Drop Impact on a Wet Surface: Computational Investigation of Gravity and Drop Shape

Size: px
Start display at page:

Download "Drop Impact on a Wet Surface: Computational Investigation of Gravity and Drop Shape"

Transcription

1 Drop Impact on a Wet Surface: Computational Investigation of Gravity and Drop Shape MURAT DINC and DONALD D. GRAY Department of Civil and Environmental Engineering West Virginia University P.O. Box 6103, Morgantown, WV UNITED STATES OF AMERICA mdinc@mix.wvu.edu Abstract: - Single water drops impinging onto wet, flat, isothermal surfaces have been simulated numerically to investigate the influence of gravity level and drop shape on the resulting flow. The commercial code ANSYS 14 Fluent was employed to perform 2D-axisymmetric simulations for incompressible, laminar and unsteady flow conditions using the explicit Volume of Fluid (VOF) surface tracking method with the Piecewise Linear Interface Calculation scheme (PLIC), the Continuum Surface Force model (CSF), and adaptive mesh refinement. Simulations of a spherical water drop impacting an upward facing wet surface (Re = 6690, We = 139, h/d = 0.837, = 0 ) were performed with Solar surface gravity (g = 275 m/s 2 ), Earth surface gravity (g = 9.81 m/s 2 ), Lunar surface gravity (g = 1.68 m/s 2 ), and zero gravity (g = 0). While the general evolution of the craters was similar, the rate at which they evolved increased along with the value of g. The impact of an upward moving drop on a downward facing layer in Earth surface gravity (g = 9.81 m/s 2 ) caused a significantly different flow. Because laboratory observations have found that water drops in the size range under study deviate slightly from true spheres, two cylindrical drops were simulated. The flows produced by the cylindrical drops were sufficiently similar to spherical drop impacts that it will not be necessary to account for the much smaller deviations from sphericity which occur in reality in order to obtain realistic simulations. Key-Words: - CFD, Fluent, VOF, PISO, PLIC, CSF, gravity, drop, impact dynamics 1 Introduction The interaction of drops and sprays with wet and dry surfaces is the key feature in many engineering applications such as spray cooling, spray painting, and fuel injection systems [1]. This paper reports one step in a study of the spray cooling of heated surfaces. A first principles simulation of a spray of millions of drops is impractical using present computers. The goal of this project is to develop correlations for inclusion in a Monte Carlo spray cooling model [2] which will embody sufficient physics to yield reliable predictions while being computationally efficient enough to use as a practical design tool. The impact of liquid drops onto both dry and wet surfaces has been studied by many researchers for more than a century [3]. This paper presents computer simulations of single water drops which are spheres (unless otherwise specified) of diameter D moving at velocity U normal to initially motionless thin layers of water having thickness h. The water has density and dynamic viscosity. The ambient fluid is air at atmospheric pressure, and everything is at room temperature. The interaction between a drop and a surface may involve inertial, viscous, surface tension, and gravitational forces. A sufficient set of dimensionless numbers to describe the interaction of these forces is the Reynolds number (Re = ρud/μ), the Weber number (We = ρu 2 D/σ), and the Froude number (Fr = U 2 /gd, where g is the acceleration due to gravity). Another key dimensionless number is the relative layer thickness (h/d). This paper is focused on the effects of gravity and drop shape. 2 Computational Method The computational simulations reported here were obtained using the commercial Computational Fluid Dynamics (CFD) code ANSYS 14 Fluent on a desktop workstation. The Navier-Stokes and continuity equations were solved in 2Daxisymmetric coordinates using the finite volume method for unsteady, incompressible, laminar flow. The Volume of Fluid (VOF) multiphase model was implemented with three phases (drop liquid, layer liquid, and air) to track the interface and distinguish

2 the drop liquid from the liquid in the pre-existing layer even though they are physically identical. In this flow, it is essential to be able to determine the location of the free surface of the liquid. This was accomplished by using the explicit VOF method [4]. For each liquid an advective transport equation was solved for an indicator function defined as the fraction of a computational grid cell occupied by that liquid. In the present simulations, liquid 1 was drop liquid and liquid 2 was layer liquid (both were water). If the sum of these indicator functions is less than 1, the cell must contain an air-water interface at which surface tension acts. Each fluid was treated as incompressible, and volume weighted fluid properties were used in cells which contained air and water. Surface tension was incorporated into the Navier-Stokes equation by using the Continuum Surface Force (CSF) model, which accounts for the curvature of the interface [5]. Velocity and pressure coupling was achieved with the Pressure Implicit with Splitting of Operators (PISO) algorithm [6]. The sharpness of the interface was enhanced by use of the georeconstruct (Piecewise Linear Interface Calculation, PLIC) scheme [7]. Discretization of the advective terms in the momentum equations used second order upwinding. Solution convergence was assured by monitoring the mass imbalance at some points in domain and also checking the residual values of parameters, such as the velocity, far from the impact region. The initial drop diameter D, the liquid layer thickness h, and the drop velocity U were defined as initial conditions. The boundary conditions are shown in Fig.1 with a grid that shows the initial mesh. The impermeable no-slip wall boundary condition was applied on the bottom boundary, and the centerline was a symmetry boundary. Pressure outlet boundary conditions were defined on the top and maximum radius boundaries. A great improvement in computational speed was achieved without sacrificing solution accuracy by using the adaptive mesh refinement method in which the grid was automatically refined in critical areas of rapid change such as the liquid-gas interface, and coarsened in areas of little change. In each level of refinement, the mesh length (both in vertical and horizontal directions) was divided by 2. For the present domain, a uniform grid of square D/80 cells would contain cells. By using adaptive mesh refinement with the largest cells measuring D/5 and the smallest cells measuring D/80, only cells were needed. For validation purposes some simulations were compared to computational and experimental studies in the literature and were found to be in good agreement. As an example, Fig.2 shows a comparison with the physical experiment of [8] and the computational study of [9]. Pressure Outlet Axis Fig.1 Boundary conditions and initial mesh for 2Daxisymmetric computational domain (0.05 m x 0.05 m). t=1 ms t=3 ms t=7.5 ms t=10 ms Fig.2 Comparison of results for 4.2 mm diameter droplet impacting onto a liquid layer with a thickness of 2.1 mm: Re = 1168, We = 2009, Fr = 631, and h/d = 0.5. (Experimental images from [8] in the left column, numerical results from [9] in the middle column, and numerical results of the current study in the right column with blue representing water and red representing air.) 3 Effects of Varying Gravity Four simulations were performed for the impact of a downward moving drop onto an upward facing liquid layer. One negative gravity simulation was

3 made of a drop moving upward and impacting a downward facing layer. For all of these cases D = 4.48 mm, h = 3.75 mm, and U = 1.5 m/s; only the magnitude of g was varied. Table 1 displays the values of g and the dimensionless parameters for these simulations. It is seen that Fr was the only dimensionless number which varied. In all these cases, the contact angle was set to 0, and had no effect because for this contact angle the wall is always wet. Table 1 Parameters used in gravity simulations. Case Gravity (m/s 2 ) Re We Fr h/d Solar Earth ms 5 ms 7 ms 11 ms 9 ms 15 ms Fig.3 Single drop impact onto a wet surface in Solar gravity. (Note: Red is drop water, green is layer water, and blue is air, "ms" refers to milliseconds.) Lunar Zero Earth negative gravity Simulations were performed for upward facing layers in Solar surface gravity (Fr = 1.83), Earth surface gravity (Fr = 51), Lunar surface gravity (Fr = 310) and zero gravity (Fr = ). Solar gravity is an upper bound for applications in this stellar system and dramatizes the effects of very high g values. In all these cases, a crater with a very thin bottom layer formed and spread outward with a crown at its outer edge until it reached a maximum radius and crown height. Then the crown collapsed and the crater refilled. The liquid flowing back into the crater formed an incipient Worthington jet at its center. Splashing was not observed, as shown in Figs.3, 4, 5 and 6 for Solar, Earth, Lunar and zero gravity, respectively. The times at which the crown reached its maximum height increased as Fr increased, showing that gravity as well as surface tension caused the craters to refill. These times were 10, 34, 45, and 51 ms. The pace of events increased as Fr increased, as illustrated by the well defined Worthington jet at 11 ms in Solar gravity whereas the jet has barely begun to form at 35 ms in zero gravity. In Figs.4, 5, and 6, it appears that the drop liquid has broken into a number of discrete volumes, but this is an artefact of using a finite computational grid. Within the limits of the continuum approximation, the drop liquid must remain connected. Fig.4 Single drop impact onto a wet surface in Earth gravity. 0 ms 5 ms 16 ms 25 ms 35 ms 45 ms Fig.5 Single drop impact onto a wet surface in Lunar gravity.

4 deviation from a sphere. Simulations were performed for single cylinders of water with a diameter D = 4.48 mm (the same as for the previously described spherical drops) and lengths L of 4.48 and 2.24 mm impinging onto static water layers with thickness h = 3.75 mm in Earth gravity. Table 2 shows the parameters for these cases, where D is the length scale used to calculate Re, We, and Fr. A contact angle of 0 was specified in all these cases. Table 2 Parameters used to study drop shape. Fig.6 Single drop impact onto a wet surface in zero gravity. The negative gravity case of an upward moving drop hitting a downward facing liquid layer in Earth surface gravity (Fr = 51.5) is shown in Fig.7. There was still no splashing, but the impact excited a Rayleigh-Taylor instability in which the crown of the impact crater grew large as it fell away from the surface. The crater continued to spread until most of the liquid fell from the surface. Fig.7 Single drop impact onto a wet surface in negative gravity on Earth. The ceiling is at the bottom of the figure. 4 Effects of Drop Shape High speed videos obtained in the experimental phase of this research project have confirmed that drops in the 4-mm size range are seldom truly spherical. Instead they quiver about a spherical mean. In order to determine if deviations from sphericity would have a significant effect on the drop impact flow, computations were performed for cylindrical drops which represent an extreme Shape Re We Fr h/d L/D Sphere NA Full cylinder Half cylinder Results for the spherical shape have been presented in Fig.4. The results for the full cylinder and half cylinder are given in Figs.8 and 9, respectively. The results are generally similar, but there are some differences. At 5 ms one very small air bubble was observed on the centreline for the sphere, but a much larger one was observed with the full cylinder, and a ring bubble was observed for the half cylinder. The more prominent bubble formation under the cylinders may be attributed to the greater difficulty for the air to flow out from beneath the bottom of the drop when the bottom is flat. At each time, the crater diameter and crown height were greatest for the full cylinder and least for the half cylinder. These results are not surprising given that the volumes of the full and half cylinders are 150% and 75% of the sphere. At 45 ms, the Worthington jet was thinnest for the full cylinder and fattest for the half cylinder. Because the differences in shape between a sphere and a cylinder are far more extreme than the differences observed among actual drops in the lab, it can be concluded that it is not necessary to simulate realistic nonspherical drops. Simulations of spherical drops are sufficiently accurate.

5 0 ms 16 ms 5 ms 25 ms 35 ms 45 ms Fig.8 Full cylinder drop (D = 4.48 mm, L = 4.48 mm) impact onto a thin liquid layer in Earth gravity. 0 ms 5 ms 16 ms 25 ms 35 ms 45 ms The commercial CFD code ANSYS 14 Fluent has been used to study the impact of single drops of water onto shallow water layers. The simulations were for 2D-axisymmetric domains with adaptive mesh refinement. The models used in Fluent were the explicit Volume of Fluid method, the Pressure Implicit with Splitting of Operators algorithm, the Piecewise Linear Interface Calculation scheme, and the Continuum Surface Force model. Simulations of drop impacts were run for gravitational accelerations ranging from extremely large to zero (Solar to zero). While the general evolution of the craters was similar, the rate at which they evolved increased along with the value of g. The impact of an upward moving drop on a downward facing layer caused a significantly different flow, as it excited a Rayleigh Taylor instability which caused the liquid to fall off of the ceiling. Laboratory observations have found that water drops in the 4-mm size range are not true spheres when they impact a liquid layer. To explore the importance of nonspherical drop shapes, two cylindrical drops were simulated. While there were definite differences compared to the impact of a sphere, the overall similarity of the flows produced by radically different drop shapes implies that the much smaller deviations from sphericity which occur in reality need not be considered in order to obtain realistic simulations. Fig.9 Half cylinder drop (D = 4.48 mm, L = 2.24 mm) impact onto a thin liquid layer in Earth gravity. 5 Conclusions The goal of the present research project is to create a model for spray cooling that is sufficiently accurate to yield reliable predictions, yet sufficiently simple to be a practical design tool. Kreitzer and Kuhlman [2] have formulated a preliminary version of such a model based on a Monte Carlo approach. In order to upgrade this model to the required level of physical realism, more accurate correlation equations for such parameters as maximum crater radius and minimum layer depth must be determined and incorporated. Both experimental and computational methods are being used to obtain these correlations. The simulations presented here are early results from the computational study. Much additional work remains before the needed correlations are finalized. Acknowledgements The authors thank their experimentalist collaborators Dr. John M. Kuhlman, Nicholas L. Hillen, and J. Steven Taylor for many stimulating discussions. The authors gratefully acknowledge the financial support of this work under NASA Cooperative Agreement NNX10AN0YA. The views and conclusions are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements of NASA or the West Virginia NASA Space Grant Consortium. References: [1] Silk, E. A., Golliher, E. L., Selvam, R. P., Spray Cooling Heat Transfer: Technology Overview and Assessment of Future Challenges for Micro-Gravity Application, Energy Conversion and Management, Vol.49, 2008, pp

6 [2] Kreitzer, P. J., Kuhlman, J. M., Spray Cooling Droplet Impingement Model, Paper AIAA , AIAA 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Chicago, IL, June 28-July 1, [3] Yarin, A. L., Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing, Annual Review of Fluid Mechanics, Vol.38, 2006, pp [4] Hirt, C. W., Nichols, B. D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, Journal of Computational Physics, Vol.39, 1981, pp [5] Brackbill, J. U., Kothe, D. B., Zemach, C., A Continuum Method for Modeling Surface Tension, Journal of Computational Physics, Vol.100, 1992, pp [6] Issa, R. I., Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting, Journal of Computational Physics, Vol.62, 1986, pp [7] Rider, W. J., Kothe, D. B., Reconstructing Volume Tracking, Journal of Computational Physics, Vol.141, 1998, pp [8] Wang, A.-B., Chen, C.-C., Splashing Impact of a Single Drop onto very Thin Liquid Films, Physics of Fluids, Vol.12, No.9, 2000, pp [9] Asadi, S., Passandideh-Fard, M., A Computational Study on Droplet Impingement onto a Thin Liquid Film, The Arabian Journal for Science and Engineering, Vol.34, No.2B, 2009, pp

Computational Study of Sprays for the Development of a Monte Carlo Model

Computational Study of Sprays for the Development of a Monte Carlo Model 38th Dayton-Cincinnati Aerospace Sciences Symposium Computational Study of Sprays for the Development of a Monte Carlo Model Presenter: Murat Dinc West Virginia University Donald D. Gray West Virginia

More information

Oblique Drop Impact on Deep and Shallow Liquid

Oblique Drop Impact on Deep and Shallow Liquid 1 2 3 4 5 6 7 8 9 11 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Commun. Comput. Phys. doi: 10.4208/cicp.XXX.XXX Oblique Drop Impact on Deep and Shallow Liquid B. Ray 1, G. Biswas 1,2, and A. Sharma 3

More information

, where the -function is equal to:

, where the -function is equal to: Paper ID ILASS08-000 ILASS08-9-4 ILASS 2008 Sep. 8-10, 2008, Como Lake, Italy BINARY COLLISION BETWEEN UNEQUAL SIZED DROPLETS. A NUMERICAL INVESTIGATION. N. Nikolopoulos 1, A. Theodorakakos 2 and G. Bergeles

More information

IMPINGEMENT OF A DROPLET ONTO A DRY WALL: A NUMERICAL INVESTIGATION

IMPINGEMENT OF A DROPLET ONTO A DRY WALL: A NUMERICAL INVESTIGATION IMPINGEMENT OF A DROPLET ONTO A DRY WALL:. Introduction A NUMERICAL INVESTIGATION N. Nikolopoulos, and G. Bergeles Department Mechanical Engineering Nat. Technical University of Athens 57 Zografos, Greece

More information

A numerical analysis of drop impact on liquid film by using a level set method

A numerical analysis of drop impact on liquid film by using a level set method Journal of Mechanical Science and Technology 25 (10) (2011) 2567~2572 wwwspringerlinkcom/content/1738-494x DOI 101007/s12206-011-0613-7 A numerical analysis of drop impact on liquid film by using a level

More information

Height function interface reconstruction algorithm for the simulation of boiling flows

Height function interface reconstruction algorithm for the simulation of boiling flows Computational Methods in Multiphase Flow VI 69 Height function interface reconstruction algorithm for the simulation of boiling flows M. Magnini & B. Pulvirenti Dipartimento di Ingegneria Energetica, Nucleare

More information

International Engineering Research Journal Comparative Study of Sloshing Phenomenon in a Tank Using CFD

International Engineering Research Journal Comparative Study of Sloshing Phenomenon in a Tank Using CFD International Engineering Research Journal Comparative Study of Sloshing Phenomenon in a Tank Using CFD Vilas P. Ingle, Dattatraya Nalawade and Mahesh Jagadale ϯ PG Student, Mechanical Engineering Department,

More information

Numerical Simulation of the Hagemann Entrainment Experiments

Numerical Simulation of the Hagemann Entrainment Experiments CCC Annual Report UIUC, August 14, 2013 Numerical Simulation of the Hagemann Entrainment Experiments Kenneth Swartz (BSME Student) Lance C. Hibbeler (Ph.D. Student) Department of Mechanical Science & Engineering

More information

Reduction of parasitic currents in the DNS VOF code FS3D

Reduction of parasitic currents in the DNS VOF code FS3D M. Boger a J. Schlottke b C.-D. Munz a B. Weigand b Reduction of parasitic currents in the DNS VOF code FS3D Stuttgart, March 2010 a Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring

More information

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk D. Fuster, and S. Popinet Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 79 Institut Jean Le Rond d Alembert,

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

International Journal of Modern Trends in Engineering and Research   e-issn No.: , Date: April, 2016 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 28-30 April, 2016 Study of Sloshing Phenomenon in an Automotive Irregular Shaped Fuel Tank

More information

Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and Boundary Condition

Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and Boundary Condition ILASS-Americas 25th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, May 23 Detailed Numerical Simulation of Liquid Jet in Cross Flow Atomization: Impact of Nozzle Geometry and

More information

CAPILLARY PHENOMENA ON A LIQUID SURFACE

CAPILLARY PHENOMENA ON A LIQUID SURFACE 45 CAPILLARY PHENOMENA ON A LIQUID SURFACE Mohammad Ali and Akira Umemura Department of Aerospace Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

More information

Simulating Interfacial Tension of a Falling. Drop in a Moving Mesh Framework

Simulating Interfacial Tension of a Falling. Drop in a Moving Mesh Framework Simulating Interfacial Tension of a Falling Drop in a Moving Mesh Framework Anja R. Paschedag a,, Blair Perot b a TU Berlin, Institute of Chemical Engineering, 10623 Berlin, Germany b University of Massachusetts,

More information

An OpenFOAM-based electro-hydrodynamical model

An OpenFOAM-based electro-hydrodynamical model An OpenFOAM-based electro-hydrodynamical model Ivo Roghair, Dirk van den Ende, Frieder Mugele Department of Science and Technology, University of Twente, Enschede, The Netherlands Keywords: modelling,

More information

3D Numerical Simulation of Supercritical Flow in Bends of Channel

3D Numerical Simulation of Supercritical Flow in Bends of Channel 3D Numerical Simulation of Supercritical Flow in Bends of Channel Masoud. Montazeri-Namin, Reyhaneh-Sadat. Ghazanfari-Hashemi, and Mahnaz. Ghaeini- Hessaroeyeh Abstract An attempt has been made to simulate

More information

x j r i V i,j+1/2 r Ci,j Ui+1/2,j U i-1/2,j Vi,j-1/2

x j r i V i,j+1/2 r Ci,j Ui+1/2,j U i-1/2,j Vi,j-1/2 Merging of drops to form bamboo waves Yuriko Y. Renardy and Jie Li Department of Mathematics and ICAM Virginia Polytechnic Institute and State University Blacksburg, VA -, U.S.A. May, Abstract Topological

More information

Numerical study of turbulent two-phase Couette flow

Numerical study of turbulent two-phase Couette flow Center for Turbulence Research Annual Research Briefs 2014 41 Numerical study of turbulent two-phase Couette flow By A.Y. Ovsyannikov, D. Kim, A. Mani AND P. Moin 1. Motivation and objectives The motivation

More information

SIMULATION OF THE FILM FORMATION AT A HIGH-SPEED ROTARY BELL ATOMIZER USED IN AUTOMOTIVE SPRAY PAINTING PROCESSES

SIMULATION OF THE FILM FORMATION AT A HIGH-SPEED ROTARY BELL ATOMIZER USED IN AUTOMOTIVE SPRAY PAINTING PROCESSES Paper ID ILASS08-A009 ILASS08-2-14 ILASS 2008 Sep. 8-10, 2008, Como Lake, Italy SIMULATION OF THE FILM FORMATION AT A HIGH-SPEED ROTARY BELL ATOMIZER USED IN AUTOMOTIVE SPRAY PAINTING PROCESSES J. Domnick*,

More information

Computational fluid dynamics study of flow depth in an open Venturi channel for Newtonian fluid

Computational fluid dynamics study of flow depth in an open Venturi channel for Newtonian fluid Computational fluid dynamics study of flow depth in an open Venturi channel for Newtonian fluid Prasanna Welahettige 1, Bernt Lie 1, Knut Vaagsaether 1 1 Department of Process, Energy and Environmental

More information

The effects of confinement and inertia on the production of droplets

The effects of confinement and inertia on the production of droplets Rheologica Acta manuscript No. (will be inserted by the editor) Y. Renardy The effects of confinement and inertia on the production of droplets Received: date / Accepted: date Abstract Recent experiments

More information

Nonlinear shape evolution of immiscible two-phase interface

Nonlinear shape evolution of immiscible two-phase interface Nonlinear shape evolution of immiscible two-phase interface Francesco Capuano 1,2,*, Gennaro Coppola 1, Luigi de Luca 1 1 Dipartimento di Ingegneria Industriale (DII), Università di Napoli Federico II,

More information

CCC Annual Report. UIUC, August 19, Argon Bubble Behavior in EMBr Field. Kai Jin. Department of Mechanical Science & Engineering

CCC Annual Report. UIUC, August 19, Argon Bubble Behavior in EMBr Field. Kai Jin. Department of Mechanical Science & Engineering CCC Annual Report UIUC, August 19, 2015 Argon Bubble Behavior in EMBr Field Kai Jin Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign Introduction Argon bubbles

More information

Application of the immersed boundary method to simulate flows inside and outside the nozzles

Application of the immersed boundary method to simulate flows inside and outside the nozzles Application of the immersed boundary method to simulate flows inside and outside the nozzles E. Noël, A. Berlemont, J. Cousin 1, T. Ménard UMR 6614 - CORIA, Université et INSA de Rouen, France emeline.noel@coria.fr,

More information

Numerical Simulation of Core- Annular Flow in a Curved Pipe

Numerical Simulation of Core- Annular Flow in a Curved Pipe Numerical Simulation of Core- Annular Flow in a Curved Pipe Simulation of two phase flow with OpenFOAM Report Number:2625(MEAH:277) Master of Science Thesis Process and Energy Numerical Simulation of

More information

A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant

A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant Ashley J. James Department of Aerospace Engineering and Mechanics, University of Minnesota John Lowengrub

More information

Simulation of Droplet Ejection for a Piezoelectric Inkjet Printing Device

Simulation of Droplet Ejection for a Piezoelectric Inkjet Printing Device Materials Transactions, Vol. 45, No. 3 (2004) pp. 893 to 899 #2004 The Japan Institute of Metals Simulation of Droplet Ejection for a Piezoelectric Inkjet Printing Device Hsuan-Chung Wu 1, Huey-Jiuan Lin

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones

Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones To cite this article: Erikli and A

More information

Figure 11.1: A fluid jet extruded where we define the dimensionless groups

Figure 11.1: A fluid jet extruded where we define the dimensionless groups 11. Fluid Jets 11.1 The shape of a falling fluid jet Consider a circular orifice of a radius a ejecting a flux Q of fluid density ρ and kinematic viscosity ν (see Fig. 11.1). The resulting jet accelerates

More information

Numerical Simulation of Gas-Jet Wiping in Steel Strip Galvanizing Process

Numerical Simulation of Gas-Jet Wiping in Steel Strip Galvanizing Process , pp. 214 220 Numerical Simulation of Gas-Jet Wiping in Steel Strip Galvanizing Process Delphine LACANETTE, Stéphane VINCENT, Eric ARQUIS and Pascal GARDIN 1) Transferts, Ecoulements, Fluides, Energétique

More information

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang,

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, yfwang09@stanford.edu 1. Problem setting In this project, we present a benchmark simulation for segmented flows, which contain

More information

Numerical Studies of Droplet Deformation and Break-up

Numerical Studies of Droplet Deformation and Break-up ILASS Americas 14th Annual Conference on Liquid Atomization and Spray Systems, Dearborn, MI, May 2001 Numerical Studies of Droplet Deformation and Break-up B. T. Helenbrook Department of Mechanical and

More information

Numerical simulations of drop impacts

Numerical simulations of drop impacts Numerical simulations of drop impacts Christophe Josserand Institut D Alembert, CNRS-UPMC L. Duchemin, Z. Jian, P. Ray and S. Zaleski Numerical simulations of drop impacts Christophe Josserand Institut

More information

Available online at ScienceDirect. Procedia Engineering 100 (2015 )

Available online at  ScienceDirect. Procedia Engineering 100 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 100 (2015 ) 115 124 25th DAAAM International Symposium on Intelligent Manufacturing and Automation, DAAAM 2014 Computational

More information

FORMATION OF UNIFORMLY-SIZED DROPLETS FROM CAPILLARY JET BY ELECTROMAGNETIC FORCE

FORMATION OF UNIFORMLY-SIZED DROPLETS FROM CAPILLARY JET BY ELECTROMAGNETIC FORCE Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 9-11 December 2009 FORMATION OF UNIFORMLY-SIZED DROPLETS FROM CAPILLARY JET BY ELECTROMAGNETIC

More information

A shallow layer model predicting the zinc film thickness during the continuous hot-dip galvanizing process

A shallow layer model predicting the zinc film thickness during the continuous hot-dip galvanizing process 8 th International Conference on Thermal Engineering: Theory and Applications May 8-2, 205, Amman-Jordan A shallow layer model predicting the zinc film thickness during the continuous hot-dip galvanizing

More information

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with

More information

Numerical study of liquid metal film flows in a varying spanwise. magnetic field

Numerical study of liquid metal film flows in a varying spanwise. magnetic field Numerical study of liquid metal film flows in a varying spanwise magnetic field D. Gao, N.B. Morley, V. Dhir Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA

More information

A CFD Approach to Modeling Spacecraft Fuel Slosh

A CFD Approach to Modeling Spacecraft Fuel Slosh 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida AIAA 2009-366 A CFD Approach to Modeling Spacecraft Fuel Slosh Introduction:

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11342 TITLE: The Meniscus Oscillation of Ink Flow Dynamics in Thermal Inkjet Print DISTRIBUTION: Approved for public release,

More information

NUMERICAL INVESTIGATION OF A LIQUID DROPLET TRANSPORTED BY A GAS STREAM IMPINGING ON A HEATED SURFACE: SINGLE-PHASE REGIME

NUMERICAL INVESTIGATION OF A LIQUID DROPLET TRANSPORTED BY A GAS STREAM IMPINGING ON A HEATED SURFACE: SINGLE-PHASE REGIME NUMERICAL INVESTIGATION OF A LIQUID DROPLET TRANSPORTED BY A GAS STREAM IMPINGING ON A HEATED SURFACE: SINGLE-PHASE REGIME Andres J. Diaz, Alfonso Ortega Laboratory for Advanced Thermal and Fluid Systems

More information

Numerical investigation of the buoyancy-induced flow field and heat transfer inside solar chimneys

Numerical investigation of the buoyancy-induced flow field and heat transfer inside solar chimneys Numerical investigation of the buoyancy-induced flow field and heat transfer inside solar chimneys E. BACHAROUDIS, M.GR. VRACHOPOULOS, M.K. KOUKOU, A.E. FILIOS Mechanical Engineering Department, Environmental

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

Direct Numerical Simulation of Single Bubble Rising in Viscous Stagnant Liquid

Direct Numerical Simulation of Single Bubble Rising in Viscous Stagnant Liquid Direct Numerical Simulation of Single Bubble Rising in Viscous Stagnant Liquid Nima. Samkhaniani, Azar. Ajami, Mohammad Hassan. Kayhani, Ali. Sarreshteh Dari Abstract In this paper, direct numerical simulation

More information

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS HEFAT214 1 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 214 Orlando, Florida COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES

More information

FUNDAMENTAL STUDY OF BINGHAM FLUID BY MEANS OF DAM-BREAK FLOW MODEL

FUNDAMENTAL STUDY OF BINGHAM FLUID BY MEANS OF DAM-BREAK FLOW MODEL Annual Journal of Hydraulic Engineering, JSCE, Vol.54, 2010, February FUNDAMENTAL STUDY OF BINGHAM FLUID BY MEANS OF DAM-BREAK FLOW MODEL How Tion PUAY1 and Takashi HOSODA2 1 Member of JSCE, Phd Student,

More information

Liquid Jet Breakup at Low Weber Number: A Survey

Liquid Jet Breakup at Low Weber Number: A Survey International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 6 (2013), pp. 727-732 International Research Publication House http://www.irphouse.com Liquid Jet Breakup at

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

MULTI-SCALE VOLUME OF FLUID MODELLING OF DROPLET COALESCENCE

MULTI-SCALE VOLUME OF FLUID MODELLING OF DROPLET COALESCENCE Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10-12 December 2012 MULTI-SCALE VOLUME OF FLUID MODELLING OF DROPLET COALESCENCE Lachlan R. MASON,

More information

Numerical Simulation of Film Flow over an Inclined Plate: Effects of Solvent Properties and Contact Angle

Numerical Simulation of Film Flow over an Inclined Plate: Effects of Solvent Properties and Contact Angle Numerical Simulation of Film Flow over an Inclined Plate: Effects of Solvent Properties and Contact Angle Janine Carney and Rajesh Singh Multiphase Flow Science Workshop August 5-6, 214 Lakeview Golf Resort

More information

Numerical Investigation of Convective Heat Transfer in Pin Fin Type Heat Sink used for Led Application by using CFD

Numerical Investigation of Convective Heat Transfer in Pin Fin Type Heat Sink used for Led Application by using CFD GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 8 July 2016 ISSN: 2455-5703 Numerical Investigation of Convective Heat Transfer in Pin Fin Type Heat Sink used for Led

More information

DEVELOPMENT OF AN EVAPORATION SUB-MODEL AND SIMULATION OF MULTIPLE DROPLET IMPINGEMENT IN VOLUME OF FLUID METHOD

DEVELOPMENT OF AN EVAPORATION SUB-MODEL AND SIMULATION OF MULTIPLE DROPLET IMPINGEMENT IN VOLUME OF FLUID METHOD Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2017 DEVELOPMENT OF AN EVAPORATION SUB-MODEL AND SIMULATION OF MULTIPLE DROPLET IMPINGEMENT

More information

A numerical study on the effects of cavitation on orifice flow

A numerical study on the effects of cavitation on orifice flow PHSICS OF FLUIDS, A numerical study on the effects of cavitation on orifice flow S. Dabiri, W. A. Sirignano, and D. D. Joseph, University of California, Irvine, California 9697, USA University of Minnesota,

More information

CFD ANALYSIS OF TRIANGULAR ABSORBER TUBE OF A SOLAR FLAT PLATE COLLECTOR

CFD ANALYSIS OF TRIANGULAR ABSORBER TUBE OF A SOLAR FLAT PLATE COLLECTOR Int. J. Mech. Eng. & Rob. Res. 2013 Basavanna S and K S Shashishekar, 2013 Research Paper ISSN 2278 0149 www.imerr.com Vol. 2, No. 1, January 2013 2013 IJMERR. All Rights Reserved CFD ANALYSIS OF TRIANGULAR

More information

Simulation of atomization : from DNS to industrial applications

Simulation of atomization : from DNS to industrial applications Simulation of atomization : from DNS to industrial applications MUSAF III - 29/09/2016 D. Zuzio, J.-L. Estivalèzes, O. Rouzaud, P. Gajan, P. Villedieu PhD/postdoc : G. Blanchard, I. Marter, A. Orazzo,

More information

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis 1 Portál pre odborné publikovanie ISSN 1338-0087 Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis Jakubec Jakub Elektrotechnika 13.02.2013 This work deals with thermo-hydraulic processes

More information

Double droplets simultaneous impact on liquid film

Double droplets simultaneous impact on liquid film IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Double droplets simultaneous impact on liquid film To cite this article: Y Guo et al 2015 IOP Conf. Ser.: Mater. Sci. Eng. 88

More information

GRAVITY-DRIVEN MOTION OF A SWARM OF BUBBLES IN A VERTICAL PIPE

GRAVITY-DRIVEN MOTION OF A SWARM OF BUBBLES IN A VERTICAL PIPE 27th International Conference on Parallel Computational Fluid Dynamics Parallel CFD2015 GRAVITY-DRIVEN MOTION OF A SWARM OF BUBBLES IN A VERTICAL PIPE Néstor Balcázar, Oriol Lehmkuhl, Jesús Castro, Joaquim

More information

Computational Study of Bouncing and Non-bouncing Droplets Impacting on Superhydrophobic Surfaces

Computational Study of Bouncing and Non-bouncing Droplets Impacting on Superhydrophobic Surfaces Publication detail: Bange P. G. and Bhardwaj R. Computational Study of Bouncing and Non-bouncing Droplets Impacting on Superhydrophobic Surfaces, Theoretical and Computational Fluid Dynamics, 215, DOI:

More information

The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization characteristics of air assisted liquid jets

The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization characteristics of air assisted liquid jets ILASS Americas, 26 th Annual Conference on Liquid Atomization and Spray Systems, Portland, OR, May 204 The effect of momentum flux ratio and turbulence model on the numerical prediction of atomization

More information

AP Physics Laboratory #6.1: Analyzing Terminal Velocity Using an Interesting Version of Atwood s Machine

AP Physics Laboratory #6.1: Analyzing Terminal Velocity Using an Interesting Version of Atwood s Machine AP Physics Laboratory #6.1: Analyzing Terminal Velocity Using an Interesting Version of Atwood s Machine Name: Date: Lab Partners: PURPOSE The purpose of this Laboratory is to study a system as it approaches

More information

Computational Simulation of Marangoni Convection Under Microgravity Condition

Computational Simulation of Marangoni Convection Under Microgravity Condition Transaction B: Mechanical Engineering Vol. 16, No. 6, pp. 513{524 c Sharif University of Technology, December 2009 Computational Simulation of Marangoni Convection Under Microgravity Condition Abstract.

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Numerical Analysis of Metal Transfer in Gas Metal Arc Welding

Numerical Analysis of Metal Transfer in Gas Metal Arc Welding Numerical Analysis of Metal Transfer in Gas Metal Arc Welding G. WANG, P.G. HUANG, and Y.M. ZHANG The present article describes a numerical procedure to simulate metal transfer and the model will be used

More information

Effects of Actuating Pressure Waveforms on the Droplet Behavior in a Piezoelectric Inkjet

Effects of Actuating Pressure Waveforms on the Droplet Behavior in a Piezoelectric Inkjet Materials Transactions, Vol. 51, No. 12 (2010) pp. 2269 to 2276 #2010 The Japan Institute of Metals Effects of Actuating Pressure Waveforms on the Droplet Behavior in a Piezoelectric Inkjet Hsuan-Chung

More information

A semi-implicit finite volume implementation of the CSF method for treating surface tension in interfacial flows

A semi-implicit finite volume implementation of the CSF method for treating surface tension in interfacial flows A semi-implicit finite volume implementation of the CSF method for treating surface tension in interfacial flows M. Raessi, M. Bussmann*, and J. Mostaghimi Department of Mechanical and Industrial Engineering,

More information

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Anand Senguttuvan Supervisor Gordon A Irons 1 Approach to Simulate Slag Metal Entrainment using Computational Fluid Dynamics Introduction &

More information

Modeling and Parametric Study of the Heat Transfer Inside a Lithium Bromide Flow Confined by Wire Screen

Modeling and Parametric Study of the Heat Transfer Inside a Lithium Bromide Flow Confined by Wire Screen Journal of Energy and Power Engineering 9 (2015) 417-425 doi: 10.17265/1934-8975/2015.05.001 D DAVID PUBLISHING Modeling and Parametric Study of the Heat Transfer Inside a Lithium Bromide Herbert Obame

More information

Droplet impact on liquid pools: secondary droplets formation from Rayleigh jet break-up and crown splash

Droplet impact on liquid pools: secondary droplets formation from Rayleigh jet break-up and crown splash University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) Droplet impact on liquid pools: secondary droplets formation from Rayleigh jet break-up and crown splash 2015

More information

ANALYSIS OF HEAT AND MASS TRANSFER OF THE DIFFERENT MOIST OBJECT GEOMETRIES WITH AIR SLOT JET IMPINGING FOR FORCED CONVECTION DRYING Doğan Engin ALNAK a, Koray KARABULUT b* a Cumhuriyet University, Technology

More information

NO SPLASH ON THE MOON

NO SPLASH ON THE MOON UNIVERSITY OF LJUBLJANA Faculty of Mathematics and Physics Department of Physics NO SPLASH ON THE MOON Mentor: prof. Dr. RUDOLF PODGORNIK Ljubljana, February 2007 ABSTRACT The basic description of a droplet

More information

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona USA

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona USA Comparison Between Numerical and Experimental Results on Mechanical Stirrer and Bubbling in a Cylindrical Tank 13047 M. Lima da Silva* 1, A. Gagnoud**, Y. Fautrelle**, E. Sauvage*, P. Brun* and R. Riva***

More information

Height functions for applying contact angles to 2D VOF simulations

Height functions for applying contact angles to 2D VOF simulations INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2007) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 0.002/fld.65 Height functions for applying

More information

CFD ANALYSIS OF IMPINGING AXISYMMETRIC TURBULENT FOUNTAINS

CFD ANALYSIS OF IMPINGING AXISYMMETRIC TURBULENT FOUNTAINS Fifth International Conference on CFD in the Process Industries CSIRO, Melbourne, Australia 13-15 December 2006 CFD ANALYSIS OF IMPINGING AXISYMMETRIC TURBULENT FOUNTAINS Ajit GODBOLE 1, Paul COOPER 1,

More information

CFD Simulation and Experimental Study of New Developed Centrifugal Trays

CFD Simulation and Experimental Study of New Developed Centrifugal Trays CFD Simulation and Experimental Study of New Developed Centrifugal Trays N. Naziri, R. Zadghaffari, and H. Naziri Abstract In this work, a computational fluid dynamics (CFD) model is developed to predict

More information

Introduction. Statement of Problem. The governing equations for porous materials with Darcy s law can be written in dimensionless form as:

Introduction. Statement of Problem. The governing equations for porous materials with Darcy s law can be written in dimensionless form as: Symbolic Calculation of Free Convection for Porous Material of Quadratic Heat Generation in a Circular Cavity Kamyar Mansour Amirkabir University of technology, Tehran, Iran, 15875-4413 mansour@aut.ac.ir

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM EVAPORATOR

CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM EVAPORATOR Distillation Absorption 2010 A.B. de Haan, H. Kooijman and A. Górak (Editors) All rights reserved by authors as per DA2010 copyright notice CFD SIMULATIONS OF FLOW, HEAT AND MASS TRANSFER IN THIN-FILM

More information

NEAR-WALL TURBULENCE-BUBBLES INTERACTIONS IN A CHANNEL FLOW AT Re =400: A DNS/LES INVESTIGATION

NEAR-WALL TURBULENCE-BUBBLES INTERACTIONS IN A CHANNEL FLOW AT Re =400: A DNS/LES INVESTIGATION ABSTRACT NEAR-WALL TURBULENCE-BUBBLES INTERACTIONS IN A CHANNEL FLOW AT Re =400: A DNS/LES INVESTIGATION D. Métrailler, S. Reboux and D. Lakehal ASCOMP GmbH Zurich, Technoparkstr. 1, Switzerland Metrailler@ascomp.ch;

More information

ACCEPTED MANUSCRIPT. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.

ACCEPTED MANUSCRIPT. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model. Ilias Malgarinos 1, Nikolaos Nikolopoulos 1,5, Marco Marengo 2,4, Carlo Antonini

More information

Simulation of a Pressure Driven Droplet Generator

Simulation of a Pressure Driven Droplet Generator Simulation of a Pressure Driven Droplet Generator V. Mamet* 1, P. Namy 2, N. Berri 1, L. Tatoulian 1, P. Ehouarn 1, V. Briday 1, P. Clémenceau 1 and B. Dupont 1 1 DBV Technologies, 2 SIMTEC *84 rue des

More information

On surface tension modelling using the level set method

On surface tension modelling using the level set method INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2008) Published online in Wiley InterScience (www.interscience.wiley.com)..1804 On surface tension modelling using the

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

ILASS Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010

ILASS Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010 ILASS Europe 00, rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 00 Single drop impact onto a deep pool: experimental observations and theoretical model for

More information

VERTICAL TURBULENT BUOYANT HELIUM JET CFD MODELING AND VALIDATION

VERTICAL TURBULENT BUOYANT HELIUM JET CFD MODELING AND VALIDATION VERTICAL TURBULENT BUOYANT HELIUM JET CFD MODELING AND VALIDATION Cheng Z, Agranat V.M. and Tchouvelev A.V. A.V.Tchouvelev & Associates, Inc., 659 Spinnaker Circle, Mississauga, Ontario, Canada L5W R Hydrogenics

More information

Numerical investigation of multiple slot jets in air knife coating

Numerical investigation of multiple slot jets in air knife coating Numerical investigation of multiple slot jets in air knife coating A. Yahyaee Soufiani 1, J.R. McDermid 2, A.N. Hrymak 3 and F.E. Goodwin 4 1 McMaster University 128 Main street west, Hamilton, ON, Canada,

More information

CFD Investigations on the Liquid Nitrogen Chill down of Straight Transfer Lines and ITS Comparison with Helically Coiled Transfer Lines

CFD Investigations on the Liquid Nitrogen Chill down of Straight Transfer Lines and ITS Comparison with Helically Coiled Transfer Lines CFD Investigations on the Liquid Nitrogen Chill down of Straight Transfer Lines and ITS Comparison with Helically Coiled Transfer Lines K. Madhusoodanan Pillaia, Deepak J, K. E. Reby Royb Abstract: Attempts

More information

Lecture 9 Laminar Diffusion Flame Configurations

Lecture 9 Laminar Diffusion Flame Configurations Lecture 9 Laminar Diffusion Flame Configurations 9.-1 Different Flame Geometries and Single Droplet Burning Solutions for the velocities and the mixture fraction fields for some typical laminar flame configurations.

More information

ScienceDirect. Evaporating falling drop

ScienceDirect. Evaporating falling drop Available online at www.sciencedirect.com ScienceDirect Procedia IUTAM 15 (2015 ) 201 206 IUTAM Symposium on Multiphase flows with phase change: challenges and opportunities, Hyderabad, India (December

More information

Off-centre binary collision of droplets. A numerical investigation. Department of Mechanical Engineering, Nat. Technical University of Athens, 15310

Off-centre binary collision of droplets. A numerical investigation. Department of Mechanical Engineering, Nat. Technical University of Athens, 15310 1 Off-centre binary collision of droplets. A numerical investigation N. Nikolopoulos a, A. Theodorakakos b and G. Bergeles c Department of Mechanical Engineering, Nat. Technical University of Athens, 15310

More information

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE

SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE Computational Thermal Sciences, 3 (1): 63 72 (2011) SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE M. Zhao, 1, M. Yang, 1 M. Lu, 1 & Y. W. Zhang 2 1

More information

Flow Focusing Droplet Generation Using Linear Vibration

Flow Focusing Droplet Generation Using Linear Vibration Flow Focusing Droplet Generation Using Linear Vibration A. Salari, C. Dalton Department of Electrical & Computer Engineering, University of Calgary, Calgary, AB, Canada Abstract: Flow focusing microchannels

More information

Module 6: Free Convections Lecture 26: Evaluation of Nusselt Number. The Lecture Contains: Heat transfer coefficient. Objectives_template

Module 6: Free Convections Lecture 26: Evaluation of Nusselt Number. The Lecture Contains: Heat transfer coefficient. Objectives_template The Lecture Contains: Heat transfer coefficient file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture26/26_1.html[12/24/2014 6:08:23 PM] Heat transfer

More information

FIV INFLUENCE BEND RADIUS ON MULTIPHASE FLOW INDUCED FORCES ON A BEND STRUCTURE

FIV INFLUENCE BEND RADIUS ON MULTIPHASE FLOW INDUCED FORCES ON A BEND STRUCTURE Proceedings of the 9th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, Flow-Induced Vibration & Noise July 8-11, 2018, Toronto, Ontario, Canada FIV2018-91 INFLUENCE BEND

More information

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract nd Workshop on CFD Uncertainty Analysis - Lisbon, 19th and 0th October 006 AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION Alfredo Iranzo 1, Jesús Valle, Ignacio Trejo 3, Jerónimo

More information

Numerical Study of PCM Melting in Evacuated Solar Collector Storage System

Numerical Study of PCM Melting in Evacuated Solar Collector Storage System Numerical Study of PCM Melting in Evacuated Collector Storage System MOHD KHAIRUL ANUAR SHARIF, SOHIF MAT, MOHD AFZANIZAM MOHD ROSLI, KAMARUZZAMAN SOPIAN, MOHD YUSOF SULAIMAN, A. A. Al-abidi. Energy Research

More information