A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky

Size: px
Start display at page:

Download "A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky"

Transcription

1 A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky Empirical likelihood with right censored data were studied by Thomas and Grunkmier (1975), Li (1995), Murphy (1995), Pan (1997) and many others. We investigate in this paper the behavior of the two competing hazard formulation of the empirical likelihood: the Poisson and Binomial empirical likelihood. Simulation results show that the Binomial empirical likelihood have a better chi square approximation under null hypothesis. AMS 1991 Subject Classification: Primary 62G10; secondary 62G05. Key Words and Phrases: Censored data, Weighted hazards, Wilks theorem, Chi-square approximation. 1. Introduction Empirical likelihood (EL) method was first proposed by Thomas and Grunkmier (1975). Owen (1988, 1990, 2001) made this into a general methodology. He used parameters that are basically the means of the underlying distribution. Pan (1997), Fang (2000) and Pan and Zhou (2002) advocated using parameters that are weighted hazards. They showed among other things that by using a hazard formulation of the empirical likelihood and weighted hazards parameter, the empirical likelihood ratio handles right censored data easily. However, there are two competing versions of the hazard formulation of the empirical likelihood: namely the binomial and the Poisson version. They both are maximized by the well known Nelson-Aalen estimator. But the maximum values and the maximum of likelihood under constraints are different. We study in this paper their behavior as related to the chi square approximation to the empirical likelihood ratio under null hypothesis. We show that for discrete distributions the binomial EL ratio have much better chi square approximations under the null hypothesis. This difference is more profound for larger sample sizes as the approximation for Poisson EL do not improve with increasing sample size, where as the binomial does. For continuous distributions both ELs have good chi square approximations under null hypothesis, with Poisson some times slightly ahead of binomial in small samples. When sample sizes increase both approximations are good. 1

2 2. Poisson and Binomial Empirical Likelihood Suppose X 1,,X n are n independent, identically distributed observations. Assume the distribution of the X i is F(t) and the cumulative hazard function of X i is Λ(t). With right censoring, we only observe T i = min(x i,c i ) and δ i = I [Xi C i ] (1) where C i are the censoring times, assumed to be independent, identically distributed, and independent of the X i s. As shown in Pan and Zhou (2002) and Fang (2000), computations are much easier with the empirical likelihood formulated in terms of the (cumulative) hazard function. The hazard formulation of the censored data log empirical likelihood (denoted by log EL(Λ x )) is given as follows: log EL(Λ) = i {d i log v i + (R i d i )log(1 v i )} (2) where t i are the ordered, distinct values of T i ; d i = n j=1 I [Tj =t i ]δ j, and R i = n j=1 I [Tj t i ]. See, for example, Thomas and Grunkemeier (1975) and Li (1995) for similar notation and definition. Here, 0 < v i 1 are the discrete hazards at t i. We shall call this version of empirical likelihood the Binomial likelihood, following Murphy (1995). The maximization of (2) with respect to v i is known to be attained at the jumps of the Nelson-Aalen estimator: v i = d i /R i. Fang (2000) considered a hypothesis testing or confidence interval for a parameter θ with respect to the cumulative hazard function θ = g(t) log(1 dλ(t)) where g(t) is a nonnegative function. We note that θ are functionals of the cumulative hazard function. The constraints we shall impose on the hazards v i are: for given functions g( ) and constants µ, we have N 1 i g(t i )log(1 v i ) = µ, (3) where N is the total number of distinctive observation values. We need to exclude the last value as we always have v N = 1 for discrete hazards. 2

3 The EL ratio test statistic in terms of hazards is given by W 2 = 2{log maxel(λ)(with constraint (3)) log max EL(Λ)(without constraint)}. We have the following result that proves a version of Wilks theorem for W 2 under some regularity conditions. For proof please see Fang (2000). Theorem 1 Suppose µ = g(t)log{1 dλ(t)}. Then, the test statistic W 2 has asymptotically a distribution with 1 degrees of freedom. Remark 1 The integration constraints are originally given as θ = g(t)dlog{1 F(t)}. The above formulations are found by using the suggestive notation dlog{f(t)} = log{dλ(t)}. These two formulations are identical for both continuous and discrete F(t). Parallel results with Poisson likelihood function (defined below) and integral constraints were obtained by Pan and Zhou (2002). The Poisson definition of the empirical likelihood function is n log EL 2 = δ i log Λ(T i ) Λ(T j ). (4) i=1 j:t j T i This is called Poisson extension of the empirical likelihood, because it is in the form of a likelihood of a sequence of conditional Poisson trials. Johansen (1983) showed that the Poisson extension corresponds to the probability distribution from a dynamical Poisson process. See also Murphy (1995). It turns out, both empirical likelihood functions defined above are maximized by the jumps of the Nelson-Aalen (NA) estimator, ˆΛ(T i ) NA = δ i nj=1 I(T j T i ). Pan and Zhou (2002) studied the limit of the Poisson EL ratio with a general parameter of the form g(t)dλ(t) = g(t i ) Λ(T i ) = θ. They also obtained a chi square limit for the -2 log likelihood ratio under mild regularity conditions similar to Theorem 1 above. 3. Comparison of the EL ratios from Binomial and Poisson Type We first compare the performance of the chi square approximation for the two type of EL ratios under a discrete distribution. Tied observations arise naturally in biomedical 3

4 researches and other type of studies. Monte Carlo s with discrete distributions can closely mimic this type of data. To compare the Poisson and Binomial empirical likelihood ratio dealing with tied observations, s with a discrete exponential distribution were conducted. The discrete exponential random variable was generated by rounding the random variable from a standard exponential distribution to the second digit after the decimal point; and all values greater than 3 from the exponential distribution are defined as 3. An alternative approach, breaking the tied observations by adding a small value, was also applied to the Poisson empirical likelihood ratio approach. For example observations 2,2,2 will be replaced by 2,2 + ǫ,2 + 2ǫ etc. Constraint I(ti t) Λ(t i ) = θ (5) and I(ti t)log[1 Λ(t i )] = θ (6) was used for Poisson and Binomial empirical likelihood, respectively, where t is a known value. Setting t equal to 1.2 for both constraint (6) and (7), Monte Carlo of 1000 run was conducted for all three approaches (Poisson, Poisson with tie break and Binomial) using the same sample. Figures 1 and 2 are QQ-plots of the Poisson empirical likelihood ratios with respect to the χ 2 (1) percentiles. Figure 2 represents the result after artificially breaking the tied observations in the sample. The approximation is poor for both Poisson empirical likelihood ratio approaches, with tie-breaking slightly better. Figure 3 shows the results using constraint (7) and Binomial likelihood. The approximation to χ 2 (1) is very good compared to the Poisson EL ratio. Thus, the Binomial empirical likelihood ratio approach is superior to the Poisson empirical likelihood ratio approach, when the underlying distribution for the survival time is discrete. Next, we compare the two empirical likelihoods when the underlying distribution for the survival time is continuous. Using standard exponential as the survival time distribution, the was conducted with t equals 0.67 or 2.3 in the constraint (6) and (7). The survival function of the standard exponential at these two t values are 0.5 and 0.1, respectively. The results from Figure 4 indicate that the Poisson extension is comparable to Binomial extension when 1 F(t) = 0.5, and better than Binomial extension approach, when 1 4

5 Figure 1: 1000 Simulations with constraint (6) and Poisson empirical likelihood ratios n = 30 n = 80 n = 150 n = 500 5

6 Figure 2: 1000 Simulations with constraint (6) and Poisson empirical likelihood ratios. Tied observations in the sample were artificially broken by adding a small value n = 30 n = 80 n = 150 n = 500 6

7 Figure 3: 1000 Simulations with constraint (7) and binomial empirical likelihood ratios n = 30 n = 80 n = 150 n = 500 7

8 Figure 4: 3000 Simulations with standard exponential distribution. (a) Constraint (6) with 1 F(t) = 0.5 and Poisson extension. (b) Constraint (7) with 1 F(t) = 0.5 and Binomial extension. (c) Constraint (6) with 1 F(t) = 0.1 and Poisson extension. (d) Constraint (7) with 1 F(t) = 0.1 and Binomial extension. (a) n = 20 (b) n = 20 (c) n = 30 (d) n = 30 F(t) = 0.1. However these differences diminish when sample size n increases. Much more s were done and we only report representative ones here. In conclusion, the EL ratio from the Poisson likelihood is only suitable for survival time from continuous distributions, it cannot handle tied observation when distribution is discrete. The Poisson likelihood approach gives very good approximation when the underlying distribution is continuous. According to the results from the continuous distribution, the approximation from the Binomial extension approach is good when 1 F(t) = 0.5. In the case when 1 F(t) = 0.1, larger sample size is needed to reach a good approximation. We think this is due to the censoring in the tails. In other words, when there are censoring and the parameter considered is sensitive to the tail behavior, then the Poisson likelihood may have a better chi square approximation. 8

9 4. Concluding Remarks Two competing empirical likelihood definition lead to very different behavior for the log likelihood ratio. Practitioners should be aware of those and chose the appropriate one for the data at hand, so that the calculation of confidence interval or p-value in testing are more acurate. References Andersen, P.K., Borgan, O., Gill, R. and Keiding, N. (1993), Statistical Models Based on Counting Processes. Springer, New York. Efron, B. (1967). The Two Sample Problem With Censored Data. Proc. Fifth Berkeley Symp. Math. Statist. Probab. 4, Fang, H. (2000) Binomial Empirical Likelihood with Discrete Censored Data. Ph.D. Dissertation Department of Statistics, University of Kentucky. Gill, R. (1989), Non-and Semi-parametric Maximum likelihood estimator and the von Mises Method (I) Scand. J. Statist. 16, Johansen, S. (1983) An Extension of Cox s Regression Model International Statistical Review, 51, Kaplan, E. and Meier, P. (1958), Non-parametric Estimator From Incomplete Observations J. Amer. Statist. Assoc. 53, Li, G. (1995) On Nonparametric Likelihood Ratio Estimation of survival Probabilities for Censored Data Statistics and Probability Letters, 25, Murphy, S. A. (1995) Likelihood Ration Based Confidence Intervals in Survival Analysis Journal of the American Statistical Association, 90, Murphy, S. and Van der Varrt, (1997). Semiparametric Likelihood Ratio Inference. Ann. Statist. 25, Owen, A. (1988). Empirical Likelihood Ratio Confidence Intervals for a Single Functional. Biometrika, Owen, A. B. (1991), Empirical Likelihood for Linear Models The Annals of Statistics, 19, Owen, A., (2001). Empirical Likelihood. Chapman & Hall, London. Pan, X. (1997), Empirical Likelihood Ratio Method for Censored Data Ph.D. Dissertation Department of Statistics, University of Kentucky. Pan, X.R. and Zhou, M., (2002). Empirical likelihood in terms of cumulative hazard function for censored data. J. Multivariate Analysis 80 (1), Thomas, D. R. and Grunkemeier, G. L. (1975), Confidence Interval Estimation of Survival Probabilities for Censored Data Journal of the American Statistical Association, 70, Department of Statistics University of Kentucky Lexington, KY

EMPIRICAL ENVELOPE MLE AND LR TESTS. Mai Zhou University of Kentucky

EMPIRICAL ENVELOPE MLE AND LR TESTS. Mai Zhou University of Kentucky EMPIRICAL ENVELOPE MLE AND LR TESTS Mai Zhou University of Kentucky Summary We study in this paper some nonparametric inference problems where the nonparametric maximum likelihood estimator (NPMLE) are

More information

11 Survival Analysis and Empirical Likelihood

11 Survival Analysis and Empirical Likelihood 11 Survival Analysis and Empirical Likelihood The first paper of empirical likelihood is actually about confidence intervals with the Kaplan-Meier estimator (Thomas and Grunkmeier 1979), i.e. deals with

More information

FULL LIKELIHOOD INFERENCES IN THE COX MODEL

FULL LIKELIHOOD INFERENCES IN THE COX MODEL October 20, 2007 FULL LIKELIHOOD INFERENCES IN THE COX MODEL BY JIAN-JIAN REN 1 AND MAI ZHOU 2 University of Central Florida and University of Kentucky Abstract We use the empirical likelihood approach

More information

A Recursive Formula for the Kaplan-Meier Estimator with Mean Constraints

A Recursive Formula for the Kaplan-Meier Estimator with Mean Constraints Noname manuscript No. (will be inserted by the editor) A Recursive Formula for the Kaplan-Meier Estimator with Mean Constraints Mai Zhou Yifan Yang Received: date / Accepted: date Abstract In this note

More information

FULL LIKELIHOOD INFERENCES IN THE COX MODEL: AN EMPIRICAL LIKELIHOOD APPROACH

FULL LIKELIHOOD INFERENCES IN THE COX MODEL: AN EMPIRICAL LIKELIHOOD APPROACH FULL LIKELIHOOD INFERENCES IN THE COX MODEL: AN EMPIRICAL LIKELIHOOD APPROACH Jian-Jian Ren 1 and Mai Zhou 2 University of Central Florida and University of Kentucky Abstract: For the regression parameter

More information

Empirical likelihood ratio with arbitrarily censored/truncated data by EM algorithm

Empirical likelihood ratio with arbitrarily censored/truncated data by EM algorithm Empirical likelihood ratio with arbitrarily censored/truncated data by EM algorithm Mai Zhou 1 University of Kentucky, Lexington, KY 40506 USA Summary. Empirical likelihood ratio method (Thomas and Grunkmier

More information

Size and Shape of Confidence Regions from Extended Empirical Likelihood Tests

Size and Shape of Confidence Regions from Extended Empirical Likelihood Tests Biometrika (2014),,, pp. 1 13 C 2014 Biometrika Trust Printed in Great Britain Size and Shape of Confidence Regions from Extended Empirical Likelihood Tests BY M. ZHOU Department of Statistics, University

More information

COMPUTATION OF THE EMPIRICAL LIKELIHOOD RATIO FROM CENSORED DATA. Kun Chen and Mai Zhou 1 Bayer Pharmaceuticals and University of Kentucky

COMPUTATION OF THE EMPIRICAL LIKELIHOOD RATIO FROM CENSORED DATA. Kun Chen and Mai Zhou 1 Bayer Pharmaceuticals and University of Kentucky COMPUTATION OF THE EMPIRICAL LIKELIHOOD RATIO FROM CENSORED DATA Kun Chen and Mai Zhou 1 Bayer Pharmaceuticals and University of Kentucky Summary The empirical likelihood ratio method is a general nonparametric

More information

COMPUTE CENSORED EMPIRICAL LIKELIHOOD RATIO BY SEQUENTIAL QUADRATIC PROGRAMMING Kun Chen and Mai Zhou University of Kentucky

COMPUTE CENSORED EMPIRICAL LIKELIHOOD RATIO BY SEQUENTIAL QUADRATIC PROGRAMMING Kun Chen and Mai Zhou University of Kentucky COMPUTE CENSORED EMPIRICAL LIKELIHOOD RATIO BY SEQUENTIAL QUADRATIC PROGRAMMING Kun Chen and Mai Zhou University of Kentucky Summary Empirical likelihood ratio method (Thomas and Grunkmier 975, Owen 988,

More information

Empirical Likelihood in Survival Analysis

Empirical Likelihood in Survival Analysis Empirical Likelihood in Survival Analysis Gang Li 1, Runze Li 2, and Mai Zhou 3 1 Department of Biostatistics, University of California, Los Angeles, CA 90095 vli@ucla.edu 2 Department of Statistics, The

More information

Full likelihood inferences in the Cox model: an empirical likelihood approach

Full likelihood inferences in the Cox model: an empirical likelihood approach Ann Inst Stat Math 2011) 63:1005 1018 DOI 10.1007/s10463-010-0272-y Full likelihood inferences in the Cox model: an empirical likelihood approach Jian-Jian Ren Mai Zhou Received: 22 September 2008 / Revised:

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 24 Paper 153 A Note on Empirical Likelihood Inference of Residual Life Regression Ying Qing Chen Yichuan

More information

Quantile Regression for Residual Life and Empirical Likelihood

Quantile Regression for Residual Life and Empirical Likelihood Quantile Regression for Residual Life and Empirical Likelihood Mai Zhou email: mai@ms.uky.edu Department of Statistics, University of Kentucky, Lexington, KY 40506-0027, USA Jong-Hyeon Jeong email: jeong@nsabp.pitt.edu

More information

A Recursive Formula for the Kaplan-Meier Estimator with Mean Constraints and Its Application to Empirical Likelihood

A Recursive Formula for the Kaplan-Meier Estimator with Mean Constraints and Its Application to Empirical Likelihood Noname manuscript No. (will be inserted by the editor) A Recursive Formula for the Kaplan-Meier Estimator with Mean Constraints and Its Application to Empirical Likelihood Mai Zhou Yifan Yang Received:

More information

and Comparison with NPMLE

and Comparison with NPMLE NONPARAMETRIC BAYES ESTIMATOR OF SURVIVAL FUNCTIONS FOR DOUBLY/INTERVAL CENSORED DATA and Comparison with NPMLE Mai Zhou Department of Statistics, University of Kentucky, Lexington, KY 40506 USA http://ms.uky.edu/

More information

Efficiency of Profile/Partial Likelihood in the Cox Model

Efficiency of Profile/Partial Likelihood in the Cox Model Efficiency of Profile/Partial Likelihood in the Cox Model Yuichi Hirose School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, New Zealand Summary. This paper shows

More information

Comparing Distribution Functions via Empirical Likelihood

Comparing Distribution Functions via Empirical Likelihood Georgia State University ScholarWorks @ Georgia State University Mathematics and Statistics Faculty Publications Department of Mathematics and Statistics 25 Comparing Distribution Functions via Empirical

More information

AFT Models and Empirical Likelihood

AFT Models and Empirical Likelihood AFT Models and Empirical Likelihood Mai Zhou Department of Statistics, University of Kentucky Collaborators: Gang Li (UCLA); A. Bathke; M. Kim (Kentucky) Accelerated Failure Time (AFT) models: Y = log(t

More information

EMPIRICAL LIKELIHOOD AND DIFFERENTIABLE FUNCTIONALS

EMPIRICAL LIKELIHOOD AND DIFFERENTIABLE FUNCTIONALS University of Kentucky UKnowledge Theses and Dissertations--Statistics Statistics 2016 EMPIRICAL LIKELIHOOD AND DIFFERENTIABLE FUNCTIONALS Zhiyuan Shen University of Kentucky, alanshenpku10@gmail.com Digital

More information

Nonparametric Hypothesis Testing and Condence Intervals with. Department of Statistics. University ofkentucky SUMMARY

Nonparametric Hypothesis Testing and Condence Intervals with. Department of Statistics. University ofkentucky SUMMARY Nonparametric Hypothesis Testing and Condence Intervals with Doubly Censored Data Kun Chen and Mai Zhou Department of Statistics University ofkentucky Lexington KY 46-7 U.S.A. SUMMARY The non-parametric

More information

Multistate Modeling and Applications

Multistate Modeling and Applications Multistate Modeling and Applications Yang Yang Department of Statistics University of Michigan, Ann Arbor IBM Research Graduate Student Workshop: Statistics for a Smarter Planet Yang Yang (UM, Ann Arbor)

More information

BARTLETT IDENTITIES AND LARGE DEVIATIONS IN LIKELIHOOD THEORY 1. By Per Aslak Mykland University of Chicago

BARTLETT IDENTITIES AND LARGE DEVIATIONS IN LIKELIHOOD THEORY 1. By Per Aslak Mykland University of Chicago The Annals of Statistics 1999, Vol. 27, No. 3, 1105 1117 BARTLETT IDENTITIES AND LARGE DEVIATIONS IN LIKELIHOOD THEORY 1 By Per Aslak Mykland University of Chicago The connection between large and small

More information

Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon

Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon Jianqing Fan Department of Statistics Chinese University of Hong Kong AND Department of Statistics

More information

On the generalized maximum likelihood estimator of survival function under Koziol Green model

On the generalized maximum likelihood estimator of survival function under Koziol Green model On the generalized maximum likelihood estimator of survival function under Koziol Green model By: Haimeng Zhang, M. Bhaskara Rao, Rupa C. Mitra Zhang, H., Rao, M.B., and Mitra, R.C. (2006). On the generalized

More information

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA Kasun Rathnayake ; A/Prof Jun Ma Department of Statistics Faculty of Science and Engineering Macquarie University

More information

Likelihood ratio confidence bands in nonparametric regression with censored data

Likelihood ratio confidence bands in nonparametric regression with censored data Likelihood ratio confidence bands in nonparametric regression with censored data Gang Li University of California at Los Angeles Department of Biostatistics Ingrid Van Keilegom Eindhoven University of

More information

Understanding product integration. A talk about teaching survival analysis.

Understanding product integration. A talk about teaching survival analysis. Understanding product integration. A talk about teaching survival analysis. Jan Beyersmann, Arthur Allignol, Martin Schumacher. Freiburg, Germany DFG Research Unit FOR 534 jan@fdm.uni-freiburg.de It is

More information

Nonparametric Bayes Estimator of Survival Function for Right-Censoring and Left-Truncation Data

Nonparametric Bayes Estimator of Survival Function for Right-Censoring and Left-Truncation Data Nonparametric Bayes Estimator of Survival Function for Right-Censoring and Left-Truncation Data Mai Zhou and Julia Luan Department of Statistics University of Kentucky Lexington, KY 40506-0027, U.S.A.

More information

Investigation of goodness-of-fit test statistic distributions by random censored samples

Investigation of goodness-of-fit test statistic distributions by random censored samples d samples Investigation of goodness-of-fit test statistic distributions by random censored samples Novosibirsk State Technical University November 22, 2010 d samples Outline 1 Nonparametric goodness-of-fit

More information

Statistical Analysis of Competing Risks With Missing Causes of Failure

Statistical Analysis of Competing Risks With Missing Causes of Failure Proceedings 59th ISI World Statistics Congress, 25-3 August 213, Hong Kong (Session STS9) p.1223 Statistical Analysis of Competing Risks With Missing Causes of Failure Isha Dewan 1,3 and Uttara V. Naik-Nimbalkar

More information

Survival Regression Models

Survival Regression Models Survival Regression Models David M. Rocke May 18, 2017 David M. Rocke Survival Regression Models May 18, 2017 1 / 32 Background on the Proportional Hazards Model The exponential distribution has constant

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

A comparison study of the nonparametric tests based on the empirical distributions

A comparison study of the nonparametric tests based on the empirical distributions 통계연구 (2015), 제 20 권제 3 호, 1-12 A comparison study of the nonparametric tests based on the empirical distributions Hyo-Il Park 1) Abstract In this study, we propose a nonparametric test based on the empirical

More information

1 Glivenko-Cantelli type theorems

1 Glivenko-Cantelli type theorems STA79 Lecture Spring Semester Glivenko-Cantelli type theorems Given i.i.d. observations X,..., X n with unknown distribution function F (t, consider the empirical (sample CDF ˆF n (t = I [Xi t]. n Then

More information

Survival Analysis Math 434 Fall 2011

Survival Analysis Math 434 Fall 2011 Survival Analysis Math 434 Fall 2011 Part IV: Chap. 8,9.2,9.3,11: Semiparametric Proportional Hazards Regression Jimin Ding Math Dept. www.math.wustl.edu/ jmding/math434/fall09/index.html Basic Model Setup

More information

Goodness-of-fit tests for randomly censored Weibull distributions with estimated parameters

Goodness-of-fit tests for randomly censored Weibull distributions with estimated parameters Communications for Statistical Applications and Methods 2017, Vol. 24, No. 5, 519 531 https://doi.org/10.5351/csam.2017.24.5.519 Print ISSN 2287-7843 / Online ISSN 2383-4757 Goodness-of-fit tests for randomly

More information

Empirical Processes & Survival Analysis. The Functional Delta Method

Empirical Processes & Survival Analysis. The Functional Delta Method STAT/BMI 741 University of Wisconsin-Madison Empirical Processes & Survival Analysis Lecture 3 The Functional Delta Method Lu Mao lmao@biostat.wisc.edu 3-1 Objectives By the end of this lecture, you will

More information

TESTS FOR LOCATION WITH K SAMPLES UNDER THE KOZIOL-GREEN MODEL OF RANDOM CENSORSHIP Key Words: Ke Wu Department of Mathematics University of Mississip

TESTS FOR LOCATION WITH K SAMPLES UNDER THE KOZIOL-GREEN MODEL OF RANDOM CENSORSHIP Key Words: Ke Wu Department of Mathematics University of Mississip TESTS FOR LOCATION WITH K SAMPLES UNDER THE KOIOL-GREEN MODEL OF RANDOM CENSORSHIP Key Words: Ke Wu Department of Mathematics University of Mississippi University, MS38677 K-sample location test, Koziol-Green

More information

STAT Sample Problem: General Asymptotic Results

STAT Sample Problem: General Asymptotic Results STAT331 1-Sample Problem: General Asymptotic Results In this unit we will consider the 1-sample problem and prove the consistency and asymptotic normality of the Nelson-Aalen estimator of the cumulative

More information

Symmetric Tests and Condence Intervals for Survival Probabilities and Quantiles of Censored Survival Data Stuart Barber and Christopher Jennison Depar

Symmetric Tests and Condence Intervals for Survival Probabilities and Quantiles of Censored Survival Data Stuart Barber and Christopher Jennison Depar Symmetric Tests and Condence Intervals for Survival Probabilities and Quantiles of Censored Survival Data Stuart Barber and Christopher Jennison Department of Mathematical Sciences, University of Bath,

More information

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Overview of today s class Kaplan-Meier Curve

More information

exclusive prepublication prepublication discount 25 FREE reprints Order now!

exclusive prepublication prepublication discount 25 FREE reprints Order now! Dear Contributor Please take advantage of the exclusive prepublication offer to all Dekker authors: Order your article reprints now to receive a special prepublication discount and FREE reprints when you

More information

Empirical Likelihood Confidence Band

Empirical Likelihood Confidence Band University of Kentucky UKnowledge Theses and Dissertations--Statistics Statistics 2015 Empirical Likelihood Confidence Band Shihong Zhu University of Kentucky, shihong2015@gmail.com Click here to let us

More information

Efficient Semiparametric Estimators via Modified Profile Likelihood in Frailty & Accelerated-Failure Models

Efficient Semiparametric Estimators via Modified Profile Likelihood in Frailty & Accelerated-Failure Models NIH Talk, September 03 Efficient Semiparametric Estimators via Modified Profile Likelihood in Frailty & Accelerated-Failure Models Eric Slud, Math Dept, Univ of Maryland Ongoing joint project with Ilia

More information

Conditional Inference by Estimation of a Marginal Distribution

Conditional Inference by Estimation of a Marginal Distribution Conditional Inference by Estimation of a Marginal Distribution Thomas J. DiCiccio and G. Alastair Young 1 Introduction Conditional inference has been, since the seminal work of Fisher (1934), a fundamental

More information

Multi-state models: prediction

Multi-state models: prediction Department of Medical Statistics and Bioinformatics Leiden University Medical Center Course on advanced survival analysis, Copenhagen Outline Prediction Theory Aalen-Johansen Computational aspects Applications

More information

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES Cox s regression analysis Time dependent explanatory variables Henrik Ravn Bandim Health Project, Statens Serum Institut 4 November 2011 1 / 53

More information

Survival analysis in R

Survival analysis in R Survival analysis in R Niels Richard Hansen This note describes a few elementary aspects of practical analysis of survival data in R. For further information we refer to the book Introductory Statistics

More information

Jackknife Empirical Likelihood for the Variance in the Linear Regression Model

Jackknife Empirical Likelihood for the Variance in the Linear Regression Model Georgia State University ScholarWorks @ Georgia State University Mathematics Theses Department of Mathematics and Statistics Summer 7-25-2013 Jackknife Empirical Likelihood for the Variance in the Linear

More information

Likelihood Construction, Inference for Parametric Survival Distributions

Likelihood Construction, Inference for Parametric Survival Distributions Week 1 Likelihood Construction, Inference for Parametric Survival Distributions In this section we obtain the likelihood function for noninformatively rightcensored survival data and indicate how to make

More information

AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY

AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY Econometrics Working Paper EWP0401 ISSN 1485-6441 Department of Economics AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY Lauren Bin Dong & David E. A. Giles Department of Economics, University of Victoria

More information

CONVERTING OBSERVED LIKELIHOOD FUNCTIONS TO TAIL PROBABILITIES. D.A.S. Fraser Mathematics Department York University North York, Ontario M3J 1P3

CONVERTING OBSERVED LIKELIHOOD FUNCTIONS TO TAIL PROBABILITIES. D.A.S. Fraser Mathematics Department York University North York, Ontario M3J 1P3 CONVERTING OBSERVED LIKELIHOOD FUNCTIONS TO TAIL PROBABILITIES D.A.S. Fraser Mathematics Department York University North York, Ontario M3J 1P3 N. Reid Department of Statistics University of Toronto Toronto,

More information

Introduction to Statistical Analysis

Introduction to Statistical Analysis Introduction to Statistical Analysis Changyu Shen Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Objectives Descriptive

More information

Product-limit estimators of the gap time distribution of a renewal process under different sampling patterns

Product-limit estimators of the gap time distribution of a renewal process under different sampling patterns Product-limit estimators of the gap time distribution of a renewal process under different sampling patterns arxiv:13.182v1 [stat.ap] 28 Feb 21 Richard D. Gill Department of Mathematics University of Leiden

More information

Lecture 5 Models and methods for recurrent event data

Lecture 5 Models and methods for recurrent event data Lecture 5 Models and methods for recurrent event data Recurrent and multiple events are commonly encountered in longitudinal studies. In this chapter we consider ordered recurrent and multiple events.

More information

Product-limit estimators of the survival function with left or right censored data

Product-limit estimators of the survival function with left or right censored data Product-limit estimators of the survival function with left or right censored data 1 CREST-ENSAI Campus de Ker-Lann Rue Blaise Pascal - BP 37203 35172 Bruz cedex, France (e-mail: patilea@ensai.fr) 2 Institut

More information

Survival analysis in R

Survival analysis in R Survival analysis in R Niels Richard Hansen This note describes a few elementary aspects of practical analysis of survival data in R. For further information we refer to the book Introductory Statistics

More information

TESTING FOR NORMALITY IN THE LINEAR REGRESSION MODEL: AN EMPIRICAL LIKELIHOOD RATIO TEST

TESTING FOR NORMALITY IN THE LINEAR REGRESSION MODEL: AN EMPIRICAL LIKELIHOOD RATIO TEST Econometrics Working Paper EWP0402 ISSN 1485-6441 Department of Economics TESTING FOR NORMALITY IN THE LINEAR REGRESSION MODEL: AN EMPIRICAL LIKELIHOOD RATIO TEST Lauren Bin Dong & David E. A. Giles Department

More information

Analysis of transformation models with censored data

Analysis of transformation models with censored data Biometrika (1995), 82,4, pp. 835-45 Printed in Great Britain Analysis of transformation models with censored data BY S. C. CHENG Department of Biomathematics, M. D. Anderson Cancer Center, University of

More information

Empirical likelihood for average derivatives of hazard regression functions

Empirical likelihood for average derivatives of hazard regression functions Metrika (2008 67:93 2 DOI 0.007/s0084-007-024-9 Empirical likelihood for average derivatives of hazard regression functions Xuewen Lu Jie Sun Yongcheng Qi Received: 26 May 2006 / Published online: 9 February

More information

On a connection between the Bradley-Terry model and the Cox proportional hazards model

On a connection between the Bradley-Terry model and the Cox proportional hazards model On a connection between the Bradley-Terry model and the Cox proportional hazards model Yuhua Su and Mai Zhou Department of Statistics University of Kentucky Lexington, KY 40506-0027, U.S.A. SUMMARY This

More information

Efficiency Comparison Between Mean and Log-rank Tests for. Recurrent Event Time Data

Efficiency Comparison Between Mean and Log-rank Tests for. Recurrent Event Time Data Efficiency Comparison Between Mean and Log-rank Tests for Recurrent Event Time Data Wenbin Lu Department of Statistics, North Carolina State University, Raleigh, NC 27695 Email: lu@stat.ncsu.edu Summary.

More information

Application of Parametric Homogeneity of Variances Tests under Violation of Classical Assumption

Application of Parametric Homogeneity of Variances Tests under Violation of Classical Assumption Application of Parametric Homogeneity of Variances Tests under Violation of Classical Assumption Alisa A. Gorbunova and Boris Yu. Lemeshko Novosibirsk State Technical University Department of Applied Mathematics,

More information

Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p.

Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p. Preface p. xi Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p. 6 The Scientific Method and the Design of

More information

Non-parametric Tests for the Comparison of Point Processes Based on Incomplete Data

Non-parametric Tests for the Comparison of Point Processes Based on Incomplete Data Published by Blackwell Publishers Ltd, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148, USA Vol 28: 725±732, 2001 Non-parametric Tests for the Comparison of Point Processes Based

More information

Accelerated Failure Time Models: A Review

Accelerated Failure Time Models: A Review International Journal of Performability Engineering, Vol. 10, No. 01, 2014, pp.23-29. RAMS Consultants Printed in India Accelerated Failure Time Models: A Review JEAN-FRANÇOIS DUPUY * IRMAR/INSA of Rennes,

More information

ST745: Survival Analysis: Nonparametric methods

ST745: Survival Analysis: Nonparametric methods ST745: Survival Analysis: Nonparametric methods Eric B. Laber Department of Statistics, North Carolina State University February 5, 2015 The KM estimator is used ubiquitously in medical studies to estimate

More information

TESTINGGOODNESSOFFITINTHECOX AALEN MODEL

TESTINGGOODNESSOFFITINTHECOX AALEN MODEL ROBUST 24 c JČMF 24 TESTINGGOODNESSOFFITINTHECOX AALEN MODEL David Kraus Keywords: Counting process, Cox Aalen model, goodness-of-fit, martingale, residual, survival analysis. Abstract: The Cox Aalen regression

More information

Nonparametric rank based estimation of bivariate densities given censored data conditional on marginal probabilities

Nonparametric rank based estimation of bivariate densities given censored data conditional on marginal probabilities Hutson Journal of Statistical Distributions and Applications (26 3:9 DOI.86/s4488-6-47-y RESEARCH Open Access Nonparametric rank based estimation of bivariate densities given censored data conditional

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 01: Introduction and Overview

Introduction to Empirical Processes and Semiparametric Inference Lecture 01: Introduction and Overview Introduction to Empirical Processes and Semiparametric Inference Lecture 01: Introduction and Overview Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations

More information

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data

Approximation of Survival Function by Taylor Series for General Partly Interval Censored Data Malaysian Journal of Mathematical Sciences 11(3): 33 315 (217) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal Approximation of Survival Function by Taylor

More information

arxiv: v1 [stat.me] 2 Mar 2015

arxiv: v1 [stat.me] 2 Mar 2015 Statistics Surveys Vol. 0 (2006) 1 8 ISSN: 1935-7516 Two samples test for discrete power-law distributions arxiv:1503.00643v1 [stat.me] 2 Mar 2015 Contents Alessandro Bessi IUSS Institute for Advanced

More information

On a connection between the Bradley Terry model and the Cox proportional hazards model

On a connection between the Bradley Terry model and the Cox proportional hazards model Statistics & Probability Letters 76 (2006) 698 702 www.elsevier.com/locate/stapro On a connection between the Bradley Terry model and the Cox proportional hazards model Yuhua Su, Mai Zhou Department of

More information

Power and Sample Size Calculations with the Additive Hazards Model

Power and Sample Size Calculations with the Additive Hazards Model Journal of Data Science 10(2012), 143-155 Power and Sample Size Calculations with the Additive Hazards Model Ling Chen, Chengjie Xiong, J. Philip Miller and Feng Gao Washington University School of Medicine

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY OF CALIFORNIA, SAN DIEGO Estimation of the primary hazard ratio in the presence of a secondary covariate with non-proportional hazards An undergraduate honors thesis submitted to the Department

More information

Examination paper for TMA4275 Lifetime Analysis

Examination paper for TMA4275 Lifetime Analysis Department of Mathematical Sciences Examination paper for TMA4275 Lifetime Analysis Academic contact during examination: Ioannis Vardaxis Phone: 95 36 00 26 Examination date: Saturday May 30 2015 Examination

More information

Testing Goodness-of-Fit for Exponential Distribution Based on Cumulative Residual Entropy

Testing Goodness-of-Fit for Exponential Distribution Based on Cumulative Residual Entropy This article was downloaded by: [Ferdowsi University] On: 16 April 212, At: 4:53 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 172954 Registered office: Mortimer

More information

Frailty Models and Copulas: Similarities and Differences

Frailty Models and Copulas: Similarities and Differences Frailty Models and Copulas: Similarities and Differences KLARA GOETHALS, PAUL JANSSEN & LUC DUCHATEAU Department of Physiology and Biometrics, Ghent University, Belgium; Center for Statistics, Hasselt

More information

Chapter 4 Fall Notations: t 1 < t 2 < < t D, D unique death times. d j = # deaths at t j = n. Y j = # at risk /alive at t j = n

Chapter 4 Fall Notations: t 1 < t 2 < < t D, D unique death times. d j = # deaths at t j = n. Y j = # at risk /alive at t j = n Bios 323: Applied Survival Analysis Qingxia (Cindy) Chen Chapter 4 Fall 2012 4.2 Estimators of the survival and cumulative hazard functions for RC data Suppose X is a continuous random failure time with

More information

Survival Analysis: Weeks 2-3. Lu Tian and Richard Olshen Stanford University

Survival Analysis: Weeks 2-3. Lu Tian and Richard Olshen Stanford University Survival Analysis: Weeks 2-3 Lu Tian and Richard Olshen Stanford University 2 Kaplan-Meier(KM) Estimator Nonparametric estimation of the survival function S(t) = pr(t > t) The nonparametric estimation

More information

Lecture 22 Survival Analysis: An Introduction

Lecture 22 Survival Analysis: An Introduction University of Illinois Department of Economics Spring 2017 Econ 574 Roger Koenker Lecture 22 Survival Analysis: An Introduction There is considerable interest among economists in models of durations, which

More information

Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions

Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS040) p.4828 Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions

More information

Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates

Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates Anastasios (Butch) Tsiatis Department of Statistics North Carolina State University http://www.stat.ncsu.edu/

More information

Cox s proportional hazards model and Cox s partial likelihood

Cox s proportional hazards model and Cox s partial likelihood Cox s proportional hazards model and Cox s partial likelihood Rasmus Waagepetersen October 12, 2018 1 / 27 Non-parametric vs. parametric Suppose we want to estimate unknown function, e.g. survival function.

More information

ICSA Applied Statistics Symposium 1. Balanced adjusted empirical likelihood

ICSA Applied Statistics Symposium 1. Balanced adjusted empirical likelihood ICSA Applied Statistics Symposium 1 Balanced adjusted empirical likelihood Art B. Owen Stanford University Sarah Emerson Oregon State University ICSA Applied Statistics Symposium 2 Empirical likelihood

More information

On the Breslow estimator

On the Breslow estimator Lifetime Data Anal (27) 13:471 48 DOI 1.17/s1985-7-948-y On the Breslow estimator D. Y. Lin Received: 5 April 27 / Accepted: 16 July 27 / Published online: 2 September 27 Springer Science+Business Media,

More information

A SIMPLE IMPROVEMENT OF THE KAPLAN-MEIER ESTIMATOR. Agnieszka Rossa

A SIMPLE IMPROVEMENT OF THE KAPLAN-MEIER ESTIMATOR. Agnieszka Rossa A SIMPLE IMPROVEMENT OF THE KAPLAN-MEIER ESTIMATOR Agnieszka Rossa Dept of Stat Methods, University of Lódź, Poland Rewolucji 1905, 41, Lódź e-mail: agrossa@krysiaunilodzpl and Ryszard Zieliński Inst Math

More information

asymptotic normality of nonparametric M-estimators with applications to hypothesis testing for panel count data

asymptotic normality of nonparametric M-estimators with applications to hypothesis testing for panel count data asymptotic normality of nonparametric M-estimators with applications to hypothesis testing for panel count data Xingqiu Zhao and Ying Zhang The Hong Kong Polytechnic University and Indiana University Abstract:

More information

Testing Statistical Hypotheses

Testing Statistical Hypotheses E.L. Lehmann Joseph P. Romano Testing Statistical Hypotheses Third Edition 4y Springer Preface vii I Small-Sample Theory 1 1 The General Decision Problem 3 1.1 Statistical Inference and Statistical Decisions

More information

Survival Analysis I (CHL5209H)

Survival Analysis I (CHL5209H) Survival Analysis Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca January 7, 2015 31-1 Literature Clayton D & Hills M (1993): Statistical Models in Epidemiology. Not really

More information

arxiv: v1 [math.st] 2 Apr 2016

arxiv: v1 [math.st] 2 Apr 2016 NON-ASYMPTOTIC RESULTS FOR CORNISH-FISHER EXPANSIONS V.V. ULYANOV, M. AOSHIMA, AND Y. FUJIKOSHI arxiv:1604.00539v1 [math.st] 2 Apr 2016 Abstract. We get the computable error bounds for generalized Cornish-Fisher

More information

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes:

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes: Practice Exam 1 1. Losses for an insurance coverage have the following cumulative distribution function: F(0) = 0 F(1,000) = 0.2 F(5,000) = 0.4 F(10,000) = 0.9 F(100,000) = 1 with linear interpolation

More information

KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE BASED ON LINEAR PLACEMENTS

KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE BASED ON LINEAR PLACEMENTS Bull. Korean Math. Soc. 5 (24), No. 3, pp. 7 76 http://dx.doi.org/34/bkms.24.5.3.7 KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE BASED ON LINEAR PLACEMENTS Yicheng Hong and Sungchul Lee Abstract. The limiting

More information

A note on the asymptotic distribution of Berk-Jones type statistics under the null hypothesis

A note on the asymptotic distribution of Berk-Jones type statistics under the null hypothesis A note on the asymptotic distribution of Berk-Jones type statistics under the null hypothesis Jon A. Wellner and Vladimir Koltchinskii Abstract. Proofs are given of the limiting null distributions of the

More information

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What? You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?) I m not goin stop (What?) I m goin work harder (What?) Sir David

More information

Estimation of Conditional Kendall s Tau for Bivariate Interval Censored Data

Estimation of Conditional Kendall s Tau for Bivariate Interval Censored Data Communications for Statistical Applications and Methods 2015, Vol. 22, No. 6, 599 604 DOI: http://dx.doi.org/10.5351/csam.2015.22.6.599 Print ISSN 2287-7843 / Online ISSN 2383-4757 Estimation of Conditional

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Guosheng Yin Department of Statistics and Actuarial Science The University of Hong Kong Joint work with J. Xu PSI and RSS Journal

More information

The Proportional Hazard Model and the Modelling of Recurrent Failure Data: Analysis of a Disconnector Population in Sweden. Sweden

The Proportional Hazard Model and the Modelling of Recurrent Failure Data: Analysis of a Disconnector Population in Sweden. Sweden PS1 Life Cycle Asset Management The Proportional Hazard Model and the Modelling of Recurrent Failure Data: Analysis of a Disconnector Population in Sweden J. H. Jürgensen 1, A.L. Brodersson 2, P. Hilber

More information

A GENERALIZED ADDITIVE REGRESSION MODEL FOR SURVIVAL TIMES 1. By Thomas H. Scheike University of Copenhagen

A GENERALIZED ADDITIVE REGRESSION MODEL FOR SURVIVAL TIMES 1. By Thomas H. Scheike University of Copenhagen The Annals of Statistics 21, Vol. 29, No. 5, 1344 136 A GENERALIZED ADDITIVE REGRESSION MODEL FOR SURVIVAL TIMES 1 By Thomas H. Scheike University of Copenhagen We present a non-parametric survival model

More information