + Reliability = Joint Modeling Longitudinal + Reliability = Joint Modeling Carles Serrat Institute of Statistics and Mathematics Applied to Building CYTED-HAROSA International Workshop November 21-22, 2013 Barcelona Mainly from Rizopoulos,

More information

Survival Analysis for Case-Cohort Studies

Survival Analysis for Case-Cohort Studies Survival Analysis for ase-ohort Studies Petr Klášterecký Dept. of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, harles University, Prague, zech Republic e-mail: petr.klasterecky@matfyz.cz

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

Exercises. (a) Prove that m(t) =

Exercises. (a) Prove that m(t) = Exercises 1. Lack of memory. Verify that the exponential distribution has the lack of memory property, that is, if T is exponentially distributed with parameter λ > then so is T t given that T > t for

More information

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What? You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?) I m not goin stop (What?) I m goin work harder (What?) Sir David

More information

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA Kasun Rathnayake ; A/Prof Jun Ma Department of Statistics Faculty of Science and Engineering Macquarie University

More information

Likelihood Construction, Inference for Parametric Survival Distributions

Likelihood Construction, Inference for Parametric Survival Distributions Week 1 Likelihood Construction, Inference for Parametric Survival Distributions In this section we obtain the likelihood function for noninformatively rightcensored survival data and indicate how to make

More information

Harvard University. Harvard University Biostatistics Working Paper Series

Harvard University. Harvard University Biostatistics Working Paper Series Harvard University Harvard University Biostatistics Working Paper Series Year 2008 Paper 85 Semiparametric Maximum Likelihood Estimation in Normal Transformation Models for Bivariate Survival Data Yi Li

More information

Part III Measures of Classification Accuracy for the Prediction of Survival Times

Part III Measures of Classification Accuracy for the Prediction of Survival Times Part III Measures of Classification Accuracy for the Prediction of Survival Times Patrick J Heagerty PhD Department of Biostatistics University of Washington 102 ISCB 2010 Session Three Outline Examples

More information

Quantile Regression for Recurrent Gap Time Data

Quantile Regression for Recurrent Gap Time Data Biometrics 000, 1 21 DOI: 000 000 0000 Quantile Regression for Recurrent Gap Time Data Xianghua Luo 1,, Chiung-Yu Huang 2, and Lan Wang 3 1 Division of Biostatistics, School of Public Health, University

More information

Frailty Modeling for clustered survival data: a simulation study

Frailty Modeling for clustered survival data: a simulation study Frailty Modeling for clustered survival data: a simulation study IAA Oslo 2015 Souad ROMDHANE LaREMFiQ - IHEC University of Sousse (Tunisia) souad_romdhane@yahoo.fr Lotfi BELKACEM LaREMFiQ - IHEC University

More information

Modelling and Analysis of Recurrent Event Data

Modelling and Analysis of Recurrent Event Data Modelling and Analysis of Recurrent Event Data Edsel A. Peña Department of Statistics University of South Carolina Research support from NIH, NSF, and USC/MUSC Collaborative Grants Joint work with Prof.

More information

Power and Sample Size Calculations with the Additive Hazards Model

Power and Sample Size Calculations with the Additive Hazards Model Journal of Data Science 10(2012), 143-155 Power and Sample Size Calculations with the Additive Hazards Model Ling Chen, Chengjie Xiong, J. Philip Miller and Feng Gao Washington University School of Medicine

More information

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis STAT 6350 Analysis of Lifetime Data Failure-time Regression Analysis Explanatory Variables for Failure Times Usually explanatory variables explain/predict why some units fail quickly and some units survive

More information

Efficient Semiparametric Estimators via Modified Profile Likelihood in Frailty & Accelerated-Failure Models

Efficient Semiparametric Estimators via Modified Profile Likelihood in Frailty & Accelerated-Failure Models NIH Talk, September 03 Efficient Semiparametric Estimators via Modified Profile Likelihood in Frailty & Accelerated-Failure Models Eric Slud, Math Dept, Univ of Maryland Ongoing joint project with Ilia

More information

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data 1 Part III. Hypothesis Testing III.1. Log-rank Test for Right-censored Failure Time Data Consider a survival study consisting of n independent subjects from p different populations with survival functions

More information

Survival Analysis I (CHL5209H)

Survival Analysis I (CHL5209H) Survival Analysis Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca January 7, 2015 31-1 Literature Clayton D & Hills M (1993): Statistical Models in Epidemiology. Not really

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

Chapter 2 Inference on Mean Residual Life-Overview

Chapter 2 Inference on Mean Residual Life-Overview Chapter 2 Inference on Mean Residual Life-Overview Statistical inference based on the remaining lifetimes would be intuitively more appealing than the popular hazard function defined as the risk of immediate

More information

Modelling geoadditive survival data

Modelling geoadditive survival data Modelling geoadditive survival data Thomas Kneib & Ludwig Fahrmeir Department of Statistics, Ludwig-Maximilians-University Munich 1. Leukemia survival data 2. Structured hazard regression 3. Mixed model

More information

Models for Multivariate Panel Count Data

Models for Multivariate Panel Count Data Semiparametric Models for Multivariate Panel Count Data KyungMann Kim University of Wisconsin-Madison kmkim@biostat.wisc.edu 2 April 2015 Outline 1 Introduction 2 3 4 Panel Count Data Motivation Previous

More information

Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model. Recap of Part 1. Per Kragh Andersen

Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model. Recap of Part 1. Per Kragh Andersen Recap of Part 1 Per Kragh Andersen Section of Biostatistics, University of Copenhagen DSBS Course Survival Analysis in Clinical Trials January 2018 1 / 65 Overview Definitions and examples Simple estimation

More information

A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky

A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky Empirical likelihood with right censored data were studied by Thomas and Grunkmier (1975), Li (1995),

More information

Statistical Analysis of Competing Risks With Missing Causes of Failure

Statistical Analysis of Competing Risks With Missing Causes of Failure Proceedings 59th ISI World Statistics Congress, 25-3 August 213, Hong Kong (Session STS9) p.1223 Statistical Analysis of Competing Risks With Missing Causes of Failure Isha Dewan 1,3 and Uttara V. Naik-Nimbalkar

More information

Multivariate Survival Data With Censoring.

Multivariate Survival Data With Censoring. 1 Multivariate Survival Data With Censoring. Shulamith Gross and Catherine Huber-Carol Baruch College of the City University of New York, Dept of Statistics and CIS, Box 11-220, 1 Baruch way, 10010 NY.

More information

STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes

STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes STAT331 Lebesgue-Stieltjes Integrals, Martingales, Counting Processes This section introduces Lebesgue-Stieltjes integrals, and defines two important stochastic processes: a martingale process and a counting

More information

11 Survival Analysis and Empirical Likelihood

11 Survival Analysis and Empirical Likelihood 11 Survival Analysis and Empirical Likelihood The first paper of empirical likelihood is actually about confidence intervals with the Kaplan-Meier estimator (Thomas and Grunkmeier 1979), i.e. deals with

More information

Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates

Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates Anastasios (Butch) Tsiatis Department of Statistics North Carolina State University http://www.stat.ncsu.edu/

More information

TMA 4275 Lifetime Analysis June 2004 Solution

TMA 4275 Lifetime Analysis June 2004 Solution TMA 4275 Lifetime Analysis June 2004 Solution Problem 1 a) Observation of the outcome is censored, if the time of the outcome is not known exactly and only the last time when it was observed being intact,

More information

Efficiency Comparison Between Mean and Log-rank Tests for. Recurrent Event Time Data

Efficiency Comparison Between Mean and Log-rank Tests for. Recurrent Event Time Data Efficiency Comparison Between Mean and Log-rank Tests for Recurrent Event Time Data Wenbin Lu Department of Statistics, North Carolina State University, Raleigh, NC 27695 Email: lu@stat.ncsu.edu Summary.

More information

SAMPLE SIZE ESTIMATION FOR SURVIVAL OUTCOMES IN CLUSTER-RANDOMIZED STUDIES WITH SMALL CLUSTER SIZES BIOMETRICS (JUNE 2000)

SAMPLE SIZE ESTIMATION FOR SURVIVAL OUTCOMES IN CLUSTER-RANDOMIZED STUDIES WITH SMALL CLUSTER SIZES BIOMETRICS (JUNE 2000) SAMPLE SIZE ESTIMATION FOR SURVIVAL OUTCOMES IN CLUSTER-RANDOMIZED STUDIES WITH SMALL CLUSTER SIZES BIOMETRICS (JUNE 2000) AMITA K. MANATUNGA THE ROLLINS SCHOOL OF PUBLIC HEALTH OF EMORY UNIVERSITY SHANDE

More information

Tests of independence for censored bivariate failure time data

Tests of independence for censored bivariate failure time data Tests of independence for censored bivariate failure time data Abstract Bivariate failure time data is widely used in survival analysis, for example, in twins study. This article presents a class of χ

More information

Multistate models and recurrent event models

Multistate models and recurrent event models Multistate models Multistate models and recurrent event models Patrick Breheny December 10 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/22 Introduction Multistate models In this final lecture,

More information

Introduction to Statistical Analysis

Introduction to Statistical Analysis Introduction to Statistical Analysis Changyu Shen Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Objectives Descriptive

More information

log T = β T Z + ɛ Zi Z(u; β) } dn i (ue βzi ) = 0,

log T = β T Z + ɛ Zi Z(u; β) } dn i (ue βzi ) = 0, Accelerated failure time model: log T = β T Z + ɛ β estimation: solve where S n ( β) = n i=1 { Zi Z(u; β) } dn i (ue βzi ) = 0, Z(u; β) = j Z j Y j (ue βz j) j Y j (ue βz j) How do we show the asymptotics

More information

Multistate Modeling and Applications

Multistate Modeling and Applications Multistate Modeling and Applications Yang Yang Department of Statistics University of Michigan, Ann Arbor IBM Research Graduate Student Workshop: Statistics for a Smarter Planet Yang Yang (UM, Ann Arbor)

More information

Introduction to repairable systems STK4400 Spring 2011

Introduction to repairable systems STK4400 Spring 2011 Introduction to repairable systems STK4400 Spring 2011 Bo Lindqvist http://www.math.ntnu.no/ bo/ bo@math.ntnu.no Bo Lindqvist Introduction to repairable systems Definition of repairable system Ascher and

More information

Frailty Models and Copulas: Similarities and Differences

Frailty Models and Copulas: Similarities and Differences Frailty Models and Copulas: Similarities and Differences KLARA GOETHALS, PAUL JANSSEN & LUC DUCHATEAU Department of Physiology and Biometrics, Ghent University, Belgium; Center for Statistics, Hasselt

More information

Lecture 2: Martingale theory for univariate survival analysis

Lecture 2: Martingale theory for univariate survival analysis Lecture 2: Martingale theory for univariate survival analysis In this lecture T is assumed to be a continuous failure time. A core question in this lecture is how to develop asymptotic properties when

More information

Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation

Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation Patrick J. Heagerty PhD Department of Biostatistics University of Washington 166 ISCB 2010 Session Four Outline Examples

More information

Cox s proportional hazards model and Cox s partial likelihood

Cox s proportional hazards model and Cox s partial likelihood Cox s proportional hazards model and Cox s partial likelihood Rasmus Waagepetersen October 12, 2018 1 / 27 Non-parametric vs. parametric Suppose we want to estimate unknown function, e.g. survival function.

More information

Modelling Survival Events with Longitudinal Data Measured with Error

Modelling Survival Events with Longitudinal Data Measured with Error Modelling Survival Events with Longitudinal Data Measured with Error Hongsheng Dai, Jianxin Pan & Yanchun Bao First version: 14 December 29 Research Report No. 16, 29, Probability and Statistics Group

More information

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data Malaysian Journal of Mathematical Sciences 11(3): 33 315 (217) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Approximation of Survival Function by Taylor

More information

Residuals and model diagnostics

Residuals and model diagnostics Residuals and model diagnostics Patrick Breheny November 10 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/42 Introduction Residuals Many assumptions go into regression models, and the Cox proportional

More information

On the Breslow estimator

On the Breslow estimator Lifetime Data Anal (27) 13:471 48 DOI 1.17/s1985-7-948-y On the Breslow estimator D. Y. Lin Received: 5 April 27 / Accepted: 16 July 27 / Published online: 2 September 27 Springer Science+Business Media,

More information

CIMAT Taller de Modelos de Capture y Recaptura Known Fate Survival Analysis

CIMAT Taller de Modelos de Capture y Recaptura Known Fate Survival Analysis CIMAT Taller de Modelos de Capture y Recaptura 2010 Known Fate urvival Analysis B D BALANCE MODEL implest population model N = λ t+ 1 N t Deeper understanding of dynamics can be gained by identifying variation

More information

Survival Distributions, Hazard Functions, Cumulative Hazards

Survival Distributions, Hazard Functions, Cumulative Hazards BIO 244: Unit 1 Survival Distributions, Hazard Functions, Cumulative Hazards 1.1 Definitions: The goals of this unit are to introduce notation, discuss ways of probabilistically describing the distribution

More information

Survival Analysis. Stat 526. April 13, 2018

Survival Analysis. Stat 526. April 13, 2018 Survival Analysis Stat 526 April 13, 2018 1 Functions of Survival Time Let T be the survival time for a subject Then P [T < 0] = 0 and T is a continuous random variable The Survival function is defined

More information

Attributable Risk Function in the Proportional Hazards Model

Attributable Risk Function in the Proportional Hazards Model UW Biostatistics Working Paper Series 5-31-2005 Attributable Risk Function in the Proportional Hazards Model Ying Qing Chen Fred Hutchinson Cancer Research Center, yqchen@u.washington.edu Chengcheng Hu

More information

Semiparametric maximum likelihood estimation in normal transformation models for bivariate survival data

Semiparametric maximum likelihood estimation in normal transformation models for bivariate survival data Biometrika (28), 95, 4,pp. 947 96 C 28 Biometrika Trust Printed in Great Britain doi: 1.193/biomet/asn49 Semiparametric maximum likelihood estimation in normal transformation models for bivariate survival

More information

Lecture 7. Proportional Hazards Model - Handling Ties and Survival Estimation Statistics Survival Analysis. Presented February 4, 2016

Lecture 7. Proportional Hazards Model - Handling Ties and Survival Estimation Statistics Survival Analysis. Presented February 4, 2016 Proportional Hazards Model - Handling Ties and Survival Estimation Statistics 255 - Survival Analysis Presented February 4, 2016 likelihood - Discrete Dan Gillen Department of Statistics University of

More information

GOODNESS-OF-FIT TESTS FOR ARCHIMEDEAN COPULA MODELS

GOODNESS-OF-FIT TESTS FOR ARCHIMEDEAN COPULA MODELS Statistica Sinica 20 (2010), 441-453 GOODNESS-OF-FIT TESTS FOR ARCHIMEDEAN COPULA MODELS Antai Wang Georgetown University Medical Center Abstract: In this paper, we propose two tests for parametric models

More information

Survival Regression Models

Survival Regression Models Survival Regression Models David M. Rocke May 18, 2017 David M. Rocke Survival Regression Models May 18, 2017 1 / 32 Background on the Proportional Hazards Model The exponential distribution has constant

More information

Analysis of recurrent gap time data using the weighted risk-set. method and the modified within-cluster resampling method

Analysis of recurrent gap time data using the weighted risk-set. method and the modified within-cluster resampling method STATISTICS IN MEDICINE Statist. Med. 29; :1 27 [Version: 22/9/18 v1.11] Analysis of recurrent gap time data using the weighted risk-set method and the modified within-cluster resampling method Xianghua

More information

1 Glivenko-Cantelli type theorems

1 Glivenko-Cantelli type theorems STA79 Lecture Spring Semester Glivenko-Cantelli type theorems Given i.i.d. observations X,..., X n with unknown distribution function F (t, consider the empirical (sample CDF ˆF n (t = I [Xi t]. n Then

More information

The Proportional Hazard Model and the Modelling of Recurrent Failure Data: Analysis of a Disconnector Population in Sweden. Sweden

The Proportional Hazard Model and the Modelling of Recurrent Failure Data: Analysis of a Disconnector Population in Sweden. Sweden PS1 Life Cycle Asset Management The Proportional Hazard Model and the Modelling of Recurrent Failure Data: Analysis of a Disconnector Population in Sweden J. H. Jürgensen 1, A.L. Brodersson 2, P. Hilber

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

Multistate models and recurrent event models

Multistate models and recurrent event models and recurrent event models Patrick Breheny December 6 Patrick Breheny University of Iowa Survival Data Analysis (BIOS:7210) 1 / 22 Introduction In this final lecture, we will briefly look at two other

More information

Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models

Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models Robust estimates of state occupancy and transition probabilities for Non-Markov multi-state models 26 March 2014 Overview Continuously observed data Three-state illness-death General robust estimator Interval

More information

Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-level Information from External Big Data Sources

Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-level Information from External Big Data Sources Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-level Information from External Big Data Sources Yi-Hau Chen Institute of Statistical Science, Academia Sinica Joint with Nilanjan

More information

Logistic regression model for survival time analysis using time-varying coefficients

Logistic regression model for survival time analysis using time-varying coefficients Logistic regression model for survival time analysis using time-varying coefficients Accepted in American Journal of Mathematical and Management Sciences, 2016 Kenichi SATOH ksatoh@hiroshima-u.ac.jp Research

More information

Lecture 7 Time-dependent Covariates in Cox Regression

Lecture 7 Time-dependent Covariates in Cox Regression Lecture 7 Time-dependent Covariates in Cox Regression So far, we ve been considering the following Cox PH model: λ(t Z) = λ 0 (t) exp(β Z) = λ 0 (t) exp( β j Z j ) where β j is the parameter for the the

More information

Concepts and Tests for Trend in Recurrent Event Processes

Concepts and Tests for Trend in Recurrent Event Processes JIRSS (2013) Vol. 12, No. 1, pp 35-69 Concepts and Tests for Trend in Recurrent Event Processes R. J. Cook, J. F. Lawless Department of Statistics and Actuarial Science, University of Waterloo, Ontario,

More information

Estimation of Conditional Kendall s Tau for Bivariate Interval Censored Data

Estimation of Conditional Kendall s Tau for Bivariate Interval Censored Data Communications for Statistical Applications and Methods 2015, Vol. 22, No. 6, 599 604 DOI: http://dx.doi.org/10.5351/csam.2015.22.6.599 Print ISSN 2287-7843 / Online ISSN 2383-4757 Estimation of Conditional

More information

PhD course in Advanced survival analysis. One-sample tests. Properties. Idea: (ABGK, sect. V.1.1) Counting process N(t)

PhD course in Advanced survival analysis. One-sample tests. Properties. Idea: (ABGK, sect. V.1.1) Counting process N(t) PhD course in Advanced survival analysis. (ABGK, sect. V.1.1) One-sample tests. Counting process N(t) Non-parametric hypothesis tests. Parametric models. Intensity process λ(t) = α(t)y (t) satisfying Aalen

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2009 Paper 248 Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials Kelly

More information

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology

Group Sequential Tests for Delayed Responses. Christopher Jennison. Lisa Hampson. Workshop on Special Topics on Sequential Methodology Group Sequential Tests for Delayed Responses Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj Lisa Hampson Department of Mathematics and Statistics,

More information

STAT 331. Accelerated Failure Time Models. Previously, we have focused on multiplicative intensity models, where

STAT 331. Accelerated Failure Time Models. Previously, we have focused on multiplicative intensity models, where STAT 331 Accelerated Failure Time Models Previously, we have focused on multiplicative intensity models, where h t z) = h 0 t) g z). These can also be expressed as H t z) = H 0 t) g z) or S t z) = e Ht

More information

PQL Estimation Biases in Generalized Linear Mixed Models

PQL Estimation Biases in Generalized Linear Mixed Models PQL Estimation Biases in Generalized Linear Mixed Models Woncheol Jang Johan Lim March 18, 2006 Abstract The penalized quasi-likelihood (PQL) approach is the most common estimation procedure for the generalized

More information

The Accelerated Failure Time Model Under Biased. Sampling

The Accelerated Failure Time Model Under Biased. Sampling The Accelerated Failure Time Model Under Biased Sampling Micha Mandel and Ya akov Ritov Department of Statistics, The Hebrew University of Jerusalem, Israel July 13, 2009 Abstract Chen (2009, Biometrics)

More information

STAT Sample Problem: General Asymptotic Results

STAT Sample Problem: General Asymptotic Results STAT331 1-Sample Problem: General Asymptotic Results In this unit we will consider the 1-sample problem and prove the consistency and asymptotic normality of the Nelson-Aalen estimator of the cumulative

More information

Multi-state Models: An Overview

Multi-state Models: An Overview Multi-state Models: An Overview Andrew Titman Lancaster University 14 April 2016 Overview Introduction to multi-state modelling Examples of applications Continuously observed processes Intermittently observed

More information

Duration Analysis. Joan Llull

Duration Analysis. Joan Llull Duration Analysis Joan Llull Panel Data and Duration Models Barcelona GSE joan.llull [at] movebarcelona [dot] eu Introduction Duration Analysis 2 Duration analysis Duration data: how long has an individual

More information

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL The Cox PH model: λ(t Z) = λ 0 (t) exp(β Z). How do we estimate the survival probability, S z (t) = S(t Z) = P (T > t Z), for an individual with covariates

More information

Time-varying failure rate for system reliability analysis in large-scale railway risk assessment simulation

Time-varying failure rate for system reliability analysis in large-scale railway risk assessment simulation Time-varying failure rate for system reliability analysis in large-scale railway risk assessment simulation H. Zhang, E. Cutright & T. Giras Center of Rail Safety-Critical Excellence, University of Virginia,

More information

Semiparametric Models for Joint Analysis of Longitudinal Data and Counting Processes

Semiparametric Models for Joint Analysis of Longitudinal Data and Counting Processes Semiparametric Models for Joint Analysis of Longitudinal Data and Counting Processes by Se Hee Kim A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial

More information

EMPIRICAL ENVELOPE MLE AND LR TESTS. Mai Zhou University of Kentucky

EMPIRICAL ENVELOPE MLE AND LR TESTS. Mai Zhou University of Kentucky EMPIRICAL ENVELOPE MLE AND LR TESTS Mai Zhou University of Kentucky Summary We study in this paper some nonparametric inference problems where the nonparametric maximum likelihood estimator (NPMLE) are

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

Stat 642, Lecture notes for 04/12/05 96

Stat 642, Lecture notes for 04/12/05 96 Stat 642, Lecture notes for 04/12/05 96 Hosmer-Lemeshow Statistic The Hosmer-Lemeshow Statistic is another measure of lack of fit. Hosmer and Lemeshow recommend partitioning the observations into 10 equal

More information

A Poisson Process Approach for Recurrent Event Data with Environmental Covariates NRCSE. T e c h n i c a l R e p o r t S e r i e s. NRCSE-TRS No.

A Poisson Process Approach for Recurrent Event Data with Environmental Covariates NRCSE. T e c h n i c a l R e p o r t S e r i e s. NRCSE-TRS No. A Poisson Process Approach for Recurrent Event Data with Environmental Covariates Anup Dewanji Suresh H. Moolgavkar NRCSE T e c h n i c a l R e p o r t S e r i e s NRCSE-TRS No. 028 July 28, 1999 A POISSON

More information

Goodness-of-fit test for the Cox Proportional Hazard Model

Goodness-of-fit test for the Cox Proportional Hazard Model Goodness-of-fit test for the Cox Proportional Hazard Model Rui Cui rcui@eco.uc3m.es Department of Economics, UC3M Abstract In this paper, we develop new goodness-of-fit tests for the Cox proportional hazard

More information

Economics 508 Lecture 22 Duration Models

Economics 508 Lecture 22 Duration Models University of Illinois Fall 2012 Department of Economics Roger Koenker Economics 508 Lecture 22 Duration Models There is considerable interest, especially among labor-economists in models of duration.

More information

Tied survival times; estimation of survival probabilities

Tied survival times; estimation of survival probabilities Tied survival times; estimation of survival probabilities Patrick Breheny November 5 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/22 Introduction Tied survival times Introduction Breslow approximation

More information

FULL LIKELIHOOD INFERENCES IN THE COX MODEL

FULL LIKELIHOOD INFERENCES IN THE COX MODEL October 20, 2007 FULL LIKELIHOOD INFERENCES IN THE COX MODEL BY JIAN-JIAN REN 1 AND MAI ZHOU 2 University of Central Florida and University of Kentucky Abstract We use the empirical likelihood approach

More information

Empirical Processes & Survival Analysis. The Functional Delta Method

Empirical Processes & Survival Analysis. The Functional Delta Method STAT/BMI 741 University of Wisconsin-Madison Empirical Processes & Survival Analysis Lecture 3 The Functional Delta Method Lu Mao lmao@biostat.wisc.edu 3-1 Objectives By the end of this lecture, you will

More information

A TWO-STAGE LINEAR MIXED-EFFECTS/COX MODEL FOR LONGITUDINAL DATA WITH MEASUREMENT ERROR AND SURVIVAL

A TWO-STAGE LINEAR MIXED-EFFECTS/COX MODEL FOR LONGITUDINAL DATA WITH MEASUREMENT ERROR AND SURVIVAL A TWO-STAGE LINEAR MIXED-EFFECTS/COX MODEL FOR LONGITUDINAL DATA WITH MEASUREMENT ERROR AND SURVIVAL Christopher H. Morrell, Loyola College in Maryland, and Larry J. Brant, NIA Christopher H. Morrell,

More information

Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals. John W. Mac McDonald & Alessandro Rosina

Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals. John W. Mac McDonald & Alessandro Rosina Mixture modelling of recurrent event times with long-term survivors: Analysis of Hutterite birth intervals John W. Mac McDonald & Alessandro Rosina Quantitative Methods in the Social Sciences Seminar -

More information

Efficiency of Profile/Partial Likelihood in the Cox Model

Efficiency of Profile/Partial Likelihood in the Cox Model Efficiency of Profile/Partial Likelihood in the Cox Model Yuichi Hirose School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, New Zealand Summary. This paper shows

More information