Logistic regression model for survival time analysis using time-varying coefficients

Size: px
Start display at page:

Download "Logistic regression model for survival time analysis using time-varying coefficients"

Transcription

1 Logistic regression model for survival time analysis using time-varying coefficients Accepted in American Journal of Mathematical and Management Sciences, 2016 Kenichi SATOH Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima Tetsuji TONDA Faculty of Management and Information Systems, Prefectural University of Hiroshima, Ujina-Higashi, Minami-ku, Hiroshima , JAPAN. Shizue IZUMI Center for Data Science Education and Research, Shiga University, Banbacho, Hikone, Shiga , JAPAN. SYNOPTIC ABSTRACT In epidemiological studies, odds ratios are widely used for quantifying the relative risk. The odds ratio can be estimated from background factors using logistic regression. In this paper, a logistic regression model for the survival time is proposed using time-varying coefficients, and statistical inference is conducted using the Newton-Raphson method and simultaneous confidence intervals. Numerical examples and simulation studies demonstrate that the proposed model can be used to obtain the odds ratio in survival time analysis. Key words: Logistic regression model; Newton-Raphson method; Odds ratio; Survival time analysis; Time-varying coefficient. 1. Introduction. Odds ratios are widely used in epidemiology to measure the association between dichotomous outcome variables, such as, case or control, normal or abnormal, dead or alive (see, McCullagh and Nelder (1989)). It can be interpreted as a relative risk when the probability of occurrence is very small.

2 Logistic regression models are often used to estimate the odds ratio in situations when there are confounding factors requiring adjustment. On the other hand, time to death or survival time is frequently analyzed by using Cox proportional hazard model, proposed in Cox (1972). However, the model is not concerned with the odds ratio, but with the hazard ratio. Here, we try to apply the logistic regression model to survival time analysis and evaluate the odds ratio. In Section 2, we consider time-varying coefficients in logistic regression model in order to describe survival time data. In Section 3 the proposed model is applied to a real dataset, and the stability of the estimation method is investigated in a simulation study in Section 4. In Section 5, we discuss our proposed method and conclusions from our investigation. 2. Logistic regression model for survival time data. First, we define survival time as a random variable and explain a censoring time in 2.1. Then we connect the distribution function of survival time with time-varying coefficients. In 2.2 regression coefficients are estimated by maximizing a log-likelihood under the logistic regression model and the Newton-Raphson method can be implemented. Since estimated time-varying coefficients are functions of time, their confidence intervals are also functions given in Describing distribution function of survival time data by using time-varying coefficients. Let T be a continuous random variable denoting the time of death, whose cumulative distribution function (cdf) is given by F (t) = Pr(T t). The complement of cdf is known as the survival function, given by S(t) = 1 F (t). It denotes the probability of being alive up until time t, or more generally, the probability that the event of interest has not occurred by time t, which is often called the censoring time. Let the regression coefficients of covariates a = (a 1,..., a p ) be β(t) = (β 1 (t),..., β p (t)). The effects of covariates can be non-stationary, and are

3 referred to as time-varying coefficients (Hastie and Tibshirani (1993)). With the logit or log-odds transformation of F (t), a logistic regression model can be obtained for survival time data as follows, log F (t) S(t) = z(t a) = β(t) a. (1) Thus, the log-odds ratio for a j = 1 to a j = 0 at time t can be expressed by z(t a j = 1) z(t a j = 0) = β j (t), (2) or the odds ratio is given by exp{β j (t)}. The model in (1) can be regarded as an extension of the log-logistic model proposed by Bennet (1983), which uses the log-logistic distribution function for survival time and has a varying coefficient log t only for a constant covariate a 1, i.e., log F (t)/s(t) = φ log t + β a. Here we propose a model to evaluate the time-varying coefficients for the covariates in equation (1). We consider linear time-varying coefficients using the growth curve model presented in Satoh and Yanagihara (2010) for longitudinal data. Let x(t) be a (q 1) th degree polynomial basis function for varying coefficients β(t), i.e., β(t) = x(t) Θ. (3) Here, x(t) = (1, t, t 2,, t q 1 ) and Θ = (θ 1,, θ p ) is a q p unknown regression coefficient matrix. Note that ẋ(t) does not need to be a polynomial basis function, but it must be a differentiable function of t Deriving maximum likelihood estimators of regression coefficients. Assuming that the cdf F (t) is differentiable, we can then obtain the probability density function (pdf) given by, f(t) = From (4), it holds that df (t) dt = F (t)s(t) dz(t). (4) dt dz(t) dt = dβ(t) a = ẋ(t) Θa (5) dt

4 where ẋ(t) = dx(t) = (0, 1, 2t,, (q 1)t q 2 ). (6) dt Note that the hazard function can be written as f(t)/s(t) = F (t)ẋ(t) Θa. In most real situations, polynomial basis functions based on t = log( t) can provide a better fit for survival data than those based on the original survival time t, e.g., Bennet (1983). Assume that all subjects may experience an event or be censored, that is, for subject i either the time of death t i or an indication of whether or not the subject is censored, δ i = 1(uncensored) and δ i = 0(censored), i.e., (t i, δ i ), i = 1,, n, may be observed. Then the likelihood function for the regression coefficients Θ can be expressed as L(Θ) = n i=1 f δ i i S 1 δ i i = n i=1 {F i S i ż i } δ i S 1 δ i i, (7) where a i is a covariate vector for subject i, ż i = ẋ(t i ) Θa i, f i = f(t i ), F i = F (t i ) and S i = S(t i ). By maximizing the log-likelihood function with respect to Θ, the maximum likelihood estimator ˆΘ = ( ˆθ 1,, ˆθ p ) can be obtained. Let θ = vec(θ) = (θ 1,, θ p), and l(θ) = log L(Θ), and then the estimator ˆθ = vec( ˆΘ) satisfies dl( ˆθ)/dθ = 0 qp, which is defined by dl(θ) n dθ = { } δi S i w i F i w i + δ i ż 1 i ẇ i, (8) i=1 where w i = a i x(t i ) and ẇ i = a i ẋ(t i ). Its Hessian matrix is given by d 2 l(θ) dθ 2 = n i=1 { (1 + δi )F i S i w i w i + δ i ż 2 i ẇ i ẇ i}. (9) Using the Newton-Raphson method, the maximum likelihood estimator ˆθ can be obtained in the following recurrence formula. { } d 2 1 l(θ m ) dl(θ m ) θ m+1 = θ m, m = 0, 1, 2,, (10) dθ 2 dθ

5 x(t) ˆΘ or, ˆβj (t) = x(t) ˆθj, j {1,, p}. (12) where θ 0 is an adequate initial value. Note that the inverse matrix can be used as an asymptotic covariance matrix of the maximum likelihood estimator ˆθ, i.e., Ω = Cov( ˆθ) { d 2 l( ˆθ) } 1. (11) dθ 2 We then have estimators for the linear time-varying coefficients, ˆβ(t) = From the properties of the maximum likelihood estimator under regularity conditions, e.g., Philippou and Roussas (1975), the estimators are asymptotically normal, ˆβ j (t) N q (0, σ 2 j (t)) where σ 2 j (t) = x(t) Ω j x(t) and Cov( ˆθ j ) = Ω j which is the corresponding q q matrix of Ω = (Ω uv ), u, v = 1,, pq, i.e.,ω j = (Ω uv ), u, v = (j 1)q + 1,, jq Constructing simultaneous confidence intervals of time-varying coefficients. Here, we construct a confidence interval for the linear time-varying coefficients, given by I j,α (t u α ) = [ ˆβj (t) u αˆσ j (t), ˆβj (t) + u αˆσ j (t)]. (13) The covering probability of I j,α (t u α ) depends on u α. For example, the pointwise confidence interval at a fixed time t can be constructed by letting u α = z α/2, where z α denotes the upper 100α percentile of N(0, 1). Note that the confidence interval I j,α (t z α/2 ) satisfies Pr(β j (t) I j,α (t z α/2 )) 1 α for a fixed time t. To construct a simultaneous confidence interval, we need to evaluate the distribution of the supremum of the Wald type statistic T j (t) = { ˆβ j (t) β j (t)}/σ j (t), but it is difficult to derive an explicit expression for the distribution of the supremum statistic in general. Here, we evaluate the upper bound of the supremum of T j (t) in the same manner as in Satoh and Yanagihara (2010). From the inequality in Rao (1973, p. 60), ˆβ j (t) asymptotically

6 satisfies the following equation: {x(t) ( ˆθj θ j )} 2 {x ( ˆθj θ j )} 2 sup T j (t) 2 = sup t R t R x(t) Ω j x(t) = sup ( x R q ) x Ω j x ( ) ˆθj θ j Ω 1 ˆθj θ j χ 2 q. j (14) Note that the asymptotic distribution of the upper bound is χ 2 q for any time t. Let u α = c q,α, where c q,α is the upper 100α percentile of χ 2 q, then the covering probability of the confidence interval I j,α (t c q,α ) satisfies Pr ( β j (t) I j,α (t) t R ) 1 α. (15) Based on equation (14), we can construct test statistics for the following null hypotheses for time-varying coefficient β j (t): Uniformly zero Uniformly constant. H 0 : β j (t) = 0 for t R H 0 : β j (t) = const. for t R (16) The uniformly zero hypothesis is equivalent to θ j = 0. Using equation (14) with θ j = 0, the upper bound of the supremum of T j (t) 2 is W j = ˆθ jω 1 j ˆθ j χ 2 q. Hence, W j can be used as a test statistic for the null hypothesis H 0. The uniformly zero hypothesis is rejected when W j > c q,α, and the p-value can be obtained by Pr(χ 2 q > W j ). Note that the uniformly constant hypothesis is equivalent to θ ( 1) j = 0, where θ ( 1) j is a (q 1)-dimensional vector, where the first element of θ j is excluded because it is equal to 1. This implies that the corresponding covariate a j has no effect on observations and the corresponding odds ratio is 1, i.e., exp{β j (t)} = 1. Analogous to the test for the uniformly zero hypothesis, we can construct a test statistic and derive an asymptotic null distribution for the uniformly constant hypothesis. 3. Numerical example. In this section, we consider a dataset of remission lengths (weeks) for acute leukemia patients in Table 1, which was reported by Freireich et al. (1963) and was explained in Kleinbaum (2012). The data consist of a placebo

7 group and a treatment group, each containing 21 patients. Our main concern is comparing the survival rates of the two groups. We considered the proposed model using the placebo group as a control group, and the covariate of the i th individual is expressed as a i = 1 for the treatment group and a i = 0 for the placebo group, where i = 1,, n with n = 21 2 = 42. Assuming the time-varying coefficient for the treatment effect to be a linear curve, the design vector is given by x(t) = (1, t) and the length is q = 2. Note that the survival time t is the logarithm of the original length of remission. The maximum likelihood estimators and the asymptotic standard error were calculated using (10) and (11) respectively and are listed in Table 2. Hence, the estimated logistic regression model in (1) can be expressed as ˆβ 1 (t) + ˆβ 2 (t)a where ˆβ 1 (t) = t for the placebo group and ˆβ 2 (t) = t for the treatment effect, i.e., ˆβ1 (t) + ˆβ 2 (t) for the treatment group. Figure 1 shows the fitted survival curves for each group. The proposed model seems to provide a good fit to the Kaplan-Meier curves. Since the proposed model is based on logistic regression, the odds ratio for the treatment group to the placebo group can be expressed as exp{β 2 (t)}, (see Figure 2). The simultaneous confidence intervals were also derived using (15). The estimated time-varying odds ratio curve seems to be around 0.1 during observation in Figure 2. In fact, the regression coefficient of t a in Table 2 is not statistically significant; p = > Then, the interaction term is removed from Table 2 and the corresponding estimates are given in Table 3. The treatment effect is now statistically significant, although the effect is not significant in Table 2. The estimated odds ratio in Table 3 is exp( 2.315) = 0.10 and the curve in Figure 2 appear to be reasonably constant. From the results of applying the proposed method to the remission time dataset, the proposed model constructed by logistic regression with time-varying coefficients can be seen to provide a good fit to the data, and we could confirm that the odds ratio was constant using the more flexible model which allowed for non-stationary odds ratios.

8 4. Simulation. We obtained our estimates for the model parameters using the Newton- Raphson method, as defined by the recurrence formula (10). The estimates will converge if the initial value θ 0 is sufficiently close to the maximum likelihood estimator ˆθ, since dl( ˆθ)/dθ = 0 qp (see, McCullagh and Nelder (1989)). To elucidate the behavior of the estimator we investigated: 1) how quickly the estimator converged as the number of iterations increased, and 2) the influence of the initial guess for the estimator on the convergence. For our simulations, we used the parameter estimates in Table 3, which were fitted to the example shown in Table 1. Therefore, the initial values can be expressed as θ 0 = (θ 01, θ 02, θ 03 ). The regression coefficients θ 01 and θ 02 were fixed as and 1.830, respectively, based on the values in Table 3 and the coefficients θ 03 was simulated from the uniform distribution U( 4, 0), which are relatively close to the true maximum likelihood estimator ˆθ 3 = given in Table 3. Thus, as shown in Figure 3, 1,000 initial values were simulated from the uniform distribution and the Newton-Raphson method was applied 20 times for each initial value. All estimators successfully converged and the converged values were almost the same as the true maximum likelihood estimator. For the convergence rate, the number of iterations until convergence was less than 5 times. From the results of the simulations, the Newton-Raphson method seems to be suitable for obtaining the maximum likelihood estimators when the initial values are sufficiently close to the true values. Therefore, it is important for us to try different initial values and confirm the likelihood value in (7) for the obtained estimators. 5. Conclusion. We proposed a logistic regression survival model with time-varying coefficients. The maximum likelihood estimators and their asymptotic covariance matrix were calculated iteratively by the Newton-Raphson method. In our model, the odds ratio can be expressed as a function of time and its simultaneous confidence intervals were also considered. From the simulation study,

9 a maximum likelihood estimator can also be obtained with the odds ratio when initial values are close to the true values. The model provided a good fit when applied to a real dataset, and it was confirmed that the odds ratio is constant in time. Besides providing a test of stationarity for the odds ratio, our proposed model might also be useful for modeling odds ratios which are non-stationary. References Bennet, S. (1983). Log-logistic regression models for survival data. Journal of Applied Statistics, 32, Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society. Series B, 34, Freireich, E. O. et al. (1963). The effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukemia. Blood, 21, Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. Journals of the Royal Statistical Society B, 55, Kleinbaum, D. G. (2012). Survival Analysis 3rd ed., Springer, New York. Philippou, A. N. and Roussas, G. G. (1975). Asymptotic normality of the maximum likelihood estimate in the independent not identically distributed case. Annals of the Institute of Statistical Mathematics, 27, Rao, C. R. (1973). Linear Statistical Inference and Its Applications. John Wiley, New York. McCullagh, P. and Nelder, J. A. (1989). Generalized linear models 2nd ed., Chapman and Hall/CRC, London.

10 Satoh, K. and Yanagihara, H. (2010). for a growth curve model. Management Sciences, 30, Estimation of varying coefficients American Journal of Mathematical and Satoh, K. and Tonda, T. (2016). Estimating regression coefficients for balanced growth curve model when time trend of baseline is not specified. American Journal of Mathematical and Management Sciences, in press. Table 1. Length of remission dataset by Freireich et al. (1963). ID Placebo Treatment ID Placebo Treatment Table 2. Estimates of regression coefficients. Variables Estimate Std. Error χ 2 1 p-value (Intercept) t a t a Table 3. Estimates of regression coefficients when the treatment effect is constant in time. Variables Estimate Std. Error χ 2 1 p-value (Intercept) t a

11 Survival Probability Treatment Placebo Kaplan Meier Weeks Figure 1. Fitted survival curves based on the logistic regression model.

12 Odds Ratio Estimated OR 95% C.I Weeks Figure 2. The estimated time-varying odds ratio curve and its 95% simultaneous confidence intervals.

13 Estimates Iterations of Newton Raphson method Figure 3. Convergence of the regression coefficients with different initial values, when using the Newton-Raphson method. The true value is

Power and Sample Size Calculations with the Additive Hazards Model

Power and Sample Size Calculations with the Additive Hazards Model Journal of Data Science 10(2012), 143-155 Power and Sample Size Calculations with the Additive Hazards Model Ling Chen, Chengjie Xiong, J. Philip Miller and Feng Gao Washington University School of Medicine

More information

TMA 4275 Lifetime Analysis June 2004 Solution

TMA 4275 Lifetime Analysis June 2004 Solution TMA 4275 Lifetime Analysis June 2004 Solution Problem 1 a) Observation of the outcome is censored, if the time of the outcome is not known exactly and only the last time when it was observed being intact,

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY OF CALIFORNIA, SAN DIEGO Estimation of the primary hazard ratio in the presence of a secondary covariate with non-proportional hazards An undergraduate honors thesis submitted to the Department

More information

Goodness-of-fit tests for randomly censored Weibull distributions with estimated parameters

Goodness-of-fit tests for randomly censored Weibull distributions with estimated parameters Communications for Statistical Applications and Methods 2017, Vol. 24, No. 5, 519 531 https://doi.org/10.5351/csam.2017.24.5.519 Print ISSN 2287-7843 / Online ISSN 2383-4757 Goodness-of-fit tests for randomly

More information

Illustration of the Varying Coefficient Model for Analyses the Tree Growth from the Age and Space Perspectives

Illustration of the Varying Coefficient Model for Analyses the Tree Growth from the Age and Space Perspectives TR-No. 14-06, Hiroshima Statistical Research Group, 1 11 Illustration of the Varying Coefficient Model for Analyses the Tree Growth from the Age and Space Perspectives Mariko Yamamura 1, Keisuke Fukui

More information

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data Malaysian Journal of Mathematical Sciences 11(3): 33 315 (217) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Approximation of Survival Function by Taylor

More information

MAS3301 / MAS8311 Biostatistics Part II: Survival

MAS3301 / MAS8311 Biostatistics Part II: Survival MAS3301 / MAS8311 Biostatistics Part II: Survival M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2009-10 1 13 The Cox proportional hazards model 13.1 Introduction In the

More information

Survival Analysis. Stat 526. April 13, 2018

Survival Analysis. Stat 526. April 13, 2018 Survival Analysis Stat 526 April 13, 2018 1 Functions of Survival Time Let T be the survival time for a subject Then P [T < 0] = 0 and T is a continuous random variable The Survival function is defined

More information

Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models

Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/25 Right censored

More information

Generalized linear models for binary data. A better graphical exploratory data analysis. The simple linear logistic regression model

Generalized linear models for binary data. A better graphical exploratory data analysis. The simple linear logistic regression model Stat 3302 (Spring 2017) Peter F. Craigmile Simple linear logistic regression (part 1) [Dobson and Barnett, 2008, Sections 7.1 7.3] Generalized linear models for binary data Beetles dose-response example

More information

Lecture 7 Time-dependent Covariates in Cox Regression

Lecture 7 Time-dependent Covariates in Cox Regression Lecture 7 Time-dependent Covariates in Cox Regression So far, we ve been considering the following Cox PH model: λ(t Z) = λ 0 (t) exp(β Z) = λ 0 (t) exp( β j Z j ) where β j is the parameter for the the

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 4: and multivariable regression Fatma Shebl, MD, MS, MPH, PhD Assistant Professor Chronic Disease Epidemiology Department Yale School of Public Health Fatma.shebl@yale.edu

More information

Survival Analysis Math 434 Fall 2011

Survival Analysis Math 434 Fall 2011 Survival Analysis Math 434 Fall 2011 Part IV: Chap. 8,9.2,9.3,11: Semiparametric Proportional Hazards Regression Jimin Ding Math Dept. www.math.wustl.edu/ jmding/math434/fall09/index.html Basic Model Setup

More information

Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data

Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data International Mathematical Forum, 3, 2008, no. 33, 1643-1654 Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data A. Al-khedhairi Department of Statistics and O.R. Faculty

More information

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA Kasun Rathnayake ; A/Prof Jun Ma Department of Statistics Faculty of Science and Engineering Macquarie University

More information

Lecture 11. Interval Censored and. Discrete-Time Data. Statistics Survival Analysis. Presented March 3, 2016

Lecture 11. Interval Censored and. Discrete-Time Data. Statistics Survival Analysis. Presented March 3, 2016 Statistics 255 - Survival Analysis Presented March 3, 2016 Motivating Dan Gillen Department of Statistics University of California, Irvine 11.1 First question: Are the data truly discrete? : Number of

More information

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis STAT 6350 Analysis of Lifetime Data Failure-time Regression Analysis Explanatory Variables for Failure Times Usually explanatory variables explain/predict why some units fail quickly and some units survive

More information

Semiparametric Regression

Semiparametric Regression Semiparametric Regression Patrick Breheny October 22 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/23 Introduction Over the past few weeks, we ve introduced a variety of regression models under

More information

Cox s proportional hazards model and Cox s partial likelihood

Cox s proportional hazards model and Cox s partial likelihood Cox s proportional hazards model and Cox s partial likelihood Rasmus Waagepetersen October 12, 2018 1 / 27 Non-parametric vs. parametric Suppose we want to estimate unknown function, e.g. survival function.

More information

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 Department of Statistics North Carolina State University Presented by: Butch Tsiatis, Department of Statistics, NCSU

More information

Bias-corrected AIC for selecting variables in Poisson regression models

Bias-corrected AIC for selecting variables in Poisson regression models Bias-corrected AIC for selecting variables in Poisson regression models Ken-ichi Kamo (a), Hirokazu Yanagihara (b) and Kenichi Satoh (c) (a) Corresponding author: Department of Liberal Arts and Sciences,

More information

Typical Survival Data Arising From a Clinical Trial. Censoring. The Survivor Function. Mathematical Definitions Introduction

Typical Survival Data Arising From a Clinical Trial. Censoring. The Survivor Function. Mathematical Definitions Introduction Outline CHL 5225H Advanced Statistical Methods for Clinical Trials: Survival Analysis Prof. Kevin E. Thorpe Defining Survival Data Mathematical Definitions Non-parametric Estimates of Survival Comparing

More information

Advanced Quantitative Methods: maximum likelihood

Advanced Quantitative Methods: maximum likelihood Advanced Quantitative Methods: Maximum Likelihood University College Dublin 4 March 2014 1 2 3 4 5 6 Outline 1 2 3 4 5 6 of straight lines y = 1 2 x + 2 dy dx = 1 2 of curves y = x 2 4x + 5 of curves y

More information

Lecture 22 Survival Analysis: An Introduction

Lecture 22 Survival Analysis: An Introduction University of Illinois Department of Economics Spring 2017 Econ 574 Roger Koenker Lecture 22 Survival Analysis: An Introduction There is considerable interest among economists in models of durations, which

More information

Multistate Modeling and Applications

Multistate Modeling and Applications Multistate Modeling and Applications Yang Yang Department of Statistics University of Michigan, Ann Arbor IBM Research Graduate Student Workshop: Statistics for a Smarter Planet Yang Yang (UM, Ann Arbor)

More information

Quantile Regression for Residual Life and Empirical Likelihood

Quantile Regression for Residual Life and Empirical Likelihood Quantile Regression for Residual Life and Empirical Likelihood Mai Zhou email: mai@ms.uky.edu Department of Statistics, University of Kentucky, Lexington, KY 40506-0027, USA Jong-Hyeon Jeong email: jeong@nsabp.pitt.edu

More information

LOGISTIC REGRESSION Joseph M. Hilbe

LOGISTIC REGRESSION Joseph M. Hilbe LOGISTIC REGRESSION Joseph M. Hilbe Arizona State University Logistic regression is the most common method used to model binary response data. When the response is binary, it typically takes the form of

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

FULL LIKELIHOOD INFERENCES IN THE COX MODEL

FULL LIKELIHOOD INFERENCES IN THE COX MODEL October 20, 2007 FULL LIKELIHOOD INFERENCES IN THE COX MODEL BY JIAN-JIAN REN 1 AND MAI ZHOU 2 University of Central Florida and University of Kentucky Abstract We use the empirical likelihood approach

More information

β j = coefficient of x j in the model; β = ( β1, β2,

β j = coefficient of x j in the model; β = ( β1, β2, Regression Modeling of Survival Time Data Why regression models? Groups similar except for the treatment under study use the nonparametric methods discussed earlier. Groups differ in variables (covariates)

More information

Lecture 4 - Survival Models

Lecture 4 - Survival Models Lecture 4 - Survival Models Survival Models Definition and Hazards Kaplan Meier Proportional Hazards Model Estimation of Survival in R GLM Extensions: Survival Models Survival Models are a common and incredibly

More information

CIMAT Taller de Modelos de Capture y Recaptura Known Fate Survival Analysis

CIMAT Taller de Modelos de Capture y Recaptura Known Fate Survival Analysis CIMAT Taller de Modelos de Capture y Recaptura 2010 Known Fate urvival Analysis B D BALANCE MODEL implest population model N = λ t+ 1 N t Deeper understanding of dynamics can be gained by identifying variation

More information

11 Survival Analysis and Empirical Likelihood

11 Survival Analysis and Empirical Likelihood 11 Survival Analysis and Empirical Likelihood The first paper of empirical likelihood is actually about confidence intervals with the Kaplan-Meier estimator (Thomas and Grunkmeier 1979), i.e. deals with

More information

STA6938-Logistic Regression Model

STA6938-Logistic Regression Model Dr. Ying Zhang STA6938-Logistic Regression Model Topic 2-Multiple Logistic Regression Model Outlines:. Model Fitting 2. Statistical Inference for Multiple Logistic Regression Model 3. Interpretation of

More information

Introduction to Statistical Analysis

Introduction to Statistical Analysis Introduction to Statistical Analysis Changyu Shen Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Objectives Descriptive

More information

BIAS OF MAXIMUM-LIKELIHOOD ESTIMATES IN LOGISTIC AND COX REGRESSION MODELS: A COMPARATIVE SIMULATION STUDY

BIAS OF MAXIMUM-LIKELIHOOD ESTIMATES IN LOGISTIC AND COX REGRESSION MODELS: A COMPARATIVE SIMULATION STUDY BIAS OF MAXIMUM-LIKELIHOOD ESTIMATES IN LOGISTIC AND COX REGRESSION MODELS: A COMPARATIVE SIMULATION STUDY Ingo Langner 1, Ralf Bender 2, Rebecca Lenz-Tönjes 1, Helmut Küchenhoff 2, Maria Blettner 2 1

More information

Survival Analysis I (CHL5209H)

Survival Analysis I (CHL5209H) Survival Analysis Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca January 7, 2015 31-1 Literature Clayton D & Hills M (1993): Statistical Models in Epidemiology. Not really

More information

Correlation and regression

Correlation and regression 1 Correlation and regression Yongjua Laosiritaworn Introductory on Field Epidemiology 6 July 2015, Thailand Data 2 Illustrative data (Doll, 1955) 3 Scatter plot 4 Doll, 1955 5 6 Correlation coefficient,

More information

Clinical Trials. Olli Saarela. September 18, Dalla Lana School of Public Health University of Toronto.

Clinical Trials. Olli Saarela. September 18, Dalla Lana School of Public Health University of Toronto. Introduction to Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca September 18, 2014 38-1 : a review 38-2 Evidence Ideal: to advance the knowledge-base of clinical medicine,

More information

Lecture 5 Models and methods for recurrent event data

Lecture 5 Models and methods for recurrent event data Lecture 5 Models and methods for recurrent event data Recurrent and multiple events are commonly encountered in longitudinal studies. In this chapter we consider ordered recurrent and multiple events.

More information

Proportional hazards regression

Proportional hazards regression Proportional hazards regression Patrick Breheny October 8 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/28 Introduction The model Solving for the MLE Inference Today we will begin discussing regression

More information

Hypothesis Testing Based on the Maximum of Two Statistics from Weighted and Unweighted Estimating Equations

Hypothesis Testing Based on the Maximum of Two Statistics from Weighted and Unweighted Estimating Equations Hypothesis Testing Based on the Maximum of Two Statistics from Weighted and Unweighted Estimating Equations Takeshi Emura and Hisayuki Tsukuma Abstract For testing the regression parameter in multivariate

More information

Chapter 2 Inference on Mean Residual Life-Overview

Chapter 2 Inference on Mean Residual Life-Overview Chapter 2 Inference on Mean Residual Life-Overview Statistical inference based on the remaining lifetimes would be intuitively more appealing than the popular hazard function defined as the risk of immediate

More information

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Guosheng Yin Department of Statistics and Actuarial Science The University of Hong Kong Joint work with J. Xu PSI and RSS Journal

More information

Biost 518 Applied Biostatistics II. Purpose of Statistics. First Stage of Scientific Investigation. Further Stages of Scientific Investigation

Biost 518 Applied Biostatistics II. Purpose of Statistics. First Stage of Scientific Investigation. Further Stages of Scientific Investigation Biost 58 Applied Biostatistics II Scott S. Emerson, M.D., Ph.D. Professor of Biostatistics University of Washington Lecture 5: Review Purpose of Statistics Statistics is about science (Science in the broadest

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Generalized Linear Models - part III Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs.

More information

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Overview of today s class Kaplan-Meier Curve

More information

Lecture 12. Multivariate Survival Data Statistics Survival Analysis. Presented March 8, 2016

Lecture 12. Multivariate Survival Data Statistics Survival Analysis. Presented March 8, 2016 Statistics 255 - Survival Analysis Presented March 8, 2016 Dan Gillen Department of Statistics University of California, Irvine 12.1 Examples Clustered or correlated survival times Disease onset in family

More information

Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials

Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials Application of Time-to-Event Methods in the Assessment of Safety in Clinical Trials Progress, Updates, Problems William Jen Hoe Koh May 9, 2013 Overview Marginal vs Conditional What is TMLE? Key Estimation

More information

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Xuelin Huang Department of Biostatistics M. D. Anderson Cancer Center The University of Texas Joint Work with Jing Ning, Sangbum

More information

Lecture 14: Introduction to Poisson Regression

Lecture 14: Introduction to Poisson Regression Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu 8 May 2007 1 / 52 Overview Modelling counts Contingency tables Poisson regression models 2 / 52 Modelling counts I Why

More information

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview Modelling counts I Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu Why count data? Number of traffic accidents per day Mortality counts in a given neighborhood, per week

More information

9 Generalized Linear Models

9 Generalized Linear Models 9 Generalized Linear Models The Generalized Linear Model (GLM) is a model which has been built to include a wide range of different models you already know, e.g. ANOVA and multiple linear regression models

More information

A comparison of inverse transform and composition methods of data simulation from the Lindley distribution

A comparison of inverse transform and composition methods of data simulation from the Lindley distribution Communications for Statistical Applications and Methods 2016, Vol. 23, No. 6, 517 529 http://dx.doi.org/10.5351/csam.2016.23.6.517 Print ISSN 2287-7843 / Online ISSN 2383-4757 A comparison of inverse transform

More information

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model Other Survival Models (1) Non-PH models We briefly discussed the non-proportional hazards (non-ph) model λ(t Z) = λ 0 (t) exp{β(t) Z}, where β(t) can be estimated by: piecewise constants (recall how);

More information

Consider Table 1 (Note connection to start-stop process).

Consider Table 1 (Note connection to start-stop process). Discrete-Time Data and Models Discretized duration data are still duration data! Consider Table 1 (Note connection to start-stop process). Table 1: Example of Discrete-Time Event History Data Case Event

More information

Regularization in Cox Frailty Models

Regularization in Cox Frailty Models Regularization in Cox Frailty Models Andreas Groll 1, Trevor Hastie 2, Gerhard Tutz 3 1 Ludwig-Maximilians-Universität Munich, Department of Mathematics, Theresienstraße 39, 80333 Munich, Germany 2 University

More information

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL The Cox PH model: λ(t Z) = λ 0 (t) exp(β Z). How do we estimate the survival probability, S z (t) = S(t Z) = P (T > t Z), for an individual with covariates

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

In contrast, parametric techniques (fitting exponential or Weibull, for example) are more focussed, can handle general covariates, but require

In contrast, parametric techniques (fitting exponential or Weibull, for example) are more focussed, can handle general covariates, but require Chapter 5 modelling Semi parametric We have considered parametric and nonparametric techniques for comparing survival distributions between different treatment groups. Nonparametric techniques, such as

More information

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 Introduction to Generalized Univariate Models: Models for Binary Outcomes EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 EPSY 905: Intro to Generalized In This Lecture A short review

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 24 Paper 153 A Note on Empirical Likelihood Inference of Residual Life Regression Ying Qing Chen Yichuan

More information

Beyond GLM and likelihood

Beyond GLM and likelihood Stat 6620: Applied Linear Models Department of Statistics Western Michigan University Statistics curriculum Core knowledge (modeling and estimation) Math stat 1 (probability, distributions, convergence

More information

Chapter 4 Regression Models

Chapter 4 Regression Models 23.August 2010 Chapter 4 Regression Models The target variable T denotes failure time We let x = (x (1),..., x (m) ) represent a vector of available covariates. Also called regression variables, regressors,

More information

IP WEIGHTING AND MARGINAL STRUCTURAL MODELS (CHAPTER 12) BIOS IPW and MSM

IP WEIGHTING AND MARGINAL STRUCTURAL MODELS (CHAPTER 12) BIOS IPW and MSM IP WEIGHTING AND MARGINAL STRUCTURAL MODELS (CHAPTER 12) BIOS 776 1 12 IPW and MSM IP weighting and marginal structural models ( 12) Outline 12.1 The causal question 12.2 Estimating IP weights via modeling

More information

Linear Regression Models P8111

Linear Regression Models P8111 Linear Regression Models P8111 Lecture 25 Jeff Goldsmith April 26, 2016 1 of 37 Today s Lecture Logistic regression / GLMs Model framework Interpretation Estimation 2 of 37 Linear regression Course started

More information

Survival Analysis. 732G34 Statistisk analys av komplexa data. Krzysztof Bartoszek

Survival Analysis. 732G34 Statistisk analys av komplexa data. Krzysztof Bartoszek Survival Analysis 732G34 Statistisk analys av komplexa data Krzysztof Bartoszek (krzysztof.bartoszek@liu.se) 10, 11 I 2018 Department of Computer and Information Science Linköping University Survival analysis

More information

Package threg. August 10, 2015

Package threg. August 10, 2015 Package threg August 10, 2015 Title Threshold Regression Version 1.0.3 Date 2015-08-10 Author Tao Xiao Maintainer Tao Xiao Depends R (>= 2.10), survival, Formula Fit a threshold regression

More information

Interval Estimation for Parameters of a Bivariate Time Varying Covariate Model

Interval Estimation for Parameters of a Bivariate Time Varying Covariate Model Pertanika J. Sci. & Technol. 17 (2): 313 323 (2009) ISSN: 0128-7680 Universiti Putra Malaysia Press Interval Estimation for Parameters of a Bivariate Time Varying Covariate Model Jayanthi Arasan Department

More information

JOINT REGRESSION MODELING OF TWO CUMULATIVE INCIDENCE FUNCTIONS UNDER AN ADDITIVITY CONSTRAINT AND STATISTICAL ANALYSES OF PILL-MONITORING DATA

JOINT REGRESSION MODELING OF TWO CUMULATIVE INCIDENCE FUNCTIONS UNDER AN ADDITIVITY CONSTRAINT AND STATISTICAL ANALYSES OF PILL-MONITORING DATA JOINT REGRESSION MODELING OF TWO CUMULATIVE INCIDENCE FUNCTIONS UNDER AN ADDITIVITY CONSTRAINT AND STATISTICAL ANALYSES OF PILL-MONITORING DATA by Martin P. Houze B. Sc. University of Lyon, 2000 M. A.

More information

11 November 2011 Department of Biostatistics, University of Copengen. 9:15 10:00 Recap of case-control studies. Frequency-matched studies.

11 November 2011 Department of Biostatistics, University of Copengen. 9:15 10:00 Recap of case-control studies. Frequency-matched studies. Matched and nested case-control studies Bendix Carstensen Steno Diabetes Center, Gentofte, Denmark http://staff.pubhealth.ku.dk/~bxc/ Department of Biostatistics, University of Copengen 11 November 2011

More information

MAS3301 / MAS8311 Biostatistics Part II: Survival

MAS3301 / MAS8311 Biostatistics Part II: Survival MAS330 / MAS83 Biostatistics Part II: Survival M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2009-0 8 Parametric models 8. Introduction In the last few sections (the KM

More information

A Recursive Formula for the Kaplan-Meier Estimator with Mean Constraints and Its Application to Empirical Likelihood

A Recursive Formula for the Kaplan-Meier Estimator with Mean Constraints and Its Application to Empirical Likelihood Noname manuscript No. (will be inserted by the editor) A Recursive Formula for the Kaplan-Meier Estimator with Mean Constraints and Its Application to Empirical Likelihood Mai Zhou Yifan Yang Received:

More information

Attributable Risk Function in the Proportional Hazards Model

Attributable Risk Function in the Proportional Hazards Model UW Biostatistics Working Paper Series 5-31-2005 Attributable Risk Function in the Proportional Hazards Model Ying Qing Chen Fred Hutchinson Cancer Research Center, yqchen@u.washington.edu Chengcheng Hu

More information

Answer Key for STAT 200B HW No. 8

Answer Key for STAT 200B HW No. 8 Answer Key for STAT 200B HW No. 8 May 8, 2007 Problem 3.42 p. 708 The values of Ȳ for x 00, 0, 20, 30 are 5/40, 0, 20/50, and, respectively. From Corollary 3.5 it follows that MLE exists i G is identiable

More information

Sample size determination for logistic regression: A simulation study

Sample size determination for logistic regression: A simulation study Sample size determination for logistic regression: A simulation study Stephen Bush School of Mathematical Sciences, University of Technology Sydney, PO Box 123 Broadway NSW 2007, Australia Abstract This

More information

STAT 526 Spring Midterm 1. Wednesday February 2, 2011

STAT 526 Spring Midterm 1. Wednesday February 2, 2011 STAT 526 Spring 2011 Midterm 1 Wednesday February 2, 2011 Time: 2 hours Name (please print): Show all your work and calculations. Partial credit will be given for work that is partially correct. Points

More information

Step-Stress Models and Associated Inference

Step-Stress Models and Associated Inference Department of Mathematics & Statistics Indian Institute of Technology Kanpur August 19, 2014 Outline Accelerated Life Test 1 Accelerated Life Test 2 3 4 5 6 7 Outline Accelerated Life Test 1 Accelerated

More information

Bias Correction of Cross-Validation Criterion Based on Kullback-Leibler Information under a General Condition

Bias Correction of Cross-Validation Criterion Based on Kullback-Leibler Information under a General Condition Bias Correction of Cross-Validation Criterion Based on Kullback-Leibler Information under a General Condition Hirokazu Yanagihara 1, Tetsuji Tonda 2 and Chieko Matsumoto 3 1 Department of Social Systems

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information

Survival Regression Models

Survival Regression Models Survival Regression Models David M. Rocke May 18, 2017 David M. Rocke Survival Regression Models May 18, 2017 1 / 32 Background on the Proportional Hazards Model The exponential distribution has constant

More information

STAT331. Cox s Proportional Hazards Model

STAT331. Cox s Proportional Hazards Model STAT331 Cox s Proportional Hazards Model In this unit we introduce Cox s proportional hazards (Cox s PH) model, give a heuristic development of the partial likelihood function, and discuss adaptations

More information

Logistic Regression. Fitting the Logistic Regression Model BAL040-A.A.-10-MAJ

Logistic Regression. Fitting the Logistic Regression Model BAL040-A.A.-10-MAJ Logistic Regression The goal of a logistic regression analysis is to find the best fitting and most parsimonious, yet biologically reasonable, model to describe the relationship between an outcome (dependent

More information

DAGStat Event History Analysis.

DAGStat Event History Analysis. DAGStat 2016 Event History Analysis Robin.Henderson@ncl.ac.uk 1 / 75 Schedule 9.00 Introduction 10.30 Break 11.00 Regression Models, Frailty and Multivariate Survival 12.30 Lunch 13.30 Time-Variation and

More information

4.5.1 The use of 2 log Λ when θ is scalar

4.5.1 The use of 2 log Λ when θ is scalar 4.5. ASYMPTOTIC FORM OF THE G.L.R.T. 97 4.5.1 The use of 2 log Λ when θ is scalar Suppose we wish to test the hypothesis NH : θ = θ where θ is a given value against the alternative AH : θ θ on the basis

More information

Log-linearity for Cox s regression model. Thesis for the Degree Master of Science

Log-linearity for Cox s regression model. Thesis for the Degree Master of Science Log-linearity for Cox s regression model Thesis for the Degree Master of Science Zaki Amini Master s Thesis, Spring 2015 i Abstract Cox s regression model is one of the most applied methods in medical

More information

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES Cox s regression analysis Time dependent explanatory variables Henrik Ravn Bandim Health Project, Statens Serum Institut 4 November 2011 1 / 53

More information

(θ θ ), θ θ = 2 L(θ ) θ θ θ θ θ (θ )= H θθ (θ ) 1 d θ (θ )

(θ θ ), θ θ = 2 L(θ ) θ θ θ θ θ (θ )= H θθ (θ ) 1 d θ (θ ) Setting RHS to be zero, 0= (θ )+ 2 L(θ ) (θ θ ), θ θ = 2 L(θ ) 1 (θ )= H θθ (θ ) 1 d θ (θ ) O =0 θ 1 θ 3 θ 2 θ Figure 1: The Newton-Raphson Algorithm where H is the Hessian matrix, d θ is the derivative

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky

A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky Empirical likelihood with right censored data were studied by Thomas and Grunkmier (1975), Li (1995),

More information

Logistic Regression. Some slides from Craig Burkett. STA303/STA1002: Methods of Data Analysis II, Summer 2016 Michael Guerzhoy

Logistic Regression. Some slides from Craig Burkett. STA303/STA1002: Methods of Data Analysis II, Summer 2016 Michael Guerzhoy Logistic Regression Some slides from Craig Burkett STA303/STA1002: Methods of Data Analysis II, Summer 2016 Michael Guerzhoy Titanic Survival Case Study The RMS Titanic A British passenger liner Collided

More information

FULL LIKELIHOOD INFERENCES IN THE COX MODEL: AN EMPIRICAL LIKELIHOOD APPROACH

FULL LIKELIHOOD INFERENCES IN THE COX MODEL: AN EMPIRICAL LIKELIHOOD APPROACH FULL LIKELIHOOD INFERENCES IN THE COX MODEL: AN EMPIRICAL LIKELIHOOD APPROACH Jian-Jian Ren 1 and Mai Zhou 2 University of Central Florida and University of Kentucky Abstract: For the regression parameter

More information

Comparing Distribution Functions via Empirical Likelihood

Comparing Distribution Functions via Empirical Likelihood Georgia State University ScholarWorks @ Georgia State University Mathematics and Statistics Faculty Publications Department of Mathematics and Statistics 25 Comparing Distribution Functions via Empirical

More information

8 Nominal and Ordinal Logistic Regression

8 Nominal and Ordinal Logistic Regression 8 Nominal and Ordinal Logistic Regression 8.1 Introduction If the response variable is categorical, with more then two categories, then there are two options for generalized linear models. One relies on

More information

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution.

Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Hypothesis Testing Definition 3.1 A statistical hypothesis is a statement about the unknown values of the parameters of the population distribution. Suppose the family of population distributions is indexed

More information

Statistics and econometrics

Statistics and econometrics 1 / 36 Slides for the course Statistics and econometrics Part 10: Asymptotic hypothesis testing European University Institute Andrea Ichino September 8, 2014 2 / 36 Outline Why do we need large sample

More information

Solutions for Examination Categorical Data Analysis, March 21, 2013

Solutions for Examination Categorical Data Analysis, March 21, 2013 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik, Frank Miller MT 5006 LÖSNINGAR 21 mars 2013 Solutions for Examination Categorical Data Analysis, March 21, 2013 Problem 1 a.

More information

49th European Organization for Quality Congress. Topic: Quality Improvement. Service Reliability in Electrical Distribution Networks

49th European Organization for Quality Congress. Topic: Quality Improvement. Service Reliability in Electrical Distribution Networks 49th European Organization for Quality Congress Topic: Quality Improvement Service Reliability in Electrical Distribution Networks José Mendonça Dias, Rogério Puga Leal and Zulema Lopes Pereira Department

More information

Full likelihood inferences in the Cox model: an empirical likelihood approach

Full likelihood inferences in the Cox model: an empirical likelihood approach Ann Inst Stat Math 2011) 63:1005 1018 DOI 10.1007/s10463-010-0272-y Full likelihood inferences in the Cox model: an empirical likelihood approach Jian-Jian Ren Mai Zhou Received: 22 September 2008 / Revised:

More information

STAT 7030: Categorical Data Analysis

STAT 7030: Categorical Data Analysis STAT 7030: Categorical Data Analysis 5. Logistic Regression Peng Zeng Department of Mathematics and Statistics Auburn University Fall 2012 Peng Zeng (Auburn University) STAT 7030 Lecture Notes Fall 2012

More information