On supercooled water drops impacting on superhydrophobic textures

Size: px
Start display at page:

Download "On supercooled water drops impacting on superhydrophobic textures"

Transcription

1 of On supercooled water drops impacting on superhydrophobic textures Tanmoy Maitra, Carlo Antonini, Manish K. Tiwari a, Adrian Mularczyk, Zulkufli Imeri, Philippe Schoch and imos Poulikakos * Laboratory of Thermodynamics in merging Technologies, Mechanical and Process ngineering epartment, TH Zurich, 8092 Zürich, Switzerland These authors contributed equally to this study a Current address: Mechanical ngineering, University College London, Torrington Place, London, WCI 7J * Corresponding author: dpoulikakos@ethz.ch Page 1 of 10

2 1. escription of the experimental setup Supercooled drop impact experiments were performed inside a chamber with controlled environmental conditions. The chamber was cooled by supply of cold nitrogen gas, both by direct flow into the chamber from the top, and by indirect cooling through a U-shaped aluminum channel (see Figure S1). The nitrogen flow inside the chamber was kept low enough, to avoid any disturbance to drop fall trajectory. Tests were performed at different environmental temperatures from room temperature, i.e. 23 C, down to -16 C. The low temperature limit was imposed by water freezing by heterogeneous nucleation at the drop dispenser tip, made of high-purity perfluoroalkoxyalkane (PFA), with external diameter 360 µm, and internal diameter 150 µm (part number 1933, Upchurch Scientific). The environmental humidity was kept at 0% by dry nitrogen flow, as mentioned in the main paper, to avoid frost formation on the sample and on the dispenser tip, limiting drop freezing events while dispensing the drop. Tests were performed after reaching isothermal conditions in the chamber, so that environmental, T, and surface temperature, T S, were equal. ue to evaporation effects, the drop temperature, T, was lower than the environment. The difference between the two was measured directly by a thermocouple immersed in the drop, during separate calibration tests (see Figure 2 in the main paper). When performing impact experiments, all tests were repeated at least 3 times on each sample for a given impact condition to ensure reproducibility. Page 2 of 10

3 Figure S1: xperimental setup for drop impact experiment at supercooling conditions. Page 3 of 10

4 2. Contact angle measurement Table S1: Advancing and receding contact angles, and contact angle hysteresis of the two different micropillar superhydrophobic textured surfaces used for the impact experiments. Surface Advancing contact angle ( o ) Receding contact angle ( o ) Hysteresis ( o ) µ 162.4± ± ± µ 162.4± ± ± Temperature effect on / max o for the 13.0 µ 4.5 superhydrophobic surface Figure S2: (a) Images of drop before impact and at maximum spreading. (b) scanning electron microscopic image 13.0 of surface µ (c) / max o as function of droplet temperature, T, for the surface µ 4.5 and for three different impact velocities, 1.6 m/s, 1.3 m/s and 0.7 m/s. Page 4 of 10

5 4. xperimental data for / max o against existing analytical models xperimental values of maximum spreading, / max o, were compared to two models available in the literature: an energy based model from Mao et al. 1, and a hydrodynamic model from Roisman et al. 2. On the basis of energy conservation from the moment of impact to maximum drop spreading, Mao et al. 1 proposed that drop non-dimensional maximum spreading, / max o, can be found from: We max We max 2 ( θ) Re cos = 0 (S1) The coefficients for the term accounting for the viscous dissipation, the original paper to best fit experimental data from millimeter water drop impact tests We Re, were derived in Roisman et al. 2 developed a theoretical model to predict the evolution of the drop diameter, starting from classical hydrodynamic balance equations. Under the assumption of 2-axisymmetric flow, the mass and momentum balance for the motion of the rim in the radial direction, appearing at the edge of the liquid film (lamella), can be written as: 1 dwr 2π dt ρwr d V 2π dt r ( V ) = R h V (S2) r l l r ( ) 2 = ρr h V V Rσ + R F R F (S3) r l l r r r w r µ where W r is the total volume of the rim, V r is the rim radial velocity, V l is the velocity of the liquid in the lamella, h l is the thickness of the lamella, ρ is the density of the liquid, σ is the surface tension, Fw = σ cosθ is the capillary force at the interface, F µ is the viscous drag force and t is the time. As can be seen from the right-hand side of q. S3, the model takes into account the capillary effects, wettability Page 5 of 10

6 effects due to the substrate, as well as viscous effects. The model was derived from first principles and does not contain any tuning parameter to fit the data, as is the case for all energy based models. Figure 3 in the main paper illustrates the comparison between experimental data and predicted value for max /, using the energy based model by Mao et al. (Figure 3(a)), and the hydrodynamic model by o Roisman et al. (Figure 3(b)). xperimental data include both water drop impact tests at different temperatures, as well as water-glycerol drop impact tests (see Table S1 for properties of tested mixtures) at room temperature, to simulate the increase of viscosity of supercooled water drops. xperimental data are in very good agreement with the energy based model (average deviation is 5%), and also in good agreement with the hydrodynamic model (average deviation is 11%). 5. Contact angles with water-glycerol mixtures The advancing and receding contact angles were measured on the superhydrophobic microtextured surface, µ, and on the corresponding smooth silicon surface (with root mean square roughness ~0.2 nm), both functionalized by 1H,1H,2H,2H-Perfluorodecyltrichlorosilane (FTS) (96% Alfa Aesar) in n- hexane solution, at four different concentrations of glycerol (0%, 20%, 30% and 40% by weight) in water. The data in Figure S3 shows that the advancing contact angle is barely affected by addition of glycerol, whereas the receding contact angles decreases up to 15 on both surfaces by addition of glycerol on both microtextured and smooth surfaces. Page 6 of 10

7 Figure S3: Advancing and receding contact angles of water-glycerol mixtures at four different concentrations of glycerol (0%, 20%, 30% and 40% by weight) on the superhydrophobic microtextured surface, µ, and on the smooth functionalized silicon surface. Tests were performed at room temperature. Page 7 of 10

8 6. Liquid properties Table S2: viscosity of water-glycerol mixture at three different concentrations of glycerol and comparison to water at specific temperatures. Wt.% of glycerol In water-glycerol mixture Viscosity of water-glycerol mixture (mpas) 4 Surface tension of water-glycerol mixture (mn/m) 4 Viscosity of water at the specified temperature (mpas) at 5 o C at -5 o C at -15 o C Page 8 of 10

9 7. Captions for Videos Video 1: Side-by-side view of water drop impact on the µ surface at two different environmental temperatures, 23 C and -13 C, with impact velocity of 2.7 m/s (below the critical velocity of 2.8 m/s measured at room temperature). The video was recorded using side-view. The video shows that at T = -13 C the drop recoiling dynamics is significantly slower compared to 23 C. Thus, the contact time increases from ~13.3 ms at T = 23 C up to ~22.6 ms at T = -13 C. Video 2: Side-by-side view of water drop impact on the µ surface at two different environmental temperatures, 23 C and -10 C, with impact velocity of 3.1 m/s (above the critical velocity measured at room temperature, i.e. 2.8 m/s). The video was recorded using side-view. The size of the impaled drop remaining attached to the substrate is larger at T = 23 C compared to T =-10 C. Video 3: Side-by-side view of water drop impact on the µ surface for room temperature water and waterglycerol mixture (40% by weight), mimicking supercooled water at -15 C, at the impact velocity of 3.8 m/s (above the critical velocity measured at room temperature, i.e. 2.8 m/s). The video was recorded using top-view. For room temperature water, there are three different circles around the impact point, which correspond to bubble entrapment, partial penetration and full penetration, respectively. Interestingly, the diameter corresponding to full penetration matches the size of the droplet fragment remaining on the surface. However, with water-glycerol mixture (40% by weight), only two circles (regimes) are observed, corresponding to partial penetration and full penetration, with no bubble entrapment. Page 9 of 10

10 RFRNCS (1) Mao, T.; Kuhn,.; Tran, H. Spread and Rebound of Liquid roplets upon Impact on Flat Surfaces. AICh J. 1997, 43, (2) Roisman, I. V.; Rioboo, R.; Tropea, C. Normal Impact of a Liquid rop on a ry Surface: Model for Spreading and Receding. Proceedings of the Royal Society A: Mathematical, Physical and ngineering Sciences, 2002, 458, (3) Clanet, C.; Béguin, C.; Richard,.; Quéré,. Maximal eformation of an Impacting rop. J. Fluid Mech. 2004, 517, (4) uvivier,.; Seveno,.; Rioboo, R.; Blake, T..; Coninck, J. e. xperimental vidence of the Role of Viscosity in the Molecular Kinetic Theory of ynamic Wetting. 2011, (5) Hallett, J. The Temperature ependence of the Viscosity of Supercooled Water. Proceedings of the Physical Society, 2002, 82, Page 10 of 10

Effects of Interfacial and Viscous Properties of Liquids on Drop Spread Dynamics

Effects of Interfacial and Viscous Properties of Liquids on Drop Spread Dynamics ILASS Americas, nd Annual Conference on Liquid Atomization and Spray Systems, Cincinnati, OH, May 00 Effects of Interfacial and Viscous Properties of Liquids on Drop Spread Dynamics V. Ravi, M. A. Jog

More information

Maximal deformation of an impacting drop

Maximal deformation of an impacting drop J. Fluid Mech. (24), vol. 57, pp. 99 28. c 24 Cambridge University Press DOI:.7/S222494 Printed in the United Kingdom 99 Maximal deformation of an impacting drop By CHRISTOPHE CLANET, CÉDRIC BÉGUIN, DENIS

More information

Supplementary Information on Thermally Enhanced Self-Propelled Droplet Motion on Gradient Surfaces

Supplementary Information on Thermally Enhanced Self-Propelled Droplet Motion on Gradient Surfaces Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supplementary Information on Thermally Enhanced Self-Propelled Droplet Motion on Gradient Surfaces

More information

Drop friction on liquid-infused materials

Drop friction on liquid-infused materials Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 207 Drop friction on liquid-infused materials Armelle Gas,2, Ludovic Keiser,3, Christophe Clanet,2

More information

Tanmoy Maitra. Superhydrophobicity to Supericephobicity: A technological Challenge

Tanmoy Maitra. Superhydrophobicity to Supericephobicity: A technological Challenge Superhydrophobicity to Supericephobicity: A technological Challenge Tanmoy Maitra Laboratory of Thermodynamics in Emerging Technologies Mechanical & Process Engineering 1 Icing in aeronautics www.staralliance.com/int/press/media_library/images/

More information

Droplet Coalescence and Freezing on Hydrophilic, Hydrophobic, and Biphilic Surfaces

Droplet Coalescence and Freezing on Hydrophilic, Hydrophobic, and Biphilic Surfaces Droplet Coalescence and Freezing on Hydrophilic, Hydrophobic, and Biphilic Surfaces Abstract Alexander S. Van Dyke 1, Diane Collard 2, Melanie M. Derby 1, Amy Rachel Betz 1 * 1 Mechanical and Nuclear Engineering,

More information

Computational Study of Bouncing and Non-bouncing Droplets Impacting on Superhydrophobic Surfaces

Computational Study of Bouncing and Non-bouncing Droplets Impacting on Superhydrophobic Surfaces Publication detail: Bange P. G. and Bhardwaj R. Computational Study of Bouncing and Non-bouncing Droplets Impacting on Superhydrophobic Surfaces, Theoretical and Computational Fluid Dynamics, 215, DOI:

More information

Characterization of Low Weber Number Post-Impact Drop-Spread. Dynamics by a Damped Harmonic System Model

Characterization of Low Weber Number Post-Impact Drop-Spread. Dynamics by a Damped Harmonic System Model Characterization of Low Weber Number Post-Impact Drop-Spread Dynamics by a Damped Harmonic System Model A Thesis Submitted to the Division of Research and Advanced Studies of the University of Cincinnati

More information

Lecture 7 Contact angle phenomena and wetting

Lecture 7 Contact angle phenomena and wetting Lecture 7 Contact angle phenomena and Contact angle phenomena and wetting Young s equation Drop on the surface complete spreading Establishing finite contact angle γ cosθ = γ γ L S SL γ S γ > 0 partial

More information

NO SPLASH ON THE MOON

NO SPLASH ON THE MOON UNIVERSITY OF LJUBLJANA Faculty of Mathematics and Physics Department of Physics NO SPLASH ON THE MOON Mentor: prof. Dr. RUDOLF PODGORNIK Ljubljana, February 2007 ABSTRACT The basic description of a droplet

More information

A numerical analysis of drop impact on liquid film by using a level set method

A numerical analysis of drop impact on liquid film by using a level set method Journal of Mechanical Science and Technology 25 (10) (2011) 2567~2572 wwwspringerlinkcom/content/1738-494x DOI 101007/s12206-011-0613-7 A numerical analysis of drop impact on liquid film by using a level

More information

Supporting information: Morphing and vectoring impacting droplets

Supporting information: Morphing and vectoring impacting droplets Supporting information: Morphing and vectoring impacting droplets by means of wettability-engineered surfaces Thomas M. Schutzius 1,2 Gustav Graeber 3 Mohamed Elsharkawy 1 James Oreluk 4 Constantine M.

More information

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 5, Supp, Pages 85 92 c 2008 Institute for Scientific Computing and Information PHYSICS OF FLUID SPREADING ON ROUGH SURFACES K. M. HAY AND

More information

Citation for published version (APA): Wal, B. P. V. D. (2006). Static and dynamic wetting of porous Teflon surfaces s.n.

Citation for published version (APA): Wal, B. P. V. D. (2006). Static and dynamic wetting of porous Teflon surfaces s.n. University of Groningen Static and dynamic wetting of porous Teflon surfaces Wal, Bouwe Pieter van der IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to

More information

Surface and Interfacial Tensions. Lecture 1

Surface and Interfacial Tensions. Lecture 1 Surface and Interfacial Tensions Lecture 1 Surface tension is a pull Surfaces and Interfaces 1 Thermodynamics for Interfacial Systems Work must be done to increase surface area just as work must be done

More information

Supplementary Figures

Supplementary Figures Supplementary Figures 1 Supplementary Figure 1 Micro and nano-textured boiling surfaces. (a) A schematic of the textured boiling surfaces. (b) An isometric view of the square array of square micropillars.

More information

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract

Derivation of continuum models for the moving contact line problem based on thermodynamic principles. Abstract Derivation of continuum models for the moving contact line problem based on thermodynamic principles Weiqing Ren Courant Institute of Mathematical Sciences, New York University, New York, NY 002, USA Weinan

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NMAT4868 Antifogging abilities of model nanotextures Timothée Mouterde 1,2, Gaëlle Lehoucq 3, Stéphane Xavier 3, Antonio Checco 4, Charles

More information

Splashing of liquids: Interplay of surface roughness with surrounding gas

Splashing of liquids: Interplay of surface roughness with surrounding gas Splashing of liquids: Interplay of surface roughness with surrounding gas Lei Xu, Loreto Barcos, and Sidney R. agel The James Franck Institute and Department of Physics, The University of Chicago, 929

More information

IMPINGEMENT OF A DROPLET ONTO A DRY WALL: A NUMERICAL INVESTIGATION

IMPINGEMENT OF A DROPLET ONTO A DRY WALL: A NUMERICAL INVESTIGATION IMPINGEMENT OF A DROPLET ONTO A DRY WALL:. Introduction A NUMERICAL INVESTIGATION N. Nikolopoulos, and G. Bergeles Department Mechanical Engineering Nat. Technical University of Athens 57 Zografos, Greece

More information

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications.

ISCST shall not be responsible for statements or opinions contained in papers or printed in its publications. Modeling of Drop Motion on Solid Surfaces with Wettability Gradients J. B. McLaughlin, Sp. S. Saravanan, N. Moumen, and R. S. Subramanian Department of Chemical Engineering Clarkson University Potsdam,

More information

arxiv: v1 [physics.flu-dyn] 8 Jun 2010

arxiv: v1 [physics.flu-dyn] 8 Jun 2010 How micropatterns and air pressure affect splashing on surfaces Peichun Tsai, Roeland van der Veen, Matthias van de Raa, and Detlef Lohse Physics of Fluids Group, Faculty of Science and Technology, Impact

More information

Topography driven spreading. School of Biomedical & Natural Sciences, Nottingham Trent University. Clifton Lane, Nottingham NG11 8NS, UK.

Topography driven spreading. School of Biomedical & Natural Sciences, Nottingham Trent University. Clifton Lane, Nottingham NG11 8NS, UK. Postprint Version G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry and M. I. Newton, Topography driven spreading, Phys. Rev. Lett. 93, Art. No. 036102 (2004); DOI: 10.1103/PhysRevLett.93.036102. The

More information

Effect of Carrier Gas Flow Behavior on Performance of Separation by Using Ultrasonic Atomization

Effect of Carrier Gas Flow Behavior on Performance of Separation by Using Ultrasonic Atomization Effect of Carrier Gas Flow Behavior on Performance of Separation by Using Ultrasonic Atomization Yoshiyuki Bando 1, Keiji Yasuda 1, Akira Matsuoka 1 and Yasuhito Kawase 2 1. Department of Chemical Engineering,

More information

Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena

Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena Saurabh Nath and Jonathan B. Boreyko Department of Biomedical Engineering and Mechanics, Virginia

More information

DYNAMIC ANALYSES OF SPREADING DROPLETS ON NANOPARTICLES-COATED ALUMINUM PLATES

DYNAMIC ANALYSES OF SPREADING DROPLETS ON NANOPARTICLES-COATED ALUMINUM PLATES Copyright c 2017 by ABCM PaperID: JEM-2017-0049 DYNAMIC ANALYSES OF SPREADING DROPLETS ON NANOPARTICLES-COATED ALUMINUM PLATES Erivelto dos Santos Filho erivelto.usp@gmail.com Debora Carneiro Moreira dcmoreira@id.uff.br

More information

DLVO interaction between the spheres

DLVO interaction between the spheres DLVO interaction between the spheres DL-interaction energy for two spheres: D w ( x) 64c π ktrϕ e λ DL 2 x λ 2 0 0 D DLVO interaction w ( x) 64πkTRϕ e λ DLVO AR /12x 2 x λd 2 0 D Lecture 11 Contact angle

More information

The onset of fragmentation in binary liquid drop collisions. and

The onset of fragmentation in binary liquid drop collisions. and ICLASS 2012, 12 th Triennial International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, September 2-6, 2012 The onset of fragmentation in binary liquid drop collisions C. Planchette

More information

Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets

Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets Qiaolan Zhang, a,b Min He, a Jing Chen, a,b Jianjun Wang,* a Yanlin Song* a and Lei Jiang a a Beijing National

More information

Supplementary Information

Supplementary Information Supplementary Information Facile preparation of superhydrophobic coating by spraying a fluorinated acrylic random copolymer micelle solution Hui Li, a,b Yunhui Zhao a and Xiaoyan Yuan* a a School of Materials

More information

Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio

Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio pubs.acs.org/langmuir Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio Jeong-Hyun Kim and Jonathan P. Rothstein* Department of Mechanical and Industrial

More information

Supplementary materials for Control of a bouncing magnitude on a heated substrate via ellipsoidal drop shape

Supplementary materials for Control of a bouncing magnitude on a heated substrate via ellipsoidal drop shape Supplementary materials for Control of a bouncing magnitude on a heated substrate via ellipsoidal drop shape Shape oscillation of bouncing ellipsoidal drops Shape oscillation of drops before impacting

More information

EXPERIMENTAL STUDY ON EVAPORATION OF A MOVING LIQUID PLUG INSIDE A HEATED DRY CAPILLARY TUBE

EXPERIMENTAL STUDY ON EVAPORATION OF A MOVING LIQUID PLUG INSIDE A HEATED DRY CAPILLARY TUBE EXPERIMENTAL STUDY ON EVAPORATION OF A MOVING LIQUID PLUG INSIDE A HEATED DRY CAPILLARY TUBE Victor Marty-Jourjon a, Vyas Srinivasan b,c,d, Peeyush P. Kulkarni b,c,d, Sameer Khandekar *,b,c,d a INSA-Lyon,

More information

AN OPTIMAL CURVE FOR FASTEST TRANSPROTATION OF LIQUID DROPS ON A SUPERHYDROPHOBIC SURFACE

AN OPTIMAL CURVE FOR FASTEST TRANSPROTATION OF LIQUID DROPS ON A SUPERHYDROPHOBIC SURFACE AN OPTIMAL CURVE FOR FASTEST TRANSPROTATION OF LIQUID DROPS ON A SUPERHYDROPHOBIC SURFACE ABSTRACT Kwangseok Seo, Minyoung Kim, Do Hyun Kim Department of Chemical and Biomolecular Engineering, Korea Advanced

More information

EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES

EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES Stresa, Italy, 25-27 April 2007 EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES Slavka Tzanova 1, Lora Kamenova 2, Yvan Avenas

More information

Lubricant Impregnated Nanotextured Surfaces

Lubricant Impregnated Nanotextured Surfaces Supporting Information: Enhanced Condensation on Lubricant Impregnated Nanotextured Surfaces Sushant Anand, Adam T. Paxson, Rajeev Dhiman, J. David Smith, Kripa K. Varanasi* Department of Mechanical Engineering,

More information

Principles of Convective Heat Transfer

Principles of Convective Heat Transfer Massoud Kaviany Principles of Convective Heat Transfer Second Edition With 378 Figures Springer Contents Series Preface Preface to the Second Edition Preface to the First Edition Acknowledgments vii ix

More information

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Department of Chemical and Biomolecular Engineering Clarkson University Outline

More information

Fluid Flow, Heat Transfer and Boiling in Micro-Channels

Fluid Flow, Heat Transfer and Boiling in Micro-Channels L.P. Yarin A. Mosyak G. Hetsroni Fluid Flow, Heat Transfer and Boiling in Micro-Channels 4Q Springer 1 Introduction 1 1.1 General Overview 1 1.2 Scope and Contents of Part 1 2 1.3 Scope and Contents of

More information

Superhydrophobic surfaces. José Bico PMMH-ESPCI, Paris

Superhydrophobic surfaces. José Bico PMMH-ESPCI, Paris Superhydrophobic surfaces José Bico PMMH-ESPCI, Paris Superhydrophobic surfaces José Bico PMMH-ESPCI, Paris? Rain droplet on a window film pinning tear 180? mercury calefaction Leidenfrost point, T = 150

More information

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS Hydrodynamics of wetting phenomena Jacco Snoeijer PHYSICS OF FLUIDS Outline 1. Creeping flow: hydrodynamics at low Reynolds numbers (2 hrs) 2. Thin films and lubrication flows (3 hrs + problem session

More information

Supplementary table I. Table of contact angles of the different solutions on the surfaces used here. Supplementary Notes

Supplementary table I. Table of contact angles of the different solutions on the surfaces used here. Supplementary Notes 1 Supplementary Figure 1. Sketch of the experimental setup (not to scale) : it consists of a thin mylar sheet (0, 02 4 3cm 3 ) held fixed vertically. The spacing y 0 between the glass plate and the upper

More information

(Crystal) Nucleation: The language

(Crystal) Nucleation: The language Why crystallization requires supercooling (Crystal) Nucleation: The language 2r 1. Transferring N particles from liquid to crystal yields energy. Crystal nucleus Δµ: thermodynamic driving force N is proportional

More information

On the Landau-Levich Transition

On the Landau-Levich Transition 10116 Langmuir 2007, 23, 10116-10122 On the Landau-Levich Transition Maniya Maleki Institute for AdVanced Studies in Basic Sciences (IASBS), Zanjan 45195, P.O. Box 45195-1159, Iran Etienne Reyssat and

More information

Numerical simulations of drop impacts

Numerical simulations of drop impacts Numerical simulations of drop impacts Christophe Josserand Institut D Alembert, CNRS-UPMC L. Duchemin, Z. Jian, P. Ray and S. Zaleski Numerical simulations of drop impacts Christophe Josserand Institut

More information

Complete Wetting of Acrylic Solid Substrate with Silicone Oil at the Center of the Substrate

Complete Wetting of Acrylic Solid Substrate with Silicone Oil at the Center of the Substrate Complete Wetting of Acrylic Solid Substrate with Silicone Oil at the Center of the Substrate Derrick O. Njobuenwu * Department of Chemical Engineering, Loughborough University Leicestershire LE11 3TU,

More information

J. Bico, C. Tordeux and D. Quéré Laboratoire de Physique de la Matière Condensée, URA 792 du CNRS Collège de France Paris Cedex 05, France

J. Bico, C. Tordeux and D. Quéré Laboratoire de Physique de la Matière Condensée, URA 792 du CNRS Collège de France Paris Cedex 05, France EUROPHYSICS LETTERS 15 July 2001 Europhys. Lett., 55 (2), pp. 214 220 (2001) Rough wetting J. Bico, C. Tordeux and D. Quéré Laboratoire de Physique de la Matière Condensée, URA 792 du CNRS Collège de France

More information

Slow viscous flow in a microchannel with similar and different superhydrophobic walls

Slow viscous flow in a microchannel with similar and different superhydrophobic walls Journal of Physics: Conference Series PAPER OPEN ACCESS Slow viscous flow in a microchannel with similar and different superhydrophobic walls To cite this article: A I Ageev and A N Osiptsov 2018 J. Phys.:

More information

Boiling crisis dynamics: low gravity experiments and modeling

Boiling crisis dynamics: low gravity experiments and modeling Boiling crisis dynamics: low gravity experiments and modeling V. Nikolayev (1), Y. Garrabos (2), C. Lecoutre (2), D. Hitz (3), D. Chatain (3), R. Guillaument (2), V. Janeček (4,5), D. Beysens (3,4) (1)

More information

Adhesive Force due to a Thin Liquid Film between Two Smooth Surfaces (Wringing Mechanism of Gage Blocks)

Adhesive Force due to a Thin Liquid Film between Two Smooth Surfaces (Wringing Mechanism of Gage Blocks) Journal of JSEM, Vol.14, Special Issue (014) s36-s41 Copyright C 014 JSEM Adhesive Force due to a Thin Liquid Film between Two Smooth Surfaces (Wringing Mechanism of Gage Blocks) Kenji KATOH 1 and Tatsuro

More information

2. Determine the surface tension of water with the capillary-rise method.

2. Determine the surface tension of water with the capillary-rise method. Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M19e Surface Tension Tasks 1. Determine the surface tension σ of an organic liquid using the anchor-ring method. Use three different

More information

Measurements of contact angles at subzero temperatures and implications for ice formation

Measurements of contact angles at subzero temperatures and implications for ice formation Measurements of contact angles at subzero temperatures and implications for ice formation Golrokh Heydari 1, Mikael Järn 2, Per Claesson 1,2 1 Department of Chemistry, Surface and Corrosion Science, Royal

More information

Droplet behaviour in a Ranque-Hilsch vortex tube

Droplet behaviour in a Ranque-Hilsch vortex tube Journal of Physics: Conference Series Droplet behaviour in a Ranque-Hilsch vortex tube To cite this article: R Liew et al 2 J. Phys.: Conf. Ser. 38 523 View the article online for updates and enhancements.

More information

NUMERICAL INVESTIGATION OF A LIQUID DROPLET TRANSPORTED BY A GAS STREAM IMPINGING ON A HEATED SURFACE: SINGLE-PHASE REGIME

NUMERICAL INVESTIGATION OF A LIQUID DROPLET TRANSPORTED BY A GAS STREAM IMPINGING ON A HEATED SURFACE: SINGLE-PHASE REGIME NUMERICAL INVESTIGATION OF A LIQUID DROPLET TRANSPORTED BY A GAS STREAM IMPINGING ON A HEATED SURFACE: SINGLE-PHASE REGIME Andres J. Diaz, Alfonso Ortega Laboratory for Advanced Thermal and Fluid Systems

More information

High Resolution Measurements of Boiling Heat Transfer

High Resolution Measurements of Boiling Heat Transfer High Resolution Measurements of Boiling Heat Transfer Martin Freystein Institute of Technical Thermodynamics, TU armstadt Personal Skills and Boiling Experience Single Bubble Pool Boiling Bubble Coalescence

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10447 Supplementary Methods Materials. The lubricating fluids used for the experiment were perfluorinated fluids (e.g., 3M Fluorinert FC-70, Dupont Krytox 100 and 103). Unless otherwise

More information

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS

Hydrodynamics of wetting phenomena. Jacco Snoeijer PHYSICS OF FLUIDS Hydrodynamics of wetting phenomena Jacco Snoeijer PHYSICS OF FLUIDS Outline 1. Creeping flow: hydrodynamics at low Reynolds numbers (2 hrs) 2. Thin films and lubrication flows (3 hrs + problem session

More information

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation

More information

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00786 NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A

More information

Wetting contact angle

Wetting contact angle Wetting contact angle Minh Do-Quang www.flow.kth.se Outline Statics; capillarity and wetting Dynamics; models describing dynamic wetting Hydrodynamics (Tanner-Cox-Voinov law) Molecular kinetics theory

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2005

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2005 University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 005 Homework Assignment #5: Due at 500 pm Friday 9 July, Drobny Mailbox #10. 1) Here are some assorted phase equilibrium

More information

Vegard B. Sørdal. Thermodynamics of 4He-3He mixture and application in dilution refrigeration

Vegard B. Sørdal. Thermodynamics of 4He-3He mixture and application in dilution refrigeration Vegard B. Sørdal Thermodynamics of 4He-3He mixture and application in dilution refrigeration 1. Introduction 2. Crogenic methods Contents of the presentation 3. Properties of Helium 4. Superfluid Helium

More information

The Magnitude of Lift Forces Acting on Drops and Bubbles in Liquids Flowing inside Microchannels

The Magnitude of Lift Forces Acting on Drops and Bubbles in Liquids Flowing inside Microchannels SUPPLEMENTARY INFORMATION The Magnitude of Lift Forces Acting on Drops and Bubbles in Liquids Flowing inside Microchannels Claudiu A. Stan,*, Audrey K. Ellerbee 2, Laura Guglielmini 3, Howard A. Stone

More information

emulsions, and foams March 21 22, 2009

emulsions, and foams March 21 22, 2009 Wetting and adhesion Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting March 21 22, 2009 Salt Lake City Ian Morrison 2009 Ian Morrison 2009 Lecure 2 - Wetting and adhesion

More information

Inclined to splash: triggering and inhibiting a splash with tangential velocity

Inclined to splash: triggering and inhibiting a splash with tangential velocity New Journal of Physics The open access journal for physics Inclined to splash: triggering and inhibiting a splash with tangential velocity James C Bird, Scott S H Tsai and Howard A Stone 1 School of Engineering

More information

Microfluidics 2 Surface tension, contact angle, capillary flow

Microfluidics 2 Surface tension, contact angle, capillary flow MT-0.6081 Microfluidics and BioMEMS Microfluidics 2 Surface tension, contact angle, capillary flow 28.1.2017 Ville Jokinen Surface tension & Surface energy Work required to create new surface = surface

More information

Praktikum zur. Materialanalytik

Praktikum zur. Materialanalytik Praktikum zur Materialanalytik Functionalized Surfaces B510 Stand: 20.10.2017 Table of contents Introduction 2 Basics 2 Surface tension 2 From wettability to the contact angle 4 The Young equation 5 Wetting

More information

Supplementary Figure 1 Surface tension of polyelectrolyte solutions. Experimentally measured values of surface tension of the solutions that were

Supplementary Figure 1 Surface tension of polyelectrolyte solutions. Experimentally measured values of surface tension of the solutions that were Supplementary Figure 1 Surface tension of polyelectrolyte solutions. Experimentally measured values of surface tension of the solutions that were used in experiments throughout the paper. All surface tensions

More information

5. SPRAY/WALL IMPINGEMENT

5. SPRAY/WALL IMPINGEMENT 5. SPRAY/WALL IMPINGEMENT 5.1 Wall Interaction Regimes Wachters and Westerling (1966), Akao et al. (1980), Senda et al. (1994) and Nagaoka et al. (1994) describe in detail the phenomena observed when drops

More information

Simulation of a Pressure Driven Droplet Generator

Simulation of a Pressure Driven Droplet Generator Simulation of a Pressure Driven Droplet Generator V. Mamet* 1, P. Namy 2, N. Berri 1, L. Tatoulian 1, P. Ehouarn 1, V. Briday 1, P. Clémenceau 1 and B. Dupont 1 1 DBV Technologies, 2 SIMTEC *84 rue des

More information

COMPARISON OF WETTABILITY AND CAPILLARY EFFECT EVALUATED BY DIFFERENT CHARACTERIZING METHODS

COMPARISON OF WETTABILITY AND CAPILLARY EFFECT EVALUATED BY DIFFERENT CHARACTERIZING METHODS 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS COMPARISON OF WETTABILITY AND CAPILLARY EFFECT EVALUATED BY DIFFERENT CHARACTERIZING METHODS S.K. Wang*, M. Li*, Y.Z. Gu, Y.X. Li and Z.G. Zhang Key

More information

Measurement of Liquid Film Thickness in Micro Square Channel

Measurement of Liquid Film Thickness in Micro Square Channel Measurement of Liquid Film Thickness in Micro Square Channel Youngbae Han and Naoki Shikazono Department of Mechanical Engineering, The University of Tokyo Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan

More information

Chapter 7 Mixing and Granulation

Chapter 7 Mixing and Granulation Chapter 7 Mixing and Granulation 7.1 Mixing and Segregation (Chapter 9) Mixing vs. segregation (1) Types of Mixture * Perfect mixing Random mixing Segregating mixing Figure 9.1 (2) Segregation 1) Causes

More information

Formation of Droplets and Bubbles in a Microfluidic T-junction. Scaling and Mechanism of Break-Up. Supplementary Information

Formation of Droplets and Bubbles in a Microfluidic T-junction. Scaling and Mechanism of Break-Up. Supplementary Information Formation of Droplets and Bubbles in a Microfluidic T-junction Scaling and Mechanism of Break-Up Supplementary Information Piotr Garstecki 1,2 *, Michael J. Fuerstman 1, Howard A. Stone 3 and George M.

More information

Physics of Aircraft Icing: A Predictive Challenge

Physics of Aircraft Icing: A Predictive Challenge Physics of Aircraft Icing: A Predictive Challenge Cameron Tropea Institute for Fluid Mechanics and Aerodynamics (SLA), Technische Universität Darmstadt, Germany MUSAF III ONERA, CERFACS 27-29 September

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces

Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces Exp Fluids (21) 49:1135 1145 DOI 1.17/s348-1-864-6 RESEARCH ARTICLE Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces Ali Kibar Hasan Karabay

More information

Effect of Viscosity on the Breakup Length of Liquid Sheets Formed by Splash Plate Nozzles. University of Toronto, Toronto, ON M5S 3G8

Effect of Viscosity on the Breakup Length of Liquid Sheets Formed by Splash Plate Nozzles. University of Toronto, Toronto, ON M5S 3G8 ILASS Americas, 19 th Annual Conference on Liquid Atomization and Spray Systems, Toronto, Canada, May 2006 Effect of Viscosity on the Breakup Length of Liquid Sheets Formed by Splash Plate Nozzles M. Ahmed

More information

Put sufficient ice cubes into water (1 M) and wait for equilibrium (both exist) (1 M)

Put sufficient ice cubes into water (1 M) and wait for equilibrium (both exist) (1 M) NAME : F.5 ( ) Marks: /70 FORM FOUR PHYSICS REVISION TEST on HEAT Allowed: 70 minutes This paper consists of two sections. Section A (50 marks) consists of the structure-type questions, and Section B (20

More information

Quantitative and Qualitative Results from Droplet Impingement Experiments on Superhydrophobic Surfaces with Micro-Ribs for Three Liquid Types

Quantitative and Qualitative Results from Droplet Impingement Experiments on Superhydrophobic Surfaces with Micro-Ribs for Three Liquid Types Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2010-08-09 Quantitative and Qualitative Results from Droplet Impingement Experiments on Superhydrophobic Surfaces with Micro-Ribs

More information

arxiv: v1 [cond-mat.soft] 25 Jan 2016

arxiv: v1 [cond-mat.soft] 25 Jan 2016 DROPLET SPREADING ON ROUGH SURFACES: TACKLING THE CONTACT LINE BOUNDARY CONDITION N. T. Chamakos, 1 M. E. Kavousanakis, 1 A. G. Boudouvis, 1 1, a) and A. G. Papathanasiou School of Chemical Engineering,

More information

Lund University. Master Thesis (60 credits) Jumping Leidenfrost droplets. Author: Mehri Baktash. Main Supervisor: Prof.

Lund University. Master Thesis (60 credits) Jumping Leidenfrost droplets. Author: Mehri Baktash. Main Supervisor: Prof. Lund University Master Thesis (60 credits) Jumping Leidenfrost droplets A B C D Author: Mehri Baktash Main Supervisor: Prof. Heiner Linke 2012 Jumping Leidenfrost droplets Master Thesis Author: Mehri

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2013 69451 Weinheim, Germany Colloidal Clusters by Using Emulsions and Dumbbell-Shaped Particles: Experiments and Simulations** Bo Peng,* Frank Smallenburg,* Arnout Imhof,

More information

Evaporation/condensation in a microscale

Evaporation/condensation in a microscale Evaporation/condensation in a microscale Robert Hołyst Institute of Physical Chemistry PAS, Poland kornienko Vova Babin Maxwell (1877) microscopically evaporation is driven by particles diffusion in the

More information

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW DRAFT Proceedings of the 14 th International Heat Transfer Conference IHTC14 August 8-13, 2010, Washington D.C., USA IHTC14-23176 MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW Hiroshi

More information

Contents. Le gocce fanno spread, boing e splash: esperimenti, fenomeni e sfide. Marengo Marco. Introduction The main parameters

Contents. Le gocce fanno spread, boing e splash: esperimenti, fenomeni e sfide. Marengo Marco. Introduction The main parameters Le gocce fanno spread, boing e splash: esperimenti, fenomeni e sfide Marengo Marco University of Bergamo, Italy Contents INDEX Introduction The main parameters Experimental studies Isothermal drop impacts

More information

Instability & Patterning of Thin Polymer Films Prof. R. Mukherjee Department of Chemical Engineering Indian Institute Of Technology, Kharagpur

Instability & Patterning of Thin Polymer Films Prof. R. Mukherjee Department of Chemical Engineering Indian Institute Of Technology, Kharagpur Instability & Patterning of Thin Polymer Films Prof. R. Mukherjee Department of Chemical Engineering Indian Institute Of Technology, Kharagpur Lecture No. # 33 Spontaneous Instability & Dewetting of Thin

More information

Liquid Jet Impingement Experiments on Micro Rib and Cavity Patterned Superhydrophobic Surfaces in Both Cassie and Wenzel States

Liquid Jet Impingement Experiments on Micro Rib and Cavity Patterned Superhydrophobic Surfaces in Both Cassie and Wenzel States Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2012-09-20 Liquid Jet Impingement Experiments on Micro Rib and Cavity Patterned Superhydrophobic Surfaces in Both Cassie and Wenzel

More information

A droplet of colloidal solution is left to evaporate on a superhydrophobic surface. Avijit Baidya

A droplet of colloidal solution is left to evaporate on a superhydrophobic surface. Avijit Baidya A droplet of colloidal solution is left to evaporate on a superhydrophobic surface. Avijit Baidya 14.03.15 In this paper Evaporation-driven particle self-assembly can be used to generate three-dimensional

More information

Liquid Interaction with Non-wettable Surfaces Structured with Macroscopic Ridges

Liquid Interaction with Non-wettable Surfaces Structured with Macroscopic Ridges Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2018 Liquid Interaction with Non-wettable Surfaces Structured with Macroscopic Ridges Mehran Abolghasemibizaki

More information

arxiv: v1 [cond-mat.soft] 6 Mar 2018

arxiv: v1 [cond-mat.soft] 6 Mar 2018 Impact of beads and drops on a repellent solid surface: a unified description S. Arora, J-M Fromental, S. Mora, Ty Phou, L. Ramos, and C. Ligoure Laboratoire Charles Coulomb (LC), University of Montpellier,

More information

8.2 Surface phenomenon of liquid. Out-class reading: Levine p Curved interfaces

8.2 Surface phenomenon of liquid. Out-class reading: Levine p Curved interfaces Out-class reading: Levine p. 387-390 13.2 Curved interfaces https://news.cnblogs.com/n/559867/ 8.2.1 Some interesting phenomena 8.2.1 Some interesting phenomena Provided by Prof. Yu-Peng GUO of Jilin

More information

Oblique Drop Impact on Deep and Shallow Liquid

Oblique Drop Impact on Deep and Shallow Liquid 1 2 3 4 5 6 7 8 9 11 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Commun. Comput. Phys. doi: 10.4208/cicp.XXX.XXX Oblique Drop Impact on Deep and Shallow Liquid B. Ray 1, G. Biswas 1,2, and A. Sharma 3

More information

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy 33 PHASE CHANGES - To understand solids and liquids at the molecular level, it will help to examine PHASE CHANGES in a little more detail. A quick review of the phase changes... Phase change Description

More information

Dynamics of Single and Multiple Bubbles and Associated Heat Transfer in Nucleate Boiling Under Low Gravity Conditions

Dynamics of Single and Multiple Bubbles and Associated Heat Transfer in Nucleate Boiling Under Low Gravity Conditions Dynamics of Single and Multiple Bubbles and Associated Heat Transfer in Nucleate Boiling Under Low Gravity Conditions D. QIU, a G. SON, b V.K. DHIR, a D. CHAO, c AND K. LOGSDON c a Department of Mechanical

More information

Microscopic Observation of Ice Lensing and Frost Heaves in Glass Beads

Microscopic Observation of Ice Lensing and Frost Heaves in Glass Beads Microscopic Observation of Ice Lensing and Frost Heaves in Glass Beads Yoshiko MUTOU*, Kunio WATANABE*, Takeshi ISHIZAKI** and Masaru MIZOGUCHI* *epartment of Bioresources, Mie University, 1515 Kamihama

More information

Energy absorption in a bamboo foam

Energy absorption in a bamboo foam OFFPRINT Energy absorption in a bamboo foam A. Le Goff, L. Courbin, H. A. Stone and D. Quéré EPL, 84 (2008) 36001 Please visit the new website www.epljournal.org November 2008 EPL, 84(2008)36001 doi:10.1209/0295-5075/84/36001

More information

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference AJTEC2011 March 13-17, 2011, Honolulu, Hawaii, USA AJTEC2011-44190 LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Youngbae

More information

spreading of drops on soft surfaces

spreading of drops on soft surfaces Supplementary Material on Electrically modulated dynamic spreading of drops on soft surfaces Ranabir Dey 1, Ashish Daga 1, Sunando DasGupta 2,3, Suman Chakraborty 1,3 1 Department of Mechanical Engineering,

More information

A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE

A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE Shigeo Maruyama and Tatsuto Kimura Department of Mechanical Engineering The University of Tokyo 7-- Hongo, Bunkyo-ku, Tokyo -866,

More information