CIMAT Taller de Modelos de Capture y Recaptura Known Fate Survival Analysis

Size: px
Start display at page:

Download "CIMAT Taller de Modelos de Capture y Recaptura Known Fate Survival Analysis"

Transcription

1 CIMAT Taller de Modelos de Capture y Recaptura 2010 Known Fate urvival Analysis

2 B D BALANCE MODEL implest population model N = λ t+ 1 N t Deeper understanding of dynamics can be gained by identifying variation in mechanisms: N ( β δ) = t N t

3 URVIVAL ANALYI Wide variety of ways to estimate survival, depending on the data structure (Murray & Patterson 2006) With proper analysis, one can examine how survival varies across space, time, and over life as organisms develop and age

4 KNOWN FATE TUDIE

5 KNOWN FATE FRAMEWORK Individuals marked / uniquely identifiable Individuals can be relocated without failure Can be censored from study All individuals monitored continuously, at regular intervals (e.g., weeks, months, years, etc.), or even irregular intervals 5

6 TERMINOLOGY Known Fate urvival Analysis if monitoring is continuous, it might also be called time to event analysis, failure time analysis At risk number of individuals exposed to detectable mortality in a study (emigration out of study area is grounds for removal from the at risk group) Right censor to remove an individual from the at risk group for some reason unrelated to mortality (individual remains in at risk group until it is censored) taggered Entry the addition of subects to the at risk group during the course of the study (a.k.a. left truncation)

7 MONITORING TIME TO EVENT Individual Observation Times Event taggered entry death death death censor death death Time

8 FUNCTION Density function f(t) PDF of failure times or mortality times; F(t) is the associated CDF

9 FUNCTION urvival function equation describing the probability of an individual in population surviving at least t units of time from the beginning of a study (or the beginning of life) = 1 F( t) = Pr( T t) t Where T is lifetime

10 FUNCTION Hazard function risk of dying at a point in time h t = lim Δt 0 Pr( t T < t + Δt T t) Δt

11 FUNCTION IDENTITIE h t t Cumulative Hazard function cumulated risk of dying from beginning of life up to a point in time t Continuous time function t f () t = h = f() t t h t t [ ln ] ' = H t = 0 h dx H t t t t = e & H = ln x

12 MONITORING OVER INTERVAL Interval survival rates the proportion of individuals surviving some discrete time interval (e.g., weeks): Time intervals () Product limit refers to the fact that survival rate during any interval can be calculated as the product of the survival rates during shorter intermediate intervals: t

13 WORD OF CAUTION In large study areas, mobile individuals may go missing then found later Do not reconstruct unobserved observation times! Censor from data set then re enter under staggered entry Or if common, use capture mark recapture analysis If individuals are separately monitored at irregular intervals Use Nest urvival models to estimate survival (next lecture) A special type of known fate analysis Commonly needed in large scale studies where logistics are difficult

14 KAPLAN MEIER MODEL The Kaplan Meier (K M) model was the earliest statistical estimator for time or age varying survival Originally developed for use in Medicine & Engineering (1958) Pollock (1984, 1989, 1995) first suggested its use in wildlife telemetry studies Used when fate of each individual is certain Perfect observation in medical and engineering trials Radio telemetry Plants, sessile animals, a few other special situations

15 K M VARIABLE a0, a1,, a discrete time points when deaths (failures) occur (alternatively use regular sampling periods e.g., weeks, months, etc.) r0, r1,, r d0, d1,, d number of individuals at risk at these time points number of deaths recorded at these time points a r d censored added Bobwhite survival in fall 1986 (Pollock 1989)

16 K M URVIVAL FUNCTION Probability of surviving interval ˆ ( ) 1 d a = r Probability of surviving interval a ˆ d d + 1 ( a+ 1) = 1 1 r r to Probability of surviving up to time t is a product limit ˆ t = 1 t d r a to a a 1 + 1

17 K M URVIVAL a r d () (t) censored added Bobwhite survival in fall 1986 (Pollock 1989)

18 K M URVIVAL FUNCTION Cox and Oakes (1984) formula for K M variance var ˆ t = ˆ 2 t se.. = var ˆ t 1 r t ˆ t

19 K M URVIVAL a r d () (t) censored added Var LCL UCL Bobwhite survival in fall 1986 (Pollock 1989)

20 LOG RANK TET Used to test whether two (or more) survival functions are equal For two groups, the test is based on the summed (over time) observed minus expected number of deaths for a given group and its variance Compute either a Z or χ 2 statistic and associated p value

21 K M URVIVAL AUMPTION Individuals randomly sampled within groups (age, sex, location) Time or interval of death is known (unless censored) Detection probability = 1 Individual fates are independent of one another Capture/marking does not influence survival Censoring is random (independent of fate) taggered entry assumes that newly tagged individuals have the same survival function as previously tagged

22 KNOWN FATE URVIVAL MODEL K M is a nonparametric method Can test for group effects (log rank test) Cannot incorporate covariates to control for confounding variables

23 KNOWN FATE URVIVAL MODEL emi parametric proportional hazard models Cox Proportional Hazards Useful for analysis of cause specific mortality (Heisey and Patterson 2006) Useful for examining effects of time varying covariates h = h () t ie t 0 ln h = ln h ( t) + t 0 βx t βx t

24 KNOWN FATE URVIVAL MODEL emi parametric proportional hazard models (Cox PH) Useful when fates in clustered groups of individuals are not independent Can account for unobserved individual heterogeneity (Frailty) Heterogeneous ub-groups Observed Marginal Hazard Heterogeneity at the beginning of life has important effect on mortality estimates at later ages

25 Case tudy: Black Legged Kittiwakes Jean Joachim 25 Lise Aubry

26 tudy Area tudy started in 1979 Jean Yves Monnat (Univ. Bretagne Occidentale) Emmanuelle Cam (Univ. Toulouse III) Field site: Cap izun 26

27 Follow Up 5 color bands: 8 possible colors (W, N, B, J, 0, R,V, P) 2 are specific to the banding cohort 3 other bands in the other leg 1 metal band (Museum of Natural History, Paris) After first reproduction, all birds sighted every year until mortality WOPBV Lise Aubry 27

28 KITTIWAKE URVIVAL Cox proportional hazard models With time varying covariates & Frailty term Aubry et al. submitted t P x = = e H t t t 1

29 KNOWN FATE URVIVAL MODEL Parametric hazard models (Gompertz, Weibull, iler etc.) Can account for Frailty Useful for examining rates of aging Gompertz accelerated failure time model: h t = bt ln h = a+ bi t t ai e Exponential acceleration in mortality (b) can be replaced with more complicated parameterization that incorporates covariates h t

30 KNOWN FATE URVIVAL MODEL Generalized Linear (Additive) Models Amenable to discrete interval data Easily incorporate covariates Known Fate model in Program Mark

31 GLM APPROACH K M model ˆ t = 1 t Write things in terms of survival (instead of death) ˆ y t = n t d r Where y is the number surviving interval and n is the number at risk during interval

32 GLM APPROACH Known fate survival ˆ y t = n t Likelihood model ( ) y, ( 1 ) θ L y n = K = 1 Where θ is the survival model for the K periods n y

33 MLE for GLM APPROACH a n d y? L ( ) 0 ( ) 0 ( ) 1 ( ) 0 ( ) 1 ( ) 0 ( ) 1 ( ) 0 ( ) 3 = 1 Multiply likelihood over all intervals y = ( 1 ) Bobwhite survival in fall 1986 (Pollock 1989) Optimize to find values of that maximize: K n y K = 1 y ( 1 ) n y

34 MLE for GLM APPROACH a n d y (t) L ( ) 0 ( ) 0 ( ) 1 ( ) 0 ( ) 1 ( ) 0 ( ) 1 ( ) 0 ( ) 3 Multiply likelihood over all intervals = Optimize to find values of that maximize: (Note: Easier to optimize log likelihood) Bobwhite survival in fall 1986 (Pollock 1989) K = 1 y ( 1 ) n y

35 MLE for GLM APPROACH Instead of writing likelihood for data summarized across individuals ( ) y, ( 1 ) θ L y n = K = 1 Can also write likelihood for individually based data K Where ν = 1 for survived interval and ν = 0 for died n y ( ) ν θ, = ( 1 ) 1 L y n i i = 1 i= 1 n ν

36 MLE for GLM APPROACH a id f? L ( ) 0 i ( ) 0 i ( ) 0 i ( ) 0 i ( ) 0 i ( ) 1 i ( ) 1 i ( ) 0 i 1 i 1 1 i 1 1 i 1 1 i 1 1 i 1 0 i 1 0 i 1 1 i 1 = 1 i= 1 Multiply likelihood over all rows (observations) Optimize to find values of i that maximize: Or sum & optimize log likelihood: K n = K n Bobwhite survival in fall 1986 (Pollock 1989) ( 1 ) 1 i ν ν i K n = 1 i= 1 ( θ ) ν ( i) ν ( i) ln L y, n = ln + (1 ) 1 = 1i= 1 ( 1 ) 1 i ν ν i

37 MLE for GLM APPROACH MLE estimation of a GLM for survival over intervals is an extension of the binomial likelihood (day 1 of course) MLE of a GLM provides greater flexibility to model variation in survival Constant survival (.) K M can only model (t) Categorical factors (groups; (g)) such as sex, habitat, etc. Can be implemented as categorical covariates Continuous covariates (body mass, temporal trends, etc.)

38 LOGITIC REGREION In the family of Generalized Linear Models Instead of linear regression Y = β + β X Logistic regression utilizes the Logit Link function: Y β0+ β1x1+ e = + 1 e β + β X Why is this useful? Constrains Y between 0 and 1 Useful for modeling survival probabilities as function of covariates and factors

39 LOGITIC REGREION Uses Logit Link function to connect Y to the regression string e Pr ( Y = 1 β ) 0, β 1, X1 = = β0+ β1x1 1+ e π Where Y = 1 indicates success and Y = 0 indicates failure Method assumes errors in Y are binomially distributed Variance in errors = π(1 π) β + β X

40 LOGITIC REGREION o what s this Logit Link function all about? The log odds of our probability of success is linearly related to the regression string ln π = β + β X 1 π This is nice, but it s for the linearized transformation of the response probability of interest π

41 LOGITIC REGREION Relationship between π and regression string is shaped or Logistic π e π = 1 + e β + β X β + β X X 1

42 LOGITIC REGREION Logistic regression fitted to 0 1 data (failure and success) π X 1 X 2

43 GENERALIZED LINEAR MODEL traightforward to apply Generalized Linear Models to Known Fate survival analysis because survival () is ust a probability of success (π) Other link functions might be more appropriate for certain types of data logit log log log complimentary log log, and more

44 GLM APPROACH How do we formally incorporate concepts of Link Functions into interval based survival analysis? Recall the likelihood for known fate survival over n individuals and K intervals K ( ) ν θ, = ( 1 ) 1 L y n i i = 1 i= 1 n uppose we want to model survival as a function of some variable(s) like age, body mass, location, etc. ν

45 GLM APPROACH We can do this using the Logit Link, or another link i e = 1 + e β + β X This equation can be implemented into the individually based survival likelihood ( β β ) β + β X K n β0+ β1x1 β0+ β1x1 e e L, y, n = 1 0 1, β + β X β + β X = 1 i= 1 1+ e 1+ e ν ν

46 MLE for GLM APPROACH Estimates of regression intercepts and slopes (Betas: β) can be estimated with MLE

47 GLM PARAMETER Conceivably, every individual has a different survival probability depending on their covariate values X i Age 1 Age 2 Age 3 e = 1 + e β + β X + β X i β + β X + β X Body ize

48 GLM PARAMETER Note on interpretation of Betas: The parameter β 0 determines the baseline intercept The parameter β x (x = 1,2,.) determines the rate of increase or decrease of the shaped curve for covariate x relative to β 0 The sign (±) of β x indicates whether the curve ascends or descends

49 Note: GLM MODELING More than 1 covariate can be examined structure of regression string in the logit link depends on your hypotheses; for example, does survival depend on: Age ex Body mass Age, body mass, and sex Is it constant across time and individuals Advanced approaches allow one to control for fatedependence within clusters (pairs or families), unobserved individual heterogeneity with random effects

50 GLM MODELING Can compute Maximum Likelihoods for any model Compare models with any IC n AICc = 2ln ( L) + 2K n K 1 or even Likelihood Ratio Tests for nested models LRT L ( ˆ simple θ ) = 2ln L ( ˆ general θ )

51 KNOWN FATE IN MARK In program MARK, the individual fates should be read in as a Live Dead (LD) encounter history As a row LDLDLDLD Individual made it to 4 th interval and died during 4 th interval

52 KNOWN FATE MODEL IN MARK o how can we model survival in Program MARK?

53 KNOWN FATE MODEL IN MARK

54 KNOWN FATE MODEL IN MARK A variety of pre defined models can be examined

55 KNOWN FATE MODEL IN MARK Run models using Logit Link

56 KNOWN FATE MODEL IN MARK Individual covariates in Design Matrix

Cormack-Jolly-Seber Models

Cormack-Jolly-Seber Models Cormack-Jolly-Seber Models Estimating Apparent Survival from Mark-Resight Data & Open-Population Models Ch. 17 of WNC, especially sections 17.1 & 17.2 For these models, animals are captured on k occasions

More information

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model Other Survival Models (1) Non-PH models We briefly discussed the non-proportional hazards (non-ph) model λ(t Z) = λ 0 (t) exp{β(t) Z}, where β(t) can be estimated by: piecewise constants (recall how);

More information

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis STAT 6350 Analysis of Lifetime Data Failure-time Regression Analysis Explanatory Variables for Failure Times Usually explanatory variables explain/predict why some units fail quickly and some units survive

More information

TMA 4275 Lifetime Analysis June 2004 Solution

TMA 4275 Lifetime Analysis June 2004 Solution TMA 4275 Lifetime Analysis June 2004 Solution Problem 1 a) Observation of the outcome is censored, if the time of the outcome is not known exactly and only the last time when it was observed being intact,

More information

MAS3301 / MAS8311 Biostatistics Part II: Survival

MAS3301 / MAS8311 Biostatistics Part II: Survival MAS3301 / MAS8311 Biostatistics Part II: Survival M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2009-10 1 13 The Cox proportional hazards model 13.1 Introduction In the

More information

Introduction to Statistical Analysis

Introduction to Statistical Analysis Introduction to Statistical Analysis Changyu Shen Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Objectives Descriptive

More information

Frailty Modeling for clustered survival data: a simulation study

Frailty Modeling for clustered survival data: a simulation study Frailty Modeling for clustered survival data: a simulation study IAA Oslo 2015 Souad ROMDHANE LaREMFiQ - IHEC University of Sousse (Tunisia) souad_romdhane@yahoo.fr Lotfi BELKACEM LaREMFiQ - IHEC University

More information

β j = coefficient of x j in the model; β = ( β1, β2,

β j = coefficient of x j in the model; β = ( β1, β2, Regression Modeling of Survival Time Data Why regression models? Groups similar except for the treatment under study use the nonparametric methods discussed earlier. Groups differ in variables (covariates)

More information

In contrast, parametric techniques (fitting exponential or Weibull, for example) are more focussed, can handle general covariates, but require

In contrast, parametric techniques (fitting exponential or Weibull, for example) are more focussed, can handle general covariates, but require Chapter 5 modelling Semi parametric We have considered parametric and nonparametric techniques for comparing survival distributions between different treatment groups. Nonparametric techniques, such as

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

Survival Analysis. Stat 526. April 13, 2018

Survival Analysis. Stat 526. April 13, 2018 Survival Analysis Stat 526 April 13, 2018 1 Functions of Survival Time Let T be the survival time for a subject Then P [T < 0] = 0 and T is a continuous random variable The Survival function is defined

More information

3003 Cure. F. P. Treasure

3003 Cure. F. P. Treasure 3003 Cure F. P. reasure November 8, 2000 Peter reasure / November 8, 2000/ Cure / 3003 1 Cure A Simple Cure Model he Concept of Cure A cure model is a survival model where a fraction of the population

More information

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Overview of today s class Kaplan-Meier Curve

More information

Analysis of Gamma and Weibull Lifetime Data under a General Censoring Scheme and in the presence of Covariates

Analysis of Gamma and Weibull Lifetime Data under a General Censoring Scheme and in the presence of Covariates Communications in Statistics - Theory and Methods ISSN: 0361-0926 (Print) 1532-415X (Online) Journal homepage: http://www.tandfonline.com/loi/lsta20 Analysis of Gamma and Weibull Lifetime Data under a

More information

Lecture 5 Models and methods for recurrent event data

Lecture 5 Models and methods for recurrent event data Lecture 5 Models and methods for recurrent event data Recurrent and multiple events are commonly encountered in longitudinal studies. In this chapter we consider ordered recurrent and multiple events.

More information

Statistical Inference and Methods

Statistical Inference and Methods Department of Mathematics Imperial College London d.stephens@imperial.ac.uk http://stats.ma.ic.ac.uk/ das01/ 31st January 2006 Part VI Session 6: Filtering and Time to Event Data Session 6: Filtering and

More information

Beyond GLM and likelihood

Beyond GLM and likelihood Stat 6620: Applied Linear Models Department of Statistics Western Michigan University Statistics curriculum Core knowledge (modeling and estimation) Math stat 1 (probability, distributions, convergence

More information

Step-Stress Models and Associated Inference

Step-Stress Models and Associated Inference Department of Mathematics & Statistics Indian Institute of Technology Kanpur August 19, 2014 Outline Accelerated Life Test 1 Accelerated Life Test 2 3 4 5 6 7 Outline Accelerated Life Test 1 Accelerated

More information

4 Testing Hypotheses. 4.1 Tests in the regression setting. 4.2 Non-parametric testing of survival between groups

4 Testing Hypotheses. 4.1 Tests in the regression setting. 4.2 Non-parametric testing of survival between groups 4 Testing Hypotheses The next lectures will look at tests, some in an actuarial setting, and in the last subsection we will also consider tests applied to graduation 4 Tests in the regression setting )

More information

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes:

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes: Practice Exam 1 1. Losses for an insurance coverage have the following cumulative distribution function: F(0) = 0 F(1,000) = 0.2 F(5,000) = 0.4 F(10,000) = 0.9 F(100,000) = 1 with linear interpolation

More information

Power and Sample Size Calculations with the Additive Hazards Model

Power and Sample Size Calculations with the Additive Hazards Model Journal of Data Science 10(2012), 143-155 Power and Sample Size Calculations with the Additive Hazards Model Ling Chen, Chengjie Xiong, J. Philip Miller and Feng Gao Washington University School of Medicine

More information

Dynamic Models Part 1

Dynamic Models Part 1 Dynamic Models Part 1 Christopher Taber University of Wisconsin December 5, 2016 Survival analysis This is especially useful for variables of interest measured in lengths of time: Length of life after

More information

Survival Analysis: Weeks 2-3. Lu Tian and Richard Olshen Stanford University

Survival Analysis: Weeks 2-3. Lu Tian and Richard Olshen Stanford University Survival Analysis: Weeks 2-3 Lu Tian and Richard Olshen Stanford University 2 Kaplan-Meier(KM) Estimator Nonparametric estimation of the survival function S(t) = pr(t > t) The nonparametric estimation

More information

Logistic regression model for survival time analysis using time-varying coefficients

Logistic regression model for survival time analysis using time-varying coefficients Logistic regression model for survival time analysis using time-varying coefficients Accepted in American Journal of Mathematical and Management Sciences, 2016 Kenichi SATOH ksatoh@hiroshima-u.ac.jp Research

More information

STAT331. Cox s Proportional Hazards Model

STAT331. Cox s Proportional Hazards Model STAT331 Cox s Proportional Hazards Model In this unit we introduce Cox s proportional hazards (Cox s PH) model, give a heuristic development of the partial likelihood function, and discuss adaptations

More information

MAS3301 / MAS8311 Biostatistics Part II: Survival

MAS3301 / MAS8311 Biostatistics Part II: Survival MAS330 / MAS83 Biostatistics Part II: Survival M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2009-0 8 Parametric models 8. Introduction In the last few sections (the KM

More information

Lecture 4 - Survival Models

Lecture 4 - Survival Models Lecture 4 - Survival Models Survival Models Definition and Hazards Kaplan Meier Proportional Hazards Model Estimation of Survival in R GLM Extensions: Survival Models Survival Models are a common and incredibly

More information

Survival Distributions, Hazard Functions, Cumulative Hazards

Survival Distributions, Hazard Functions, Cumulative Hazards BIO 244: Unit 1 Survival Distributions, Hazard Functions, Cumulative Hazards 1.1 Definitions: The goals of this unit are to introduce notation, discuss ways of probabilistically describing the distribution

More information

Multistate models and recurrent event models

Multistate models and recurrent event models Multistate models Multistate models and recurrent event models Patrick Breheny December 10 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/22 Introduction Multistate models In this final lecture,

More information

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES Cox s regression analysis Time dependent explanatory variables Henrik Ravn Bandim Health Project, Statens Serum Institut 4 November 2011 1 / 53

More information

Semiparametric Regression

Semiparametric Regression Semiparametric Regression Patrick Breheny October 22 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/23 Introduction Over the past few weeks, we ve introduced a variety of regression models under

More information

Duration Analysis. Joan Llull

Duration Analysis. Joan Llull Duration Analysis Joan Llull Panel Data and Duration Models Barcelona GSE joan.llull [at] movebarcelona [dot] eu Introduction Duration Analysis 2 Duration analysis Duration data: how long has an individual

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

Lecture 22 Survival Analysis: An Introduction

Lecture 22 Survival Analysis: An Introduction University of Illinois Department of Economics Spring 2017 Econ 574 Roger Koenker Lecture 22 Survival Analysis: An Introduction There is considerable interest among economists in models of durations, which

More information

Longitudinal Modeling with Logistic Regression

Longitudinal Modeling with Logistic Regression Newsom 1 Longitudinal Modeling with Logistic Regression Longitudinal designs involve repeated measurements of the same individuals over time There are two general classes of analyses that correspond to

More information

BIAS OF MAXIMUM-LIKELIHOOD ESTIMATES IN LOGISTIC AND COX REGRESSION MODELS: A COMPARATIVE SIMULATION STUDY

BIAS OF MAXIMUM-LIKELIHOOD ESTIMATES IN LOGISTIC AND COX REGRESSION MODELS: A COMPARATIVE SIMULATION STUDY BIAS OF MAXIMUM-LIKELIHOOD ESTIMATES IN LOGISTIC AND COX REGRESSION MODELS: A COMPARATIVE SIMULATION STUDY Ingo Langner 1, Ralf Bender 2, Rebecca Lenz-Tönjes 1, Helmut Küchenhoff 2, Maria Blettner 2 1

More information

Survival Analysis. 732G34 Statistisk analys av komplexa data. Krzysztof Bartoszek

Survival Analysis. 732G34 Statistisk analys av komplexa data. Krzysztof Bartoszek Survival Analysis 732G34 Statistisk analys av komplexa data Krzysztof Bartoszek (krzysztof.bartoszek@liu.se) 10, 11 I 2018 Department of Computer and Information Science Linköping University Survival analysis

More information

Multistate Modeling and Applications

Multistate Modeling and Applications Multistate Modeling and Applications Yang Yang Department of Statistics University of Michigan, Ann Arbor IBM Research Graduate Student Workshop: Statistics for a Smarter Planet Yang Yang (UM, Ann Arbor)

More information

Estimation for Modified Data

Estimation for Modified Data Definition. Estimation for Modified Data 1. Empirical distribution for complete individual data (section 11.) An observation X is truncated from below ( left truncated) at d if when it is at or below d

More information

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials

Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Two-stage Adaptive Randomization for Delayed Response in Clinical Trials Guosheng Yin Department of Statistics and Actuarial Science The University of Hong Kong Joint work with J. Xu PSI and RSS Journal

More information

The Weibull Distribution

The Weibull Distribution The Weibull Distribution Patrick Breheny October 10 Patrick Breheny University of Iowa Survival Data Analysis (BIOS 7210) 1 / 19 Introduction Today we will introduce an important generalization of the

More information

Multistate models and recurrent event models

Multistate models and recurrent event models and recurrent event models Patrick Breheny December 6 Patrick Breheny University of Iowa Survival Data Analysis (BIOS:7210) 1 / 22 Introduction In this final lecture, we will briefly look at two other

More information

Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models

Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models Analysis of Time-to-Event Data: Chapter 4 - Parametric regression models Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/25 Right censored

More information

Key Words: survival analysis; bathtub hazard; accelerated failure time (AFT) regression; power-law distribution.

Key Words: survival analysis; bathtub hazard; accelerated failure time (AFT) regression; power-law distribution. POWER-LAW ADJUSTED SURVIVAL MODELS William J. Reed Department of Mathematics & Statistics University of Victoria PO Box 3060 STN CSC Victoria, B.C. Canada V8W 3R4 reed@math.uvic.ca Key Words: survival

More information

LOGISTIC REGRESSION Joseph M. Hilbe

LOGISTIC REGRESSION Joseph M. Hilbe LOGISTIC REGRESSION Joseph M. Hilbe Arizona State University Logistic regression is the most common method used to model binary response data. When the response is binary, it typically takes the form of

More information

Typical Survival Data Arising From a Clinical Trial. Censoring. The Survivor Function. Mathematical Definitions Introduction

Typical Survival Data Arising From a Clinical Trial. Censoring. The Survivor Function. Mathematical Definitions Introduction Outline CHL 5225H Advanced Statistical Methods for Clinical Trials: Survival Analysis Prof. Kevin E. Thorpe Defining Survival Data Mathematical Definitions Non-parametric Estimates of Survival Comparing

More information

Correlation and regression

Correlation and regression 1 Correlation and regression Yongjua Laosiritaworn Introductory on Field Epidemiology 6 July 2015, Thailand Data 2 Illustrative data (Doll, 1955) 3 Scatter plot 4 Doll, 1955 5 6 Correlation coefficient,

More information

Parametric Modelling of Over-dispersed Count Data. Part III / MMath (Applied Statistics) 1

Parametric Modelling of Over-dispersed Count Data. Part III / MMath (Applied Statistics) 1 Parametric Modelling of Over-dispersed Count Data Part III / MMath (Applied Statistics) 1 Introduction Poisson regression is the de facto approach for handling count data What happens then when Poisson

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 4: and multivariable regression Fatma Shebl, MD, MS, MPH, PhD Assistant Professor Chronic Disease Epidemiology Department Yale School of Public Health Fatma.shebl@yale.edu

More information

Lecture 3. Truncation, length-bias and prevalence sampling

Lecture 3. Truncation, length-bias and prevalence sampling Lecture 3. Truncation, length-bias and prevalence sampling 3.1 Prevalent sampling Statistical techniques for truncated data have been integrated into survival analysis in last two decades. Truncation in

More information

Survival Analysis Math 434 Fall 2011

Survival Analysis Math 434 Fall 2011 Survival Analysis Math 434 Fall 2011 Part IV: Chap. 8,9.2,9.3,11: Semiparametric Proportional Hazards Regression Jimin Ding Math Dept. www.math.wustl.edu/ jmding/math434/fall09/index.html Basic Model Setup

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

Biost 518 Applied Biostatistics II. Purpose of Statistics. First Stage of Scientific Investigation. Further Stages of Scientific Investigation

Biost 518 Applied Biostatistics II. Purpose of Statistics. First Stage of Scientific Investigation. Further Stages of Scientific Investigation Biost 58 Applied Biostatistics II Scott S. Emerson, M.D., Ph.D. Professor of Biostatistics University of Washington Lecture 5: Review Purpose of Statistics Statistics is about science (Science in the broadest

More information

Comparing IRT with Other Models

Comparing IRT with Other Models Comparing IRT with Other Models Lecture #14 ICPSR Item Response Theory Workshop Lecture #14: 1of 45 Lecture Overview The final set of slides will describe a parallel between IRT and another commonly used

More information

ST5212: Survival Analysis

ST5212: Survival Analysis ST51: Survival Analysis 8/9: Semester II Tutorial 1. A model for lifetimes, with a bathtub-shaped hazard rate, is the exponential power distribution with survival fumction S(x) =exp{1 exp[(λx) α ]}. (a)

More information

Machine Learning. Module 3-4: Regression and Survival Analysis Day 2, Asst. Prof. Dr. Santitham Prom-on

Machine Learning. Module 3-4: Regression and Survival Analysis Day 2, Asst. Prof. Dr. Santitham Prom-on Machine Learning Module 3-4: Regression and Survival Analysis Day 2, 9.00 16.00 Asst. Prof. Dr. Santitham Prom-on Department of Computer Engineering, Faculty of Engineering King Mongkut s University of

More information

Chapter 1 Statistical Inference

Chapter 1 Statistical Inference Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

More information

GOV 2001/ 1002/ E-2001 Section 10 1 Duration II and Matching

GOV 2001/ 1002/ E-2001 Section 10 1 Duration II and Matching GOV 2001/ 1002/ E-2001 Section 10 1 Duration II and Matching Mayya Komisarchik Harvard University April 13, 2016 1 Heartfelt thanks to all of the Gov 2001 TFs of yesteryear; this section draws heavily

More information

Topic 4: Continuous random variables

Topic 4: Continuous random variables Topic 4: Continuous random variables Course 003, 2018 Page 0 Continuous random variables Definition (Continuous random variable): An r.v. X has a continuous distribution if there exists a non-negative

More information

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL The Cox PH model: λ(t Z) = λ 0 (t) exp(β Z). How do we estimate the survival probability, S z (t) = S(t Z) = P (T > t Z), for an individual with covariates

More information

5. Parametric Regression Model

5. Parametric Regression Model 5. Parametric Regression Model The Accelerated Failure Time (AFT) Model Denote by S (t) and S 2 (t) the survival functions of two populations. The AFT model says that there is a constant c > 0 such that

More information

4. Comparison of Two (K) Samples

4. Comparison of Two (K) Samples 4. Comparison of Two (K) Samples K=2 Problem: compare the survival distributions between two groups. E: comparing treatments on patients with a particular disease. Z: Treatment indicator, i.e. Z = 1 for

More information

Continuous Time Survival in Latent Variable Models

Continuous Time Survival in Latent Variable Models Continuous Time Survival in Latent Variable Models Tihomir Asparouhov 1, Katherine Masyn 2, Bengt Muthen 3 Muthen & Muthen 1 University of California, Davis 2 University of California, Los Angeles 3 Abstract

More information

Modern Methods of Statistical Learning sf2935 Lecture 5: Logistic Regression T.K

Modern Methods of Statistical Learning sf2935 Lecture 5: Logistic Regression T.K Lecture 5: Logistic Regression T.K. 10.11.2016 Overview of the Lecture Your Learning Outcomes Discriminative v.s. Generative Odds, Odds Ratio, Logit function, Logistic function Logistic regression definition

More information

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7

EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 Introduction to Generalized Univariate Models: Models for Binary Outcomes EPSY 905: Fundamentals of Multivariate Modeling Online Lecture #7 EPSY 905: Intro to Generalized In This Lecture A short review

More information

Lab 8. Matched Case Control Studies

Lab 8. Matched Case Control Studies Lab 8 Matched Case Control Studies Control of Confounding Technique for the control of confounding: At the design stage: Matching During the analysis of the results: Post-stratification analysis Advantage

More information

Models for Multivariate Panel Count Data

Models for Multivariate Panel Count Data Semiparametric Models for Multivariate Panel Count Data KyungMann Kim University of Wisconsin-Madison kmkim@biostat.wisc.edu 2 April 2015 Outline 1 Introduction 2 3 4 Panel Count Data Motivation Previous

More information

Ninth ARTNeT Capacity Building Workshop for Trade Research "Trade Flows and Trade Policy Analysis"

Ninth ARTNeT Capacity Building Workshop for Trade Research Trade Flows and Trade Policy Analysis Ninth ARTNeT Capacity Building Workshop for Trade Research "Trade Flows and Trade Policy Analysis" June 2013 Bangkok, Thailand Cosimo Beverelli and Rainer Lanz (World Trade Organization) 1 Selected econometric

More information

SAMPLE SIZE ESTIMATION FOR SURVIVAL OUTCOMES IN CLUSTER-RANDOMIZED STUDIES WITH SMALL CLUSTER SIZES BIOMETRICS (JUNE 2000)

SAMPLE SIZE ESTIMATION FOR SURVIVAL OUTCOMES IN CLUSTER-RANDOMIZED STUDIES WITH SMALL CLUSTER SIZES BIOMETRICS (JUNE 2000) SAMPLE SIZE ESTIMATION FOR SURVIVAL OUTCOMES IN CLUSTER-RANDOMIZED STUDIES WITH SMALL CLUSTER SIZES BIOMETRICS (JUNE 2000) AMITA K. MANATUNGA THE ROLLINS SCHOOL OF PUBLIC HEALTH OF EMORY UNIVERSITY SHANDE

More information

THESIS for the degree of MASTER OF SCIENCE. Modelling and Data Analysis

THESIS for the degree of MASTER OF SCIENCE. Modelling and Data Analysis PROPERTIES OF ESTIMATORS FOR RELATIVE RISKS FROM NESTED CASE-CONTROL STUDIES WITH MULTIPLE OUTCOMES (COMPETING RISKS) by NATHALIE C. STØER THESIS for the degree of MASTER OF SCIENCE Modelling and Data

More information

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis Review Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 22 Chapter 1: background Nominal, ordinal, interval data. Distributions: Poisson, binomial,

More information

DAGStat Event History Analysis.

DAGStat Event History Analysis. DAGStat 2016 Event History Analysis Robin.Henderson@ncl.ac.uk 1 / 75 Schedule 9.00 Introduction 10.30 Break 11.00 Regression Models, Frailty and Multivariate Survival 12.30 Lunch 13.30 Time-Variation and

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 8 Input Modeling Purpose & Overview Input models provide the driving force for a simulation model. The quality of the output is no better than the quality

More information

General Regression Model

General Regression Model Scott S. Emerson, M.D., Ph.D. Department of Biostatistics, University of Washington, Seattle, WA 98195, USA January 5, 2015 Abstract Regression analysis can be viewed as an extension of two sample statistical

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

Tied survival times; estimation of survival probabilities

Tied survival times; estimation of survival probabilities Tied survival times; estimation of survival probabilities Patrick Breheny November 5 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/22 Introduction Tied survival times Introduction Breslow approximation

More information

Accurate Sample Size Calculations in Trials with Non-Proportional Hazards

Accurate Sample Size Calculations in Trials with Non-Proportional Hazards Accurate Sample Size Calculations in Trials with Non-Proportional Hazards James Bell Elderbrook Solutions GmbH PSI Conference - 4 th June 2018 Introduction Non-proportional hazards (NPH) are common in

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida First Year Examination Department of Statistics, University of Florida August 20, 2009, 8:00 am - 2:00 noon Instructions:. You have four hours to answer questions in this examination. 2. You must show

More information

Multinomial Logistic Regression Models

Multinomial Logistic Regression Models Stat 544, Lecture 19 1 Multinomial Logistic Regression Models Polytomous responses. Logistic regression can be extended to handle responses that are polytomous, i.e. taking r>2 categories. (Note: The word

More information

Distribution Fitting (Censored Data)

Distribution Fitting (Censored Data) Distribution Fitting (Censored Data) Summary... 1 Data Input... 2 Analysis Summary... 3 Analysis Options... 4 Goodness-of-Fit Tests... 6 Frequency Histogram... 8 Comparison of Alternative Distributions...

More information

FREQUENTIST BEHAVIOR OF FORMAL BAYESIAN INFERENCE

FREQUENTIST BEHAVIOR OF FORMAL BAYESIAN INFERENCE FREQUENTIST BEHAVIOR OF FORMAL BAYESIAN INFERENCE Donald A. Pierce Oregon State Univ (Emeritus), RERF Hiroshima (Retired), Oregon Health Sciences Univ (Adjunct) Ruggero Bellio Univ of Udine For Perugia

More information

Lecture 12. Multivariate Survival Data Statistics Survival Analysis. Presented March 8, 2016

Lecture 12. Multivariate Survival Data Statistics Survival Analysis. Presented March 8, 2016 Statistics 255 - Survival Analysis Presented March 8, 2016 Dan Gillen Department of Statistics University of California, Irvine 12.1 Examples Clustered or correlated survival times Disease onset in family

More information

Survival Regression Models

Survival Regression Models Survival Regression Models David M. Rocke May 18, 2017 David M. Rocke Survival Regression Models May 18, 2017 1 / 32 Background on the Proportional Hazards Model The exponential distribution has constant

More information

Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes.

Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes. Unit 2: Models, Censoring, and Likelihood for Failure-Time Data Notes largely based on Statistical Methods for Reliability Data by W.Q. Meeker and L. A. Escobar, Wiley, 1998 and on their class notes. Ramón

More information

CTDL-Positive Stable Frailty Model

CTDL-Positive Stable Frailty Model CTDL-Positive Stable Frailty Model M. Blagojevic 1, G. MacKenzie 2 1 Department of Mathematics, Keele University, Staffordshire ST5 5BG,UK and 2 Centre of Biostatistics, University of Limerick, Ireland

More information

Semiparametric Generalized Linear Models

Semiparametric Generalized Linear Models Semiparametric Generalized Linear Models North American Stata Users Group Meeting Chicago, Illinois Paul Rathouz Department of Health Studies University of Chicago prathouz@uchicago.edu Liping Gao MS Student

More information

PQL Estimation Biases in Generalized Linear Mixed Models

PQL Estimation Biases in Generalized Linear Mixed Models PQL Estimation Biases in Generalized Linear Mixed Models Woncheol Jang Johan Lim March 18, 2006 Abstract The penalized quasi-likelihood (PQL) approach is the most common estimation procedure for the generalized

More information

Topic 4: Continuous random variables

Topic 4: Continuous random variables Topic 4: Continuous random variables Course 3, 216 Page Continuous random variables Definition (Continuous random variable): An r.v. X has a continuous distribution if there exists a non-negative function

More information

STAT 331. Accelerated Failure Time Models. Previously, we have focused on multiplicative intensity models, where

STAT 331. Accelerated Failure Time Models. Previously, we have focused on multiplicative intensity models, where STAT 331 Accelerated Failure Time Models Previously, we have focused on multiplicative intensity models, where h t z) = h 0 t) g z). These can also be expressed as H t z) = H 0 t) g z) or S t z) = e Ht

More information

A Regression Model For Recurrent Events With Distribution Free Correlation Structure

A Regression Model For Recurrent Events With Distribution Free Correlation Structure A Regression Model For Recurrent Events With Distribution Free Correlation Structure J. Pénichoux(1), A. Latouche(2), T. Moreau(1) (1) INSERM U780 (2) Université de Versailles, EA2506 ISCB - 2009 - Prague

More information

Logistic Regression. Some slides from Craig Burkett. STA303/STA1002: Methods of Data Analysis II, Summer 2016 Michael Guerzhoy

Logistic Regression. Some slides from Craig Burkett. STA303/STA1002: Methods of Data Analysis II, Summer 2016 Michael Guerzhoy Logistic Regression Some slides from Craig Burkett STA303/STA1002: Methods of Data Analysis II, Summer 2016 Michael Guerzhoy Titanic Survival Case Study The RMS Titanic A British passenger liner Collided

More information

Modelling geoadditive survival data

Modelling geoadditive survival data Modelling geoadditive survival data Thomas Kneib & Ludwig Fahrmeir Department of Statistics, Ludwig-Maximilians-University Munich 1. Leukemia survival data 2. Structured hazard regression 3. Mixed model

More information

Modeling and Performance Analysis with Discrete-Event Simulation

Modeling and Performance Analysis with Discrete-Event Simulation Simulation Modeling and Performance Analysis with Discrete-Event Simulation Chapter 9 Input Modeling Contents Data Collection Identifying the Distribution with Data Parameter Estimation Goodness-of-Fit

More information

Hierarchical Generalized Linear Models. ERSH 8990 REMS Seminar on HLM Last Lecture!

Hierarchical Generalized Linear Models. ERSH 8990 REMS Seminar on HLM Last Lecture! Hierarchical Generalized Linear Models ERSH 8990 REMS Seminar on HLM Last Lecture! Hierarchical Generalized Linear Models Introduction to generalized models Models for binary outcomes Interpreting parameter

More information

Lecture 7 Models for open populations: Tag recovery and CJS models, Goodness-of-fit

Lecture 7 Models for open populations: Tag recovery and CJS models, Goodness-of-fit WILD 7250 - Analysis of Wildlife Populations 1 of 16 Lecture 7 Models for open populations: Tag recovery and CJS models, Goodness-of-fit Resources Chapter 5 in Goodness of fit in E. Cooch and G.C. White

More information

7.1 The Hazard and Survival Functions

7.1 The Hazard and Survival Functions Chapter 7 Survival Models Our final chapter concerns models for the analysis of data which have three main characteristics: (1) the dependent variable or response is the waiting time until the occurrence

More information

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Outline Ordinary Least Squares (OLS) Regression Generalized Linear Models

More information

Extensions of Cox Model for Non-Proportional Hazards Purpose

Extensions of Cox Model for Non-Proportional Hazards Purpose PhUSE Annual Conference 2013 Paper SP07 Extensions of Cox Model for Non-Proportional Hazards Purpose Author: Jadwiga Borucka PAREXEL, Warsaw, Poland Brussels 13 th - 16 th October 2013 Presentation Plan

More information

Petr Volf. Model for Difference of Two Series of Poisson-like Count Data

Petr Volf. Model for Difference of Two Series of Poisson-like Count Data Petr Volf Institute of Information Theory and Automation Academy of Sciences of the Czech Republic Pod vodárenskou věží 4, 182 8 Praha 8 e-mail: volf@utia.cas.cz Model for Difference of Two Series of Poisson-like

More information

Simulation-based robust IV inference for lifetime data

Simulation-based robust IV inference for lifetime data Simulation-based robust IV inference for lifetime data Anand Acharya 1 Lynda Khalaf 1 Marcel Voia 1 Myra Yazbeck 2 David Wensley 3 1 Department of Economics Carleton University 2 Department of Economics

More information