Contents. Le gocce fanno spread, boing e splash: esperimenti, fenomeni e sfide. Marengo Marco. Introduction The main parameters

Size: px
Start display at page:

Download "Contents. Le gocce fanno spread, boing e splash: esperimenti, fenomeni e sfide. Marengo Marco. Introduction The main parameters"

Transcription

1 Le gocce fanno spread, boing e splash: esperimenti, fenomeni e sfide Marengo Marco University of Bergamo, Italy Contents INDEX Introduction The main parameters Experimental studies Isothermal drop impacts Onto solid surfaces Roughness effects Wettability effects Inclined surfaces...on small targets Onto liquid layers in a deep pool on very thin film on liquid film Drop impact on hot surfaces Boiling regimes Secondary drop generation Multiple droplet impacts Numerical simulations Available methods (VOF, Level Set, BEM, etc) Isothermal simulations Energy equation and phase transition Perspectives

2 Industrial applications Spray Impingement in Internal Combustion Engines G. Popiołek, H. Boye, J. Schmidt, 2005 Institute of Fluid Dynamics and Thermodynamics Otto-von-Guericke-University Magdeburg, Germany mulda.avi Mitsubishi Web-site Industrial applications Spray cooling and quenching Typical hydrodynamic parameters (Choi and Yao, 1987) G = kg/m 2 s U = 3-5 m/s d mm Maximum heat transfer: W/m 2 Metallurgical failures For G = 80 kg/m 2 s, dt/dt = 10 3 K/s

3 Industrial applications Agricultural sprays Decrease the overspray and avoid the aerosol Cosmetic sprays Small injection energy, small droplets, low velocities Spray in humidifiers and dryers High efficiency microspray Industrial applications Airplane icing solidification Cryogenic cooling evaporation

4 Industrial applications Fire suppression Progress in Energy and Combustion Science 26 (2000) Fire suppression by water sprays G.Grant, J.Brenton, D.Drysdale Spray painting Non-newtonian fluids!!! Evaporative cooling tower Cleaner and sanitizers Etc... Impact parameters Impact dynamical parameters U, D, α, ρ, σ, µ,, g, t, h, R a, θ, λ,, E... Weber number We = ρ DU σ 2 Ca U = σ / µ Ohnesorge number Oh We = = Re µ ρσd La = µ 2 D ρσ Dimensionless film thickness δ = h D Strouhal number St = fd U Dimensionless roughness amplitude R = R D n d a U τ conv D t

5 Impact parameters Impact thermal parameters Saturation temperature T = Tw T sat Eckert number Ec = U c p 2 T Jakob number Ja = c T p h fg Effusivity ε = kρc p Nukijama temperature - CHF Leidenfrost temperature Isothermal drop impact Isothermal drop impacts

6 Isothermal drop impact Drop impact onto solid dry surfaces time scales D 1-4 mm Drop impact onto solid dry cold surfaces Drop impact evolution

7 Drop spreading on dry surfaces Drop impact evolution Rioboo R., C. Tropea, M. Marengo, "Outcome from a drop impact on solid surfaces", Atomization and Sprays Journal, Vol. 4, 2000 Roughness effects Roughness influence R a = 3µm R a = 120µm Silicon oil (µ=20 cst; σ= N/m); V imp =3.16 m/s; D= 2.24 mm

8 Introduction Experimental studies Numerical simulations Perspectives Wettability effects Wettability influence on drop impact t = 0 ms t = 0.45 ms t = 1.31 ms t = 2.27 ms t = 6.02 ms t = 8.21 ms wax (D = 2.75 mm) t = 25.6 ms t = 34.2 ms t = 62.4 ms t = 72.2 ms t = 20.5 ms t = 14.0 ms t = 10.3 ms θrec =95 t = 82.8 ms Vi = 1.18 m/s Glass θrec =6 t = 0 ms t = 0.45 ms t = 8.23 ms Introduction (D = 3.04 mm) t = 2.27 ms t = 6.04 ms t = 20.5 ms t = 62.4 ms t = 1.31 ms t = 14.0 ms t = 10.3 ms Experimental studies Numerical simulations Perspectives Drop impact evolution Initial shock wave t 10ns Bowden, Lesser, Field, Drop Shock wave Huygens principle of wave propagation Ve = U/tanβ Tri-supersonic point (a) Drop Shock wave z Liquid hap Cs sin β = U (b) Drop Shock wave r Liquid Shock separation Cs Jetting flow β re V Vjetting x (c) Jetting Cavitation

9 Drop impact evolution Shock wave formation in droplet impact on a rigid surface: lateral liquid motion and multiple wave structure in the contact line region HALLER, K. K. ; POULIKAKOS, D. ; VENTIKOS, Y. ; MONKEWITZ, P. Journal of Fluid Mechanics (2003) vol. 490, no. 1, pg Time between impact and shock detachment t sd C Mai D s = 1481 m/s U = 5 m/s 2 2 C s D = 3 mm t sd = 2 ns Drop impact evolution Edge propagation: kinetic phase From the geometry z = R R r z = Ut 2 2 z re = DUt U 2 t 2 t 0 r t e 1/ 2 if t << D/U U = 5 m/s D = 3 mm t << 600 µs U R Dimensionless form ~ re = τ τ 2 r e r

10 Drop impact evolution Edge propagation: kinetic phase Impact of a water drop on smooth PVC We = Experimental data 40 Fitting edge propagation V = at b Fitting cinematic phase V = a exp(bt) t = 60 µs ; t < 250 µs Velocity [m/s] r e DUt = 0.06t Consider a water drop: D = 2.7 mm; U = 1.55 m/s There is a first phase where the impact is driven by the geometrical edge propagation time [µs] A detailed study of the kinematic phase Drop impact onto liquid layers Splash on a dry and wetted surface Splash of a isopropanol drop We = 1020; Re = 3225; D = 3.26 mm (a) a dry glass surface (b) on a PVC surface covered by a liquid film of 0.1 mm thickness (c) on a PVC surface covered by a liquid film of 0.8 mm thickness.

11 Introduction Experimental studies Numerical simulations Perspectives Drop impact onto liquid layers Drop impact onto very thin films Liquid [σ (N/m); µ (Pa s); ρ (kg/m3 )] Range V (m/s) D (mm) H* We Oh Glycerol-water [0.067; ; 1100] min. max. min. max. min. max. min. max Hexadecane [0.0271; ; 730] PDMS5 [0.0197; ; 918] PDMS10 [0.0201; ; 930] 3500 splash 2500 K ( We.Oh -0.4 ) 3000 C-S limit (a) (c) 2000 (b) 1500 crown 1000 D-C limit 500 Dry 0 0,00 Liquid film 0,02 0,04 0,06 0,08 0,10 0,12 0,14 H* ( h/d ) Rioboo et al. (2003) Introduction Experimental studies Numerical simulations Perspectives Drop impact onto liquid layers Drop impact on liquid film We = 560; Oh = 2.e-3 K = 6730; t = 8.3 ms δ = 0.1 Perturbations Jet formation Secondary droplet formation Cossali G.E., A. Coghe, M. Marengo The impact of a sinlge drop on a wetted solid surface, Experiments in Fluids, Vol. 22, pp , 1997

12 Wetted surfaces Crown evolution Important theoretical contributions from Prof. Ilia Roisman Wetted surfaces Crown height evolution η C = H D o η C,max = A 1 We n τ max = A 2 We n n =

13 Drop impact onto liquid layers Splash and jetting on a deep pool We~1 We > 60 with water only... Cascade of coalescences Oh~1 We > 84 Rein (1993) Splash and jetting on a deep pool Fr = U 2 /(gd) Hsiao et al. (1989)

14 Drop impact onto inclined surfaces Impact on inclined surfaces Examples of splashing a b t=3 ms Impact of a glycerin droplet (We=51, D=2.45) a b c d isotropic splash (water droplet D=2.7, We=390 on rough glass, α=45 splash in the forward direction (isopropanol droplet D=3.3, We=544 on smooth glass, α=45 ) a) with rebound from smooth glass (t 1 =0.0 ms, α=8 ) b) t 1 =7.32 ms, α=8 c) partial rebound (α=9 ) d) with deposition on wax (α=5 ) Dry inclined surfaces Influence of the impact angle Water on wax We = 90 Re = 4212 t = ms

15 Dry inclined surfaces Sticking and slipping α = 5 We=390, Re=8875, d=2.7 mm contact contact t = 4.81 ms t = 4.81 ms Glass surface t = ms Wax surface t = ms Small targets Impacts onto small targets Radial flow Wetting Friction No Wetting No friction Dynamics of a liquid lamella resulting from the impact of a water drop on a small target, Rozhkov, A., Prunet-Foch, B., Vignes-Adler, M., Proc. Mathematical, Physical, Engineering Sciences (2004), 460, 2049, pp

16 Small targets Camera 1 Top view Camera 2 By courtesy M. Vignes-Adler Side view Small targets Camera 1 Camera 2 By courtesy M. Vignes-Adler

17 The splashing/deposition limit SPLASH/DEPOSITION THRESHOLD Influence of air pressure / drag The splashing/deposition limit Ethanol drop V = 3.74 m/s P 4 Repeat the experiment with other liquids and with a film Xu (2005)

18 The splashing/deposition limit Secondary droplet formation Crown splash High values of We, R nd and with wetted surfaces. With dry surfaces the crown has a lower angle respect to the solid surface Very high number of secondary droplets d sec = D u = V Conical jet break-up High and middle values of We, low wettable or wetted surfaces Low number of secondary droplets (<3) d sec = D u < 0.6 V The splashing/deposition limit Secondary droplet formation Recoiling film break- up Very low wettable surface d sec (?) u = 0 Rebound High value of Weber and low wettable surfaces, small impact angle (?), hot surfaces d sec = D (?) u (?)

19 The splashing/deposition limit Secondary droplet formation Prompt splash a) b) Prompt splash High values of We, R nd and with wetted surfaces. Low liquid viscosity. Very high number of secondary droplets d sec < 0.2 D u = (?) Water drop impact ( D = 2.7 mm) on a glass surface a) Deterministic roughness R a = 6 µm, λ = 1mm b) R a = 3.5 µm, λ = 100 µm The splashing/deposition limit Crown splash threshold Number K K = We Oh 0.4 Depending on the impacting drop parameters Critical K number K > Kcr K < Kcr Generally Depending on impacted surface parameters Secondary droplets formation Deposition K cr = f n (R nd, θ, T, λ nd, δ) n = splash type

20 The splashing/deposition limit Crown splash threshold Dry high wettable surfaces K cr = /R nd 0.63 K = We Oh Mundo et al. (1995) Stow and Hadfield (1981) 3000 Coghe et al. (1995) Splash limit K cr = Dimensionless Surface Roughness R nd The splashing/deposition limit Crown splash threshold Wetted surfaces (δ < 1) Splash limit K cr = δ 1.44 Prompt splash limit K cr = δ 0.23

21 The splashing/deposition limit Crown splash threshold Influence of the wettability Critical Weber number as a function of the dimensionless surface roughness Aluminium;. Glas; * Plexiglas; + 3M Film (Range 1995) Drop Array Impacts Droplet array impact (T s = 80 ) z z x y Front and side view

22 NUMERICAL SIMULATIONS Numerical simulations Numerical methods Volume of fluid interface (VOF) LEVEL SET METHODS C.W. Hirt and B.D. Nichols, Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comp. Phys., 39, ,1981 S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp BOUNDARY ELEMENT METHODS

23 Definition of the VOF Method In a volume-of fluid method the motion of the interface itself is not tracked, but rather the volume of each material in each cell is evolved in time and the interface at the new time is reconstructed from the values of the volumes at this new time. For this reason VOF methods are sometimes referred to as volume tracking methods Numerical simulations Cij = Volume of «fluid» in cell ij Second-order accurate volume-of-fluid algorithms for tracking material interfaces James Edward Pilliod, Jr. and Elbridge Gerry Puckett Journal of Computational Physics, Volume 199, Issue 2, 20 September 2004, Pages Numerical simulations where and x = y = h Advection equation If the fluid is incompressible Conservation law for the volume fraction function

24 Numerical simulations Interface reconstruction (c) is a first-order method of simple line interface calculation (SLIC) type (d) is a second-order method of piecewise... (PLIC) type Numerical simulations There are other methods, like Marker and Cell (MAC), Lagrangian Tracking, Integral Tracking and so on...

25 Numerical simulations LEVEL-SET Numerical simulations by courtesy of Daniele Di Pietro

26 Numerical simulations Numerical simulations LEVEL-SET 3-D modeling of the dynamics and heat transfer characteristics of subcooled droplet impact on a surface with film boiling Yang Ge, L.-S. Fan Int. J. Heat and Mass Transfer 49 (2006)

27 Introduction Experimental studies Numerical simulations Perspectives Numerical simulations Boundary element methods Introduction Experimental studies Numerical simulations Perspectives Numerical simulations VOF simulations and time accuracy Contact angle problem Numerical and experimental drop impact on solid dry surfaces W.I.Geldorp, R.Rioboo, SJ. A. Jakirlić, S. Muzaferija, C.Tropea, VIII Int. Conf. on Liquid Atomization and Spray Systems, Pasadena, USA, 2000

28 MOVIE Re = 1000, We = 8000 D = 6mm U = 6m/s 400 grid point in D 1 grid point = 15 microns by courtesy of Stephane Zaleski Numerical simulations Select a numerically «nice» case: Not too viscous (no splashing) Not too large Re (too unstable) A glycerine, 4 mm droplet falling at 2 m/s 256² Simulation ( 128 grid points/diameter ) Repeat at 128² : same result

Oblique Drop Impact on Deep and Shallow Liquid

Oblique Drop Impact on Deep and Shallow Liquid 1 2 3 4 5 6 7 8 9 11 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Commun. Comput. Phys. doi: 10.4208/cicp.XXX.XXX Oblique Drop Impact on Deep and Shallow Liquid B. Ray 1, G. Biswas 1,2, and A. Sharma 3

More information

A numerical analysis of drop impact on liquid film by using a level set method

A numerical analysis of drop impact on liquid film by using a level set method Journal of Mechanical Science and Technology 25 (10) (2011) 2567~2572 wwwspringerlinkcom/content/1738-494x DOI 101007/s12206-011-0613-7 A numerical analysis of drop impact on liquid film by using a level

More information

IMPINGEMENT OF A DROPLET ONTO A DRY WALL: A NUMERICAL INVESTIGATION

IMPINGEMENT OF A DROPLET ONTO A DRY WALL: A NUMERICAL INVESTIGATION IMPINGEMENT OF A DROPLET ONTO A DRY WALL:. Introduction A NUMERICAL INVESTIGATION N. Nikolopoulos, and G. Bergeles Department Mechanical Engineering Nat. Technical University of Athens 57 Zografos, Greece

More information

IMPACT OF A SINGLE DROP ON A LIQUID FILM: EXPERIMENTAL ANALYSIS AND COMPARISON WITH EMPIRICAL MODELS

IMPACT OF A SINGLE DROP ON A LIQUID FILM: EXPERIMENTAL ANALYSIS AND COMPARISON WITH EMPIRICAL MODELS Italian Congress of Thermofluid Dynamics UIT, Ferrara, 30 June-2 July 1999 IMPACT OF A SINGLE DROP ON A LIQUID FILM: EXPERIMENTAL ANALYSIS AND COMPARISON WITH EMPIRICAL MODELS G.E. Cossali, G. Brunello*,

More information

Effects of Interfacial and Viscous Properties of Liquids on Drop Spread Dynamics

Effects of Interfacial and Viscous Properties of Liquids on Drop Spread Dynamics ILASS Americas, nd Annual Conference on Liquid Atomization and Spray Systems, Cincinnati, OH, May 00 Effects of Interfacial and Viscous Properties of Liquids on Drop Spread Dynamics V. Ravi, M. A. Jog

More information

Inclined to splash: triggering and inhibiting a splash with tangential velocity

Inclined to splash: triggering and inhibiting a splash with tangential velocity New Journal of Physics The open access journal for physics Inclined to splash: triggering and inhibiting a splash with tangential velocity James C Bird, Scott S H Tsai and Howard A Stone 1 School of Engineering

More information

On supercooled water drops impacting on superhydrophobic textures

On supercooled water drops impacting on superhydrophobic textures of On supercooled water drops impacting on superhydrophobic textures Tanmoy Maitra, Carlo Antonini, Manish K. Tiwari a, Adrian Mularczyk, Zulkufli Imeri, Philippe Schoch and imos Poulikakos * Laboratory

More information

Double droplets simultaneous impact on liquid film

Double droplets simultaneous impact on liquid film IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Double droplets simultaneous impact on liquid film To cite this article: Y Guo et al 2015 IOP Conf. Ser.: Mater. Sci. Eng. 88

More information

Characterization of Low Weber Number Post-Impact Drop-Spread. Dynamics by a Damped Harmonic System Model

Characterization of Low Weber Number Post-Impact Drop-Spread. Dynamics by a Damped Harmonic System Model Characterization of Low Weber Number Post-Impact Drop-Spread Dynamics by a Damped Harmonic System Model A Thesis Submitted to the Division of Research and Advanced Studies of the University of Cincinnati

More information

Drop Impact on a Wet Surface: Computational Investigation of Gravity and Drop Shape

Drop Impact on a Wet Surface: Computational Investigation of Gravity and Drop Shape Drop Impact on a Wet Surface: Computational Investigation of Gravity and Drop Shape MURAT DINC and DONALD D. GRAY Department of Civil and Environmental Engineering West Virginia University P.O. Box 6103,

More information

, where the -function is equal to:

, where the -function is equal to: Paper ID ILASS08-000 ILASS08-9-4 ILASS 2008 Sep. 8-10, 2008, Como Lake, Italy BINARY COLLISION BETWEEN UNEQUAL SIZED DROPLETS. A NUMERICAL INVESTIGATION. N. Nikolopoulos 1, A. Theodorakakos 2 and G. Bergeles

More information

The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet

The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet , pp. 704 709 The Effect of Nozzle Height on Cooling Heat Transfer from a Hot Steel Plate by an Impinging Liquid Jet Piljong LEE, Haewon CHOI 1) and Sunghong LEE 2) Technical Research Center, POSCO, Pohang

More information

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation

More information

heat transfer process where a liquid undergoes a phase change into a vapor (gas)

heat transfer process where a liquid undergoes a phase change into a vapor (gas) Two-Phase: Overview Two-Phase two-phase heat transfer describes phenomena where a change of phase (liquid/gas) occurs during and/or due to the heat transfer process two-phase heat transfer generally considers

More information

MODELLING PARTICLE DEPOSITION ON GAS TURBINE BLADE SURFACES

MODELLING PARTICLE DEPOSITION ON GAS TURBINE BLADE SURFACES MODELLING PARTICLE DEPOSITION ON GAS TURBINE BLADE SURFACES MS. Hesham El-Batsh Institute of Thermal Turbomachines and Power Plants Vienna University of Technology Getreidemarkt 9/313, A-1060 Wien Tel:

More information

Modeling the splash of a droplet impacting a solid surface

Modeling the splash of a droplet impacting a solid surface PHYSICS OF FLUIDS VOLUME 12, NUMBER 12 DECEMBER 2000 Modeling the splash of a droplet impacting a solid surface M. Bussmann, S. Chandra, and J. Mostaghimi a) Department of Mechanical and Industrial Engineering,

More information

NO SPLASH ON THE MOON

NO SPLASH ON THE MOON UNIVERSITY OF LJUBLJANA Faculty of Mathematics and Physics Department of Physics NO SPLASH ON THE MOON Mentor: prof. Dr. RUDOLF PODGORNIK Ljubljana, February 2007 ABSTRACT The basic description of a droplet

More information

NUMERICAL INVESTIGATION OF A LIQUID DROPLET TRANSPORTED BY A GAS STREAM IMPINGING ON A HEATED SURFACE: SINGLE-PHASE REGIME

NUMERICAL INVESTIGATION OF A LIQUID DROPLET TRANSPORTED BY A GAS STREAM IMPINGING ON A HEATED SURFACE: SINGLE-PHASE REGIME NUMERICAL INVESTIGATION OF A LIQUID DROPLET TRANSPORTED BY A GAS STREAM IMPINGING ON A HEATED SURFACE: SINGLE-PHASE REGIME Andres J. Diaz, Alfonso Ortega Laboratory for Advanced Thermal and Fluid Systems

More information

Flow characteristics of spray impingement in PFI injection systems

Flow characteristics of spray impingement in PFI injection systems Flow characteristics of spray impingement in PFI injection systems by M. R. O. Panão and A. L. N. Moreira () Instituto Superior Técnico Mechanical Engineering Department Av. Rovisco Pais, 49- Lisboa; Portugal

More information

Level Set and Phase Field Methods: Application to Moving Interfaces and Two-Phase Fluid Flows

Level Set and Phase Field Methods: Application to Moving Interfaces and Two-Phase Fluid Flows Level Set and Phase Field Methods: Application to Moving Interfaces and Two-Phase Fluid Flows Abstract Maged Ismail Claremont Graduate University Level Set and Phase Field methods are well-known interface-capturing

More information

Numerical Studies of Droplet Deformation and Break-up

Numerical Studies of Droplet Deformation and Break-up ILASS Americas 14th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI, May 2001 Numerical Studies of Droplet Deformation and Break-up B. T. Helenbrook Department of Mechanical and

More information

A generalized model for hydrocarbon drops spreading on a horizontal smooth solid surface

A generalized model for hydrocarbon drops spreading on a horizontal smooth solid surface University of Iowa Iowa Research Online Theses and Dissertations Summer 2012 A generalized model for hydrocarbon drops spreading on a horizontal smooth solid surface Yan Zhang University of Iowa Copyright

More information

Modeling Large-scale Drop Impact: Splash Criteria and Droplet Distribution. Sandia National Labs P.O. Box 5800, Albuquerque, NM 87185, USA

Modeling Large-scale Drop Impact: Splash Criteria and Droplet Distribution. Sandia National Labs P.O. Box 5800, Albuquerque, NM 87185, USA ILASS Americas, 21 st Annual Conference on Liquid Atomization and Spray Systems, Orlando, FL, May 28 Modeling Large-scale Drop Impact: Splash Criteria and Droplet Distribution Alexander L. Brown 1*, Richard

More information

Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena

Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena Supporting Information: On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena Saurabh Nath and Jonathan B. Boreyko Department of Biomedical Engineering and Mechanics, Virginia

More information

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

MYcsvtu Notes HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

More information

Simulation of atomization : from DNS to industrial applications

Simulation of atomization : from DNS to industrial applications Simulation of atomization : from DNS to industrial applications MUSAF III - 29/09/2016 D. Zuzio, J.-L. Estivalèzes, O. Rouzaud, P. Gajan, P. Villedieu PhD/postdoc : G. Blanchard, I. Marter, A. Orazzo,

More information

5. SPRAY/WALL IMPINGEMENT

5. SPRAY/WALL IMPINGEMENT 5. SPRAY/WALL IMPINGEMENT 5.1 Wall Interaction Regimes Wachters and Westerling (1966), Akao et al. (1980), Senda et al. (1994) and Nagaoka et al. (1994) describe in detail the phenomena observed when drops

More information

Complexities of splashing

Complexities of splashing IOP PUBLISHING Nonlinearity 21 (2008) C1 C11 NONLINEARITY doi:10.1088/0951-7715/21/1/c01 COVER ILLUSTRATION Complexities of splashing R D Deegan 1, P Brunet 2 and J Eggers 2 1 Department of Physics and

More information

ILASS Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010

ILASS Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010 ILASS Europe 00, rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 00 Single drop impact onto a deep pool: experimental observations and theoretical model for

More information

Integration of Boiling Experiments in the Undergraduate Heat Transfer Laboratory

Integration of Boiling Experiments in the Undergraduate Heat Transfer Laboratory Integration of Boiling Experiments in the Undergraduate Heat Transfer Laboratory Hosni I. Abu-Mulaweh, Josué Njock Libii Engineering Department Indiana University-Purdue University at Fort Wayne Fort Wayne,

More information

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Reading Assignments Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 1 You can find the answers of some of the following

More information

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1 HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

More information

EXPERIMENTAL STUDY OF A WATER-MIST JET ISSUING NORMAL TO A HEATED FLAT PLATE

EXPERIMENTAL STUDY OF A WATER-MIST JET ISSUING NORMAL TO A HEATED FLAT PLATE THERMAL SCIENCE, Year 2016, Vol. 20, No. 2, pp. 473-482 473 EXPERIMENTAL STUDY OF A WATER-MIST JET ISSUING NORMAL TO A HEATED FLAT PLATE by Andreas VOUROS, Alexandros VOUROS, and Thrassos PANIDIS* Laboratory

More information

Evaporation of nanofluid droplet on heated surface

Evaporation of nanofluid droplet on heated surface Research Article Evaporation of nanofluid droplet on heated surface Advances in Mechanical Engineering 1 8 Ó The Author(s) 2015 DOI: 10.1177/1687814015578358 aime.sagepub.com Yeung Chan Kim Abstract In

More information

Citation for published version (APA): Wal, B. P. V. D. (2006). Static and dynamic wetting of porous Teflon surfaces s.n.

Citation for published version (APA): Wal, B. P. V. D. (2006). Static and dynamic wetting of porous Teflon surfaces s.n. University of Groningen Static and dynamic wetting of porous Teflon surfaces Wal, Bouwe Pieter van der IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to

More information

Dynamics of Transient Liquid Injection:

Dynamics of Transient Liquid Injection: Dynamics of Transient Liquid Injection: K-H instability, vorticity dynamics, R-T instability, capillary action, and cavitation William A. Sirignano University of California, Irvine -- Round liquid columns

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Numerical simulations of drop impacts

Numerical simulations of drop impacts Numerical simulations of drop impacts Christophe Josserand Institut D Alembert, CNRS-UPMC L. Duchemin, Z. Jian, P. Ray and S. Zaleski Numerical simulations of drop impacts Christophe Josserand Institut

More information

2D Spinodal Decomposition in Forced Turbulence: Structure Formation in a Challenging Analogue of 2D MHD Turbulence

2D Spinodal Decomposition in Forced Turbulence: Structure Formation in a Challenging Analogue of 2D MHD Turbulence 2D Spinodal Decomposition in Forced Turbulence: Structure Formation in a Challenging Analogue of 2D MHD Turbulence 1 Xiang Fan 1, P H Diamond 1, Luis Chacon 2, Hui Li 2 1 University of California,San Diego

More information

Heat Transfer Equations The starting point is the conservation of mass, momentum and energy:

Heat Transfer Equations The starting point is the conservation of mass, momentum and energy: ICLASS 2012, 12 th Triennial International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, September 2-6, 2012 On Computational Investigation of the Supercooled Stefan Problem

More information

Simulation of film boiling heat transfer on flat plate and the impact of various phase change models on it

Simulation of film boiling heat transfer on flat plate and the impact of various phase change models on it 177-1695161395 mme.modares.ac.ir * 2 1-1 -2 kouhikamali@guilan.ac.ir3756 *...... -.. 1395 15 : 1395 08 : 1395 27 : Simulation of film boiling heat transfer on flat plate and the impact of various phase

More information

Supplementary Figure 1 Surface tension of polyelectrolyte solutions. Experimentally measured values of surface tension of the solutions that were

Supplementary Figure 1 Surface tension of polyelectrolyte solutions. Experimentally measured values of surface tension of the solutions that were Supplementary Figure 1 Surface tension of polyelectrolyte solutions. Experimentally measured values of surface tension of the solutions that were used in experiments throughout the paper. All surface tensions

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

Droplet impact on liquid pools: secondary droplets formation from Rayleigh jet break-up and crown splash

Droplet impact on liquid pools: secondary droplets formation from Rayleigh jet break-up and crown splash University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) Droplet impact on liquid pools: secondary droplets formation from Rayleigh jet break-up and crown splash 2015

More information

CFD Simulation Of Hydrodynamics And Heat Transfer In Flow Of Liquids On Inclined Plates

CFD Simulation Of Hydrodynamics And Heat Transfer In Flow Of Liquids On Inclined Plates CFD Simulation Of Hydrodynamics And Heat Transfer In Flow Of Liquids On Inclined Plates Veeranna Modi 1*, Omprakash Hebbal 2 1* PG Student, Thermal Power Engineering, PDA College of Engineering, Gulbarga-585102,

More information

A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate

A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate International Journal of Heat and Mass Transfer 50 (2007) 303 319 www.elsevier.com/locate/ijhmt A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate N.

More information

Splashing of liquids: Interplay of surface roughness with surrounding gas

Splashing of liquids: Interplay of surface roughness with surrounding gas Splashing of liquids: Interplay of surface roughness with surrounding gas Lei Xu, Loreto Barcos, and Sidney R. agel The James Franck Institute and Department of Physics, The University of Chicago, 929

More information

Maximal deformation of an impacting drop

Maximal deformation of an impacting drop J. Fluid Mech. (24), vol. 57, pp. 99 28. c 24 Cambridge University Press DOI:.7/S222494 Printed in the United Kingdom 99 Maximal deformation of an impacting drop By CHRISTOPHE CLANET, CÉDRIC BÉGUIN, DENIS

More information

Computational Study of Sprays for the Development of a Monte Carlo Model

Computational Study of Sprays for the Development of a Monte Carlo Model 38th Dayton-Cincinnati Aerospace Sciences Symposium Computational Study of Sprays for the Development of a Monte Carlo Model Presenter: Murat Dinc West Virginia University Donald D. Gray West Virginia

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

MULTI-SCALE VOLUME OF FLUID MODELLING OF DROPLET COALESCENCE

MULTI-SCALE VOLUME OF FLUID MODELLING OF DROPLET COALESCENCE Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10-12 December 2012 MULTI-SCALE VOLUME OF FLUID MODELLING OF DROPLET COALESCENCE Lachlan R. MASON,

More information

Droplet behaviour in a Ranque-Hilsch vortex tube

Droplet behaviour in a Ranque-Hilsch vortex tube Journal of Physics: Conference Series Droplet behaviour in a Ranque-Hilsch vortex tube To cite this article: R Liew et al 2 J. Phys.: Conf. Ser. 38 523 View the article online for updates and enhancements.

More information

The onset of fragmentation in binary liquid drop collisions. and

The onset of fragmentation in binary liquid drop collisions. and ICLASS 2012, 12 th Triennial International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, September 2-6, 2012 The onset of fragmentation in binary liquid drop collisions C. Planchette

More information

THERMAL AND FLUID-DYNAMICS OF SINLGE DROPLETS IMPACTING ONTO MICRO-STRUTURED SURFACES

THERMAL AND FLUID-DYNAMICS OF SINLGE DROPLETS IMPACTING ONTO MICRO-STRUTURED SURFACES THERMAL AND FLUID-DYNAMICS OF SINLGE DROPLETS IMPACTING ONTO MICRO-STRUTURED SURFACES Tiago M.S. Bica Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 149-1 Lisbon, PORTUGAL

More information

Precursors to droplet splashing on a solid surface

Precursors to droplet splashing on a solid surface Precursors to droplet splashing on a solid surface Shreyas Mandre, Madhav Mani, and Michael P. Brenner School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (Dated: November

More information

MODELING OF DIESEL- COMPRESSED NATURAL GAS BUBBLY FLOW UNDER INFLUENCING OF A MAGNETIC FIELD

MODELING OF DIESEL- COMPRESSED NATURAL GAS BUBBLY FLOW UNDER INFLUENCING OF A MAGNETIC FIELD Journal of Engineering Science and Technology Vol. 12, No. 7 (2017) 1930-1938 School of Engineering, Taylor s University MODELING OF DIESEL- COMPRESSED NATURAL GAS BUBBLY FLOW UNDER INFLUENCING OF A MAGNETIC

More information

A Vortex Model for Studying the Effect of Shock Proximity on Richtmyer-Meshkov Instability at High Mach Number

A Vortex Model for Studying the Effect of Shock Proximity on Richtmyer-Meshkov Instability at High Mach Number A Vortex Model for Studying the Effect of Shock Proximity on Richtmyer-Meshkov Instability at High Mach Number H. F. Robey, S. G. Glendinning, J. A. Greenough, & S. V. Weber Lawrence Livermore National

More information

Growth and instability of the liquid rim in the crown splash regime

Growth and instability of the liquid rim in the crown splash regime Under consideration for publication in J. Fluid Mech. 1 Growth and instability of the liquid rim in the crown splash regime G. Agbaglah, R. D. Deegan Department of Physics & Center for the Study of Complex

More information

Nonlinear shape evolution of immiscible two-phase interface

Nonlinear shape evolution of immiscible two-phase interface Nonlinear shape evolution of immiscible two-phase interface Francesco Capuano 1,2,*, Gennaro Coppola 1, Luigi de Luca 1 1 Dipartimento di Ingegneria Industriale (DII), Università di Napoli Federico II,

More information

Experiments at the University of Minnesota (draft 2)

Experiments at the University of Minnesota (draft 2) Experiments at the University of Minnesota (draft 2) September 17, 2001 Studies of migration and lift and of the orientation of particles in shear flows Experiments to determine positions of spherical

More information

Measurements of Dispersions (turbulent diffusion) Rates and Breaking up of Oil Droplets in Turbulent Flows

Measurements of Dispersions (turbulent diffusion) Rates and Breaking up of Oil Droplets in Turbulent Flows Measurements of Dispersions (turbulent diffusion) Rates and Breaking up of Oil Droplets in Turbulent Flows Balaji Gopalan PI: Dr Joseph Katz Where do we come in? Turbulent diffusion of slightly buoyant

More information

RELEASE and ATMOSPHERIC DISPERSAL of LIQUID AGENTS

RELEASE and ATMOSPHERIC DISPERSAL of LIQUID AGENTS RELEASE and ATMOSPHERIC DISPERSAL of LIQUID AGENTS Theo Theofanous (PI) University of California, Santa Barbara Rich Couch, Program Manager Lawrence Livermore National Laboratory S&T CBIS October 25-28,

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

Thin Film Breakup and Rivulet Evolution Modeling

Thin Film Breakup and Rivulet Evolution Modeling Thin Film Breakup and Rivulet Evolution Modeling Nicola Suzzi, Giulio Croce 2, Paola D Agaro 3 DIEG - Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica - Universitá di Udine - Via delle Scienze

More information

Two-Component Droplet Wall-Film Interaction: Crown Morphology as a Function of Liquids Viscosity and Surface Tension

Two-Component Droplet Wall-Film Interaction: Crown Morphology as a Function of Liquids Viscosity and Surface Tension ICLASS 2015, 13 th Triennial International Conference on Liquid Atomization and Spray Systems, Tainan, Taiwan, August 23-27, 2015 Two-Component Droplet Wall-Film Interaction: Crown Morphology as a Function

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

arxiv:chao-dyn/ v2 24 May 1996

arxiv:chao-dyn/ v2 24 May 1996 Two-dimensional Navier Stokes simulation of deformation and break up of liquid patches Stéphane Zaleski arxiv:chao-dyn/9502016v2 24 May 1996 Jie Li Sauro Succi Laboratoire de Modélisation en Mécanique,

More information

Fluid Mechanics Theory I

Fluid Mechanics Theory I Fluid Mechanics Theory I Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs Today s Contents: 1. Introduction to

More information

V. MODELING, SIMILARITY, AND DIMENSIONAL ANALYSIS To this point, we have concentrated on analytical methods of solution for fluids problems.

V. MODELING, SIMILARITY, AND DIMENSIONAL ANALYSIS To this point, we have concentrated on analytical methods of solution for fluids problems. V. MODELING, SIMILARITY, AND DIMENSIONAL ANALYSIS To this point, we have concentrated on analytical methods of solution for fluids problems. However, analytical methods are not always satisfactory due

More information

A General Fluid Dynamic Analysis of Drop Ejection in Drop-on-Demand Ink Jet Devices

A General Fluid Dynamic Analysis of Drop Ejection in Drop-on-Demand Ink Jet Devices JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY Volume 46, Number 5, September/October 2002 A General Fluid Dynamic Analysis of Drop Ejection in Drop-on-Demand Ink Jet Devices James Q. Feng Xerox Corporation,

More information

Efficient simulation techniques for incompressible two-phase flow

Efficient simulation techniques for incompressible two-phase flow 3D-Surface Engineering für Werkzeugsysteme der Blechformteilefertigung - Erzeugung, Modellierung, Bearbeitung - Efficient simulation techniques for incompressible two-phase flow O. Mierka, O. Ouazzi, T.

More information

Numerical Simulation of Film Flow over an Inclined Plate: Effects of Solvent Properties and Contact Angle

Numerical Simulation of Film Flow over an Inclined Plate: Effects of Solvent Properties and Contact Angle Numerical Simulation of Film Flow over an Inclined Plate: Effects of Solvent Properties and Contact Angle Janine Carney and Rajesh Singh Multiphase Flow Science Workshop August 5-6, 214 Lakeview Golf Resort

More information

x j r i V i,j+1/2 r Ci,j Ui+1/2,j U i-1/2,j Vi,j-1/2

x j r i V i,j+1/2 r Ci,j Ui+1/2,j U i-1/2,j Vi,j-1/2 Merging of drops to form bamboo waves Yuriko Y. Renardy and Jie Li Department of Mathematics and ICAM Virginia Polytechnic Institute and State University Blacksburg, VA -, U.S.A. May, Abstract Topological

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Measurement of Liquid Film Thickness in Micro Square Channel

Measurement of Liquid Film Thickness in Micro Square Channel Measurement of Liquid Film Thickness in Micro Square Channel Youngbae Han and Naoki Shikazono Department of Mechanical Engineering, The University of Tokyo Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan

More information

Evaporation/condensation in a microscale

Evaporation/condensation in a microscale Evaporation/condensation in a microscale Robert Hołyst Institute of Physical Chemistry PAS, Poland kornienko Vova Babin Maxwell (1877) microscopically evaporation is driven by particles diffusion in the

More information

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid.

P = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid. CEE 3310 Thermodynamic Properties, Aug. 27, 2010 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container

More information

A Computational Study of High-Speed Droplet Impact

A Computational Study of High-Speed Droplet Impact Copyright 2011 Tech Science Press FDMP, vol.7, no.4, pp.329-340, 2011 A Computational Study of High-Speed Droplet Impact T. Sanada 1, K. Ando 2 and T. Colonius 2 Abstract: When a droplet impacts a solid

More information

Figure 11.1: A fluid jet extruded where we define the dimensionless groups

Figure 11.1: A fluid jet extruded where we define the dimensionless groups 11. Fluid Jets 11.1 The shape of a falling fluid jet Consider a circular orifice of a radius a ejecting a flux Q of fluid density ρ and kinematic viscosity ν (see Fig. 11.1). The resulting jet accelerates

More information

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Department of Chemical and Biomolecular Engineering Clarkson University Outline

More information

Analysis of heat transfer in spray cooling systems using numerical simulations

Analysis of heat transfer in spray cooling systems using numerical simulations University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Winter 2014 Analysis of heat transfer in spray cooling systems using numerical simulations Masoumeh Jafari University of

More information

Influence of a DLC Coating on the Temperature and Friction in a Helical Tooth Flank Contact

Influence of a DLC Coating on the Temperature and Friction in a Helical Tooth Flank Contact Influence of a DLC Coating on the Temperature and Friction in a Helical Tooth Flank Contact, Lars Bobach, Dirk Bartel Institute of Machine Design Chair of Machine Elements and Tribology Otto von Guericke

More information

Jie Liu Department of Mechanical Engineering, University of California, Riverside CA 92521

Jie Liu   Department of Mechanical Engineering, University of California, Riverside CA 92521 Effect of Surface Roughness on Single Cryogen Droplet Spreading Jie Liu e-mail: liuj@engr.ucr.edu Department of Mechanical Engineering, University of California, Riverside CA 951 Walfre Franco email: wfranco@uci.edu

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 1 - Introduction 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Outline Modes of Heat Transfer Basic Heat Transfer Phenomena Conduction Convection

More information

Science 8 Chapter 7 Section 1

Science 8 Chapter 7 Section 1 Science 8 Chapter 7 Section 1 Describing Fluids (pp. 268-277) What is a fluid? Fluid: any thing that flows; a liquid or a gas While it would seem that some solids flow (sugar, salt, etc), they are not

More information

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference AJTEC2011 March 13-17, 2011, Honolulu, Hawaii, USA AJTEC2011-44190 LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Youngbae

More information

Experimental and numerical study of the initial stages in the interaction process between a planar shock wave and a water column

Experimental and numerical study of the initial stages in the interaction process between a planar shock wave and a water column Experimental and numerical study of the initial stages in the interaction process between a planar shock wave and a water column Dan Igra and Kazuyoshi Takayama Shock Wave Research Center, Institute of

More information

enhancements of immersion cooling of high power chips with nucleate boiling of dielectric liquids

enhancements of immersion cooling of high power chips with nucleate boiling of dielectric liquids Advancements in Thermal Management Conference, Denver, CO, 3-4 August 216 enhancements of immersion cooling of high power chips with nucleate boiling of dielectric liquids Mohamed S. El-Genk Regents Professor,

More information

DEVELOPMENT OF AN EVAPORATION SUB-MODEL AND SIMULATION OF MULTIPLE DROPLET IMPINGEMENT IN VOLUME OF FLUID METHOD

DEVELOPMENT OF AN EVAPORATION SUB-MODEL AND SIMULATION OF MULTIPLE DROPLET IMPINGEMENT IN VOLUME OF FLUID METHOD Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2017 DEVELOPMENT OF AN EVAPORATION SUB-MODEL AND SIMULATION OF MULTIPLE DROPLET IMPINGEMENT

More information

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk D. Fuster, and S. Popinet Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 79 Institut Jean Le Rond d Alembert,

More information

Quantitative and Qualitative Results from Droplet Impingement Experiments on Superhydrophobic Surfaces with Micro-Ribs for Three Liquid Types

Quantitative and Qualitative Results from Droplet Impingement Experiments on Superhydrophobic Surfaces with Micro-Ribs for Three Liquid Types Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2010-08-09 Quantitative and Qualitative Results from Droplet Impingement Experiments on Superhydrophobic Surfaces with Micro-Ribs

More information

UC Irvine UC Irvine Previously Published Works

UC Irvine UC Irvine Previously Published Works UC Irvine UC Irvine Previously Published Works Title Length-scale cascade and spray expansion for planar liquid jets Permalink https://escholarship.org/uc/item/8118b7jg Authors Zandian, A Sirignano, WA

More information

.u= 0 ρ( u t +(u. )u)= ρ g p+.[µ( u+ t u)]

.u= 0 ρ( u t +(u. )u)= ρ g p+.[µ( u+ t u)] THETIS is a numerical simulation tool developed by University of Bordeaux. It is a versatile code to solve different problems: fluid flows, heat transfers, scalar transports or porous mediums. The potential

More information

Measurement of the Liquid Film Thickness in. Micro Tube Slug Flow

Measurement of the Liquid Film Thickness in. Micro Tube Slug Flow Measurement of the Liquid Film Thickness in Micro Tube Slug Flow Youngbae Han and Naoki Shikazono Department of Mechanical Engineering, The University of Tokyo Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656,

More information

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW DRAFT Proceedings of the 14 th International Heat Transfer Conference IHTC14 August 8-13, 2010, Washington D.C., USA IHTC14-23176 MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW Hiroshi

More information

Simulations of Drop Impact on Hydrophobic Moving Walls

Simulations of Drop Impact on Hydrophobic Moving Walls Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-xxxx Simulations of Drop Impact on Hydrophobic Moving Walls Hosein Heidarifatasmi, Özgür

More information

CFD modelling of multiphase flows

CFD modelling of multiphase flows 1 Lecture CFD-3 CFD modelling of multiphase flows Simon Lo CD-adapco Trident House, Basil Hill Road Didcot, OX11 7HJ, UK simon.lo@cd-adapco.com 2 VOF Free surface flows LMP Droplet flows Liquid film DEM

More information

SIMULATION OF THE FILM FORMATION AT A HIGH-SPEED ROTARY BELL ATOMIZER USED IN AUTOMOTIVE SPRAY PAINTING PROCESSES

SIMULATION OF THE FILM FORMATION AT A HIGH-SPEED ROTARY BELL ATOMIZER USED IN AUTOMOTIVE SPRAY PAINTING PROCESSES Paper ID ILASS08-A009 ILASS08-2-14 ILASS 2008 Sep. 8-10, 2008, Como Lake, Italy SIMULATION OF THE FILM FORMATION AT A HIGH-SPEED ROTARY BELL ATOMIZER USED IN AUTOMOTIVE SPRAY PAINTING PROCESSES J. Domnick*,

More information

HEAT TRANSFER PROFILES OF AN IMPINGING ATOMIZING WATER-AIR MIST JET

HEAT TRANSFER PROFILES OF AN IMPINGING ATOMIZING WATER-AIR MIST JET 8th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics June 16-2, 213, Lisbon, Portugal HEAT TRANSFER PROFILES OF AN IMPINGING ATOMIZING WATER-AIR MIST JET ABSTRACT Cian

More information