Alcator C Mod. Integrated Scenarios ITER H-mode Baseline. Presented by: Stephen M. Wolfe

Size: px
Start display at page:

Download "Alcator C Mod. Integrated Scenarios ITER H-mode Baseline. Presented by: Stephen M. Wolfe"

Transcription

1 Integrated Scenarios ITER H-mode Baseline Presented by: Stephen M Wolfe C-Mod PAC Meeting MIT Plasma Science & Fusion Center Cambridge, MA Mar 2-4, 2011

2 Definitions and Scope By Integrated Scenarios, we mean research aimed at reaching attractive operating points, generally cutting across multiple science topics and often involving interaction and compatibility issues between different plasma processes or regions The ITER Q = 10 DT H-mode baseline scenario features Positive shear, q 0 < 1 q 95 3, β N = 18, H H 1, f NI 025, n/n G 085 Edge transport barrier B T = 53T,I p = 15MA, n e m 3 Research effort also supports aspects of the ITER Pre-nuclear Commissioning Phase Operation in H and/or He majority Reduced parameters ( 1 2 B T, I p ) Alternate RF Scenarios Issues of H-mode access, character C-Mod PAC Meeting Mar 2-4, 2011 smw 1

3 Research Focus and Orientation Compared to the Topical Science areas, the H-mode Integrated Scenarios Research Program is more focussed on support of ITER construction and operations planning Respond to requirements identified by IO Strong IO participation in program planning IO staff involvement in design, execution, analysis of experiments Participate in identification, definition, and execution of Joint Experiments and High Priority research activities of ITPA Proactively identify and address issues relevant to ITER planning and operation Address C-Mod issues of integration and scenario development impacting our ability to carry out ITER-related research C-Mod PAC Meeting Mar 2-4, 2011 smw 2

4 Addressing ITER H-mode Scenario issues in C-Mod requires integration Issues, Challenges are similar for C-Mod and ITER Divertor and wall materials and conditioning High heat flux requirement Compatibility with low core radiation, Z eff Hydrogen isotope retention and recovery ICRF Heating Challenging RF power density Compatibility with H-mode edge, high n e operation, ELMs Compatibility with wall conditioning requirements Control of pedestal parameters, edge relaxation Variation of edge parameters (ν,β) Particle and impurity control ELM control C-Mod PAC Meeting Mar 2-4, 2011 smw 3

5 C-Mod H-mode Scenarios Research Topics Demonstration and validation of ITER reference scenarios Ramp-up/Ramp-down phases Flattop ITER demo discharges Benchmarking of Simulation Models H-mode access and performance requirements Power handling, particle control, and impurity seeding Scenarios for ITER Pre-nuclear phase Reduced field, current H, He majority operation IC Heating Scenarios Development and validation of Plasma Control strategies Plasma Material Interactions (addressed in Boundary section presentations) ELM and Pedestal Physics (see presentations on Transport and Pedestal Physics) C-Mod PAC Meeting Mar 2-4, 2011 smw 4

6 ITER has determined that early diverting and large Validation of will ITER bore plasmas be reference its baselinestartup startup scenarioc Kessel ITER is planning to divert at ~ 15 s in a 100 s Ip Proposed rampupramp to 15 MA flattop in 80 sec scales to C-Mod 135MA in 035 to 06 sec In order on to simulate (depending htei) ITER-like discharges in C-Mod, the time has been reduced to ms out Fulldivert bore plasma with x-point formation at 14 of a 500 ms Ip rampup maximum current needed to avoid overheating Cleaner early plasma ITER limiters conditions compared ITER startup scenariotorequires low 07 < li < 1 previous year for vertical stability; needs to conserve V-sec to increase burn time 2008 Progress in experiments Perform density variations in rampup? Examine effect on V-sec consumption, li, etc? Ohmic, ICRH, LHCD ramp-ups with similar 2009 target n e 05 00? Addresses Time, spac 2010 Recommendation Examine LH injection in rampup ITER must conserve volt-seconds in Ip and control the current profile C-Mod confirms V-s saving with ICRF heating in rampup o h m ic IC R F C-Mod indicates no c li with ICRF heating, in TSC simulations C -Mo d? Validate ITER simulations which showed LH has strongest impact in V-s and li of IC/EC/LH Benchmarking models used for ITER simulations IT E R C-Mod PAC Meeting Mar 2-4, 2011 smw 5

7 Effect of density variation in ITER-like Ohmic ramp-up experiments C Kessel Density range 065 < n e < m 3 (008 < n/n G < 02) Low density is required for significant V-sec saving Increased Z eff at low, intermediate density compensates increased T e Delayed sawtooth onset, reduced l i for lowest density case Uniform response of temperature profile at beginning of flattop C-Mod PAC Meeting Mar 2-4, 2011 smw 6

8 Initial results with LH injection in current ramp show savings of V-sec At Low density ( n e m 3 ) 400kW LH saves V-sec, relative to OH (or IC) l i reduced by 10% Surface voltage drops promptly at LH turn-on P rad and Z eff are elevated relative to ohmic Effect reduced at higher n e Hard X-rays observed at all densities Higher LH power may be beneficial Possible relation to density limit effect (see LH presentation) C-Mod PAC Meeting Mar 2-4, 2011 smw 7

9 Comparison of semi-empirical energy transport models in C-Mod ramp-up simulations C Kessel Theory-based models (eg GLF23) have difficulty modeling L-mode, higher q95, rampup phase Compare semi-empirical models Coppi-Tang, Bohm-gyroBohm, Current Diffusive Ballooning Model (CDBM) BgB did reasonably well with Ohmic, but predicted too high li with ICRF CT (with Cq = 35, Xmult = 275) reasonable in ICRF, too low li in ohmic CDBM reasonable in ohmic, too high li and too peaked Te with ICRF Coppi-Tang with original settings based on TFTR ohmic discharges had overly peaked Te profiles and high li None of these models appear to sufficiently capture details of C-Mod ramp-up experiments C-Mod PAC Meeting Mar 2-4, 2011 smw 8

10 ITER-like plasma rampdown experiments C-Mod rampdown experiments address issues, indicate that the density tracks Ip in ICRF constraints on ITER rampdown heated H-modes Examined 3 rampdown rates These results have already been used in ITER simulations Start rampdown with EDA Start rampdown with H-mode EDA H-mode Inject ICRF power at varying Inject ICRF power at levels, sustaining H-modes varying levels late into ramp Sustaining H-modes thru rampdown phase current ( constant Density tracks n/ng) in ICRF heated H-mode Requires ICRF power Highly reproducible Tped also drops smoothly with e trajectories for li and n current H-mode avoids OH overcurrent so long as H-mode avoids IpCS (OH1) is fast rampdown over-current forenough sufficiently fast ramp, at the expense of increasing li These results have already been used in ITER simulations C-Mod PAC Meeting Mar 2-4, 2011 smw 9

11 Scenario demonstrations: Full discharge sequence Demonstration of ITER-like equilibrium, p, T e /T i, power density Control of operating point Benchmark transport, stability modeling Evaluate impurity, particle control Evaluate disruptivity, stability issues Exploration of variations about reference scenario Continue Validation of robust ramp-down, shut-down sequence Compatibility of core and boundary Interaction with plasma-facing materials, including heat-flux and particle control, impurity seeding Demonstration of reliable, benign fault-handling and mitigation techniques C-Mod PAC Meeting Mar 2-4, 2011 smw 10

12 ITER Scenario Demonstration: IOS-11 ITPA Joint Experiment IOS 11 ITER baseline at q=3, β N = 18,n e = 085n G (D, H, He) Some flexibility allowed in parameters Issues for C-Mod include ICRF at high density, stationary H-mode at q < 35, acheivable β N with available power Lower field option relieves some constraints Relevant to pre-nuclear phase studies Experiments at half-field (27 T) ( ) Field overlap with other participating tokamaks, eg JET, provides gyro-size scaling opportunity Full-field C-Mod experiments at modest n/n G ( ) Extension of demo experiments at higher and lower density in next campaigns Target condition for seeding experiment IOS-12, Ramp-down validation IOS-22 C-Mod PAC Meeting Mar 2-4, 2011 smw 11

13 Half field demonstration of access to ITER-like (IOS-11) parameters in EDA discharges C Kessel Targeting q 95 3, β N > 17, κ 18,n/n G 85,H 98 1 B = 27 T, use 2nd harmonic H-minority ICRF heating scenario, f 80 MHz I p = 650kA operation (compares to 75MA in ITER at 27T (half-field)) q 95 = 3 32 β N < 19 H 98 = κ 175 Some high β N discharges exhibit n=2,3 low frequency MHD (NTM?) or small ELM activity, in addition to typical EDA QC mode signature C-Mod PAC Meeting Mar 2-4, 2011 smw 12

14 Near-term directions for C-Mod scenario validation work Continue development of half-field ITER-like discharge Develop and exploit full field (54 T) ITER-like discharge supporting ITPA Joint Experiments Extend Ramp-up experiments with LHCD H-mode access and sustainment during current ramps (up and down) Continue evaluation and benchmarking of transport models to improve projections to ITER C-Mod PAC Meeting Mar 2-4, 2011 smw 13

15 H-mode access: Power Requirements for high confinement H-modes Motivation: ITER Q DT = 10 H-mode Scenario requires H 98 1 with P net /P th (P th = 049n 072 e B 08 S 094 ) q div < 10MW m 2 P rad /P loss 08 P o div /P loss < 02 Experimental goals: Examine pedestal and confinement characteristics as function of margin above threshold power Evaluate margin above P th required to reach H 1 in stationary conditions Role of core/edge radiation on power requirement H 98 1 achievable for sufficient P net = P loss P rad core Low P o div achievable with low Z seeding Impurity Seeding Power [MW] [MW] A Loarte(IO),JHughes, MReinke Overview of Alc P ICRH and impurity species/a H 98 Power to outer divertor P in P RAD,CORE 02 N Time [sec] Ar Ne 52 nd APS Division of Plasma Physi C-Mod PAC Meeting Mar 2-4, 2011 smw 14 L

16 Power requirements for high confinement H-modes (cont) Plasma confinement directly correlated with pe Universal correlation (Seeded & Unseeded H-m Higher H 98 for low Z seeding associated with hi High confinement (H 98y2 1) achieved for high P net Seeding allows variation of P loss, P rad,total H98 Confinement directly correlated with T ped consistent with picture based on core profile stiffness P net /P th is good ordering parameter (roughly equivalent to net power / particle ) Impurity seeding allows scanning both P T e,95 (ev) in and P rad in controlled fashion same P net with different P in and P rad,core ( P rad,total /P loss ) Pedestal cooling at low P net more pronounced with Ar than Ne or N 2, as expected from radiation profiles Low Z Impurity seeding results in higher performance H-modes reduces incidence of high Z impurity injections and also reduces ICRF trips H 98,P net /P th in ITER target range obtained with low Z seeding N 2 Ne Ar unseeded Power Flow & Confinement : Seeded H-modes High confinement achieved for high P net and no overfuelling of SOL H98 52 nd APS Division ITER of Plasma Physics Meeting, Chicago, Illinois N 2 Ne Ar unseeded P net / P th 52 nd APS Division of Plasma Physics Meeting, Chicago, Illinois, USA C-Mod PAC Meeting Mar 2-4, 2011 smw 15 Page 10

17 Low divertor heat flux with low-z seeding meets ITER spec Partially detached divertor conditions achieved with Ne and P net NP th 2 seeding (or high and enough H 98 1 T ped ) required to maintain H 98 ~ 1 ITER If P net Peak P th q reduced high P rad,div by over, low aqfactor div (& divertor 5 detachment) can be achieved with H 98 from = 1 unseeded by low Z case seeding in C-Mod ITER ITER QExceeds DT = 10 ITER requirements (H 98 = P net /P th ~ 1 & P o-div /P loss < 02) have been achieved Outer divertor by impurity temperature seeding in H-modes optimization of impurity reduced mix (Ar from vs 1000 Ne, N C to ) may be required C for highest P rad /Z eff in ITER with P net >2MW H 98,P o div in ITER target range ITER obtained with low-z seeding Summary and Conclusions 12 ITER H98 N 2 Ne Ar unseeded H ITER-98(y,2) unseeded Ne seeded N 2 seeded Ar seeded P net / P th P o-divertor / P loss C-Mod PAC Meeting Mar 2-4, 2011 smw 16

18 Control of divertor power balance using radiation seeding (IOS-12) C-Mod experiments feature ITER-like divertor power density, geometry, neutral opacity, Extensive pedestal and divertor diagnostics Build on seeding results from H-mode access experiment ( ) Optimization of Seeding, Radiative divertor control ( ) Extend toward more ITER-like core plasma (lower q 95, ) Evaluate at higher density, investigate effect of high edge n e Localization of impurity puff to minimize core contamination, maximize divertor protection Dynamic comparison of recycling (Ne) and non-recycling (N 2 ) seed Develop feedback control for optimized divertor protection, core performance ( ) Apply to ITER-like conditions Discharges with high n e,edge follo large P net /P loss New experiments New divertor : gas feed 5 Optimisation to achieve highest P th requirements (core Z eff ) M Determine mechanisms of confin Reinke PSI Experiments are needed to opt loaction NINJA capillaries C-Mod PAC Meeting Mar 2-4, 2011 smw 17 Com requ loca U D m Dev Feed X T

19 ITER Pre-Nuclear Phase (first 2-3 years) No deuterium operation majority H (or He), minority He 3 Heating, CD sources under commissioning P tot < 73MW (NBI, EC, IC) 40 < f ICRF < 55MHz, P ICRF 20MW f ECRF = 170GHz, P ECRF 20MW B T between half and full field CFC divertor (decision on transition to W tbd) Issues: Access to H-mode ECRH launchers designed to optimise use of EC heating of plasmas off-axis) influence o C Mod access and performance needs to be asse ρ ICRH < 015 ρ ECRH < 05 ρ ECRH < 09 H 0 NB shinethrough (armour, 4MW/m 2 ) ne = 085 ngw q 95 = 3 Ability to validate ELM mitigation technique Alternate RF scenarios I p (MA) ITER Heating availability in H and He plasmas in H in 4 He EC IC H minority in He IC 3 He minority in H and He B T (T) EC n e (10 20 m 3 ) I p (MA) C-mod Ideas Forum ITER Heati ρ ICRH < ρ ECRH < ρ ECRH < ne D 0 NB shinethrou (armour, 4MW/m q 95 C-Mod PAC Meeting Mar 2-4, 2011 smw 18

20 Access to ELMy H-mode in helium majority plasmas C-Mod experiment comparing He to D majority plasma in same configuration as used for EPED-1 validation study run on previous day Operation with majority He (some residual D) Robust access to ELMy discharges at similar power levels as in D Pedestal parameters also comparable to deuterium H 98 1 obtained with T ped e 800eV Results obtained over range of density, current, power for comparison with comparables in D, model validation Results favorable for prospects of accessing ELMy H-mode in ITER pre-nuclear phase (with sufficient power) 0 Ip (MA) nebar(1e20/m3) ICRF power (MW) HeII monitor Electron betap(95) (%) H ITER98y C-Mod PAC Meeting Mar 2-4, 2011 smw 19

21 Near-term C-Mod Activities in support of pre-nuclear phase Investigate L-H and H-L threshold Species dependence of transition and confinement He (and H?) majority Evaluate dependence on X-point height, equilibrium details (Pedestal/Transport Group) Evaluate dependence on heating profile (relevant to fixed frequency EC) (Pedestal/Transport Group) Characterize He majority H-modes in ITER-like configurations Assess relevant ICRF scenarios He 3 minority in H majority plasmas (ICRF Group) Consider H majority scenarios C-Mod PAC Meeting Mar 2-4, 2011 smw 20

22 Development of plasma operational control methods C-Mod & ITER PF sets have similar arrangement and (multi-parameter) functionality Large vessel and structure currents, especially during startup, ramp-down MIMO shape control with few actuators, minimal null space, operation near current, voltage, stress limits RF-based actuators for heating, non-inductive current drive Negligible central particle, momentum sources C-Mod PAC Meeting Mar 2-4, 2011 smw 21

23 ITER Requires Large Gaps for Tr Development and testing of plasma control Modeling of an H-mode to L-mode Transition algorithms Testing of plasma control strategies in relevant scenarios Effects of sensor noise, transient events Effects of currents in passive structures on control and reconstructions Benchmarking of simulation codes ITER Requires Large Gaps for Transient Control Development and testing of machine protection algorithms Identification of and Modeling response of toan sensor, H-mode actuator to L-mode Radial inward Transition displacement at Q=10 can with be 10cm 15 MA contact faults Duration of inner wall contact depends on the central Response to proximity to actuator limits Peak engineering heat loads of ~40MW/m 2 Be tile adaptive transfer to safe shutdown sequence or PCS must maintain large enough gaps or trigger the di real-time pulse rescheduling Need experiments & modeling to demonstrate & extra Real-time identification of proximity to plasma J A Snipes, 2011 C-Mod Ideas Forum, MIT instability boundaries Radial inward displacement can be 10cm contact with the inner wall Duration of inner wall contact depends on the central solenoid saturation state C-Mod PAC Meeting Mar Peak 2-4, engineering 2011 heat loads of ~40MW/m 2 Be tiles would melt in ~ 03 smws! 22

24 Development and testing of plasma control algorithms: Safe Shutdown Sequence Example: Runaway electron discharges sometimes encountered when running low density Current carried by fast (MeV) electron tail Large hard X-ray flux can damage sensitive electronics Runaway beam can damage internal components, blamed for some melt damage on guard limiters Generally undesirable condition I p (MA) n e (10 20 m -3 ) Hard X-rays (AU) Runaway Sensing Standard Soft rampdown Jump-ahead routine implements soft landing Senses Hard X-ray levels above threshold during pre-set interval Jumps into ramp-down sequence by advancing synchronous time counter In routine use during Experimental Campaign No false positives 31 Successful discharge terminations I p Program (MA) 05 Jump-to time 00 Xjump Gate t (sec) C-Mod PAC Meeting Mar 2-4, 2011 smw 23

25 Burn Control simulation experiments with ICRH 1 Study evolution and stationary states of plasma with power dependent on plasma parameters (IOS-63: Control of experimentally simulated burning state) Use ICRF minority heating to mimic centrally peaked fast ion heating Control (part of) P ICRF n 2 f(t ) or R DD to simulate burn Apply feedback to try to maintain constant burn power against perturbations such as ELMs, sawteeth, MHD, density excursions, etc Experiments in suggested by P Politzer (GA) C-Mod PAC Meeting Mar 2-4, 2011 smw 24

26 C-Mod H-mode Scenarios Research Program Program elements paced by ITER priorities C-Mod facility capabilities Actuators, Diagnostics, Control system, Internals (since last PAC meeting): Approximately 95 run days so far (including FY10-11) Scenario demonstrations: Ramp-up, ramp-down; half-field scenarios H-mode access: Power requirements for high confinement Extension of impurity seeding studies Pre-nuclear phase: ELM characteristics in He majority plasmas Testing of pedestal model (see Pedestal presentation) : New rotated 4-strap ICRF antenna, Improved seeding capability, Optimization of radiative H-modes ITER demos (IOS-11) at full field Extend impurity seeding (IOS-12) studies, develop feedback control of divertor radiation Evaluation of transient control requirements H-mode access and characteristics during current ramps Current rampup scenarios with LHCD : Second New 4-strap ICRF antenna and automatic matching system, Additional LH launcher, DPCS enhancements Burn control studies Continue impurity seeding and power handling studies Development and testing of advanced plasma control/fault sensing algorithms C-Mod PAC Meeting Mar 2-4, 2011 smw 25

27 C-Mod Research on Integrated Scenarios for ITER H-mode Baseline H-mode baseline research program addresses cross-cutting physics and technology issues Exploits ITER-relevant C-Mod parameters and tools Addresses High-priority ITER Research Needs Strongly coupled to ITPA tasks, Joint Experiments Many additional ITER-related experiments in Topical Science Groups and Alternate Scenarios C-Mod PAC Meeting Mar 2-4, 2011 smw 26

Alcator C Mod. Integrated Scenarios ITER H-mode Baseline. Presented by: Stephen M. Wolfe

Alcator C Mod. Integrated Scenarios ITER H-mode Baseline. Presented by: Stephen M. Wolfe Integrated Scenarios ITER H-mode Baseline Presented by: Stephen M Wolfe C-Mod PAC Meeting MIT Plasma Science & Fusion Center Cambridge, MA Jan 28, 2010 Definitions and Scope By Integrated Scenarios, we

More information

EXC/P2-02. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod

EXC/P2-02. Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod EXC/P2-02 Experiments and Simulations of ITER-like Plasmas in Alcator C-Mod J. R. Wilson 1, C. E. Kessel 1, S. Wolfe 2, I. Hutchinson 2, P. Bonoli 2, C. Fiore 2, A. Hubbard 2, J. Hughes 2, Y. Lin 2, Y.

More information

Developing the Physics Basis for the ITER Baseline 15 MA Scenario in Alcator C-Mod

Developing the Physics Basis for the ITER Baseline 15 MA Scenario in Alcator C-Mod Developing the Physics Basis for the ITER Baseline 15 MA Scenario in Alcator C-Mod C. E. Kessel 1, S. M. Wolfe 2, I. H. Hutchinson 2, J. W. Hughes 2, Y. Lin 2, Y. Ma 2, D. R. Mikkelsen 1, F. M. Poli 1,

More information

Alcator C Mod. Integrated Scenarios ITER H-mode Baseline. Presented by: Stephen M. Wolfe

Alcator C Mod. Integrated Scenarios ITER H-mode Baseline. Presented by: Stephen M. Wolfe Integrated Scenarios ITER H-mode Baseline Presented by: Stephen M Wolfe C-Mod PAC Meeting MIT Plasma Science & Fusion Center Cambridge, MA Feb 5, 2009 Definitions and Scope By Integrated Scenarios, we

More information

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK

ITER operation. Ben Dudson. 14 th March Department of Physics, University of York, Heslington, York YO10 5DD, UK ITER operation Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 14 th March 2014 Ben Dudson Magnetic Confinement Fusion (1 of 18) ITER Some key statistics for ITER are:

More information

Progress in Modeling of ARIES ACT Plasma

Progress in Modeling of ARIES ACT Plasma Progress in Modeling of ARIES ACT Plasma And the ARIES Team A.D. Turnbull, R. Buttery, M. Choi, L.L Lao, S. Smith, General Atomics H. St John, G. Staebler C. Kessel Princeton Plasma Physics Laboratory

More information

Helium ELMy H-modes in Alcator C-Mod in Support of ITER Helium Operating Phases

Helium ELMy H-modes in Alcator C-Mod in Support of ITER Helium Operating Phases Helium ELMy H-modes in Alcator C-Mod in Support of ITER Helium Operating Phases C. E. Kessel 1, S. M. Wolfe 2, M. L. Reinke 3, M. A. Chilenski 2, J. W. Hughes 2, Y. Lin 2, S. Wukitch 2 and the C-Mod Team

More information

DIII-D Experimental Simulation of ITER Scenario Access and Termination

DIII-D Experimental Simulation of ITER Scenario Access and Termination 1 DIII-D Experimental Simulation of ITER Scenario Access and Termination G.L. Jackson 1, P.A. Politzer 1, D.A. Humphreys 1, T.A. Casper 2, A.W. Hyatt 1, J.A. Leuer 1, J. Lohr 1, T.C. Luce 1, M.A. Van Zeeland

More information

C-Mod Advanced Tokamak Program: Recent progress and near-term plans

C-Mod Advanced Tokamak Program: Recent progress and near-term plans Advanced Tokamak Program: Recent progress and near-term plans Program Advisory Committee Review February 2, 2004 MIT PSFC Presented by A. Hubbard MIT Plasma Science and Fusion Center, for the team Advanced

More information

HIGH PERFORMANCE EXPERIMENTS IN JT-60U REVERSED SHEAR DISCHARGES

HIGH PERFORMANCE EXPERIMENTS IN JT-60U REVERSED SHEAR DISCHARGES HIGH PERFORMANCE EXPERIMENTS IN JT-U REVERSED SHEAR DISCHARGES IAEA-CN-9/EX/ T. FUJITA, Y. KAMADA, S. ISHIDA, Y. NEYATANI, T. OIKAWA, S. IDE, S. TAKEJI, Y. KOIDE, A. ISAYAMA, T. FUKUDA, T. HATAE, Y. ISHII,

More information

Overview of Recent Results from Alcator C-Mod including Applications to ITER Scenarios

Overview of Recent Results from Alcator C-Mod including Applications to ITER Scenarios Overview of Recent Results from Alcator C-Mod including Applications to ITER Scenarios E. S. Marmar and the Alcator C-Mod Team MIT Plasma Science and Fusion Center, Cambridge MA 02139 USA E-mail contact

More information

FAST 1 : a Physics and Technology Experiment on the Fusion Road Map

FAST 1 : a Physics and Technology Experiment on the Fusion Road Map Fusion Advanced Studies Torus FAST 1 : a Physics and Technology Experiment on the Fusion Road Map Presented by A. A. Tuccillo on behalf of ENEA-Euratom Association Univ. of Rome Tor Vergata Univ. of Catania

More information

Non-Solenoidal Plasma Startup in

Non-Solenoidal Plasma Startup in Non-Solenoidal Plasma Startup in the A.C. Sontag for the Pegasus Research Team A.C. Sontag, 5th APS-DPP, Nov. 2, 28 1 Point-Source DC Helicity Injection Provides Viable Non-Solenoidal Startup Technique

More information

C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center

C-Mod Core Transport Program. Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center C-Mod Core Transport Program Presented by Martin Greenwald C-Mod PAC Feb. 6-8, 2008 MIT Plasma Science & Fusion Center Practical Motivations for Transport Research Overall plasma behavior must be robustly

More information

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod 1 EX/P4-22 Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.

More information

Burning Plasma Research on ITER

Burning Plasma Research on ITER R.J. Hawryluk 24 th IAEA Fusion Energy Conference October 9, 2012 The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. Page 1 Technical Progress Enabled TFTR

More information

C-Mod Transport Program

C-Mod Transport Program C-Mod Transport Program PAC 2006 Presented by Martin Greenwald MIT Plasma Science & Fusion Center 1/26/2006 Introduction Programmatic Focus Transport is a broad topic so where do we focus? Where C-Mod

More information

Alcator C Mod. ITER Support and Burning Plasma Research at Alcator C-Mod. Presented by: Stephen M. Wolfe

Alcator C Mod. ITER Support and Burning Plasma Research at Alcator C-Mod. Presented by: Stephen M. Wolfe ITER Support and Burning Plasma Research at C-Mod Presented by: Stephen M Wolfe C-Mod PAC Meeting MIT Plasma Science & Fusion Center Cambridge, MA Feb 2, 2005 C-Mod ITER Research is carried out in all

More information

Macroscopic Stability Research on Alcator C-Mod: 5-year plan

Macroscopic Stability Research on Alcator C-Mod: 5-year plan Macroscopic Stability Research on Alcator C-Mod: 5-year plan Presented by R. Granetz Alcator C-Mod PAC 06-08 Feb 2008 Principal MHD Research Topics in the Next 5-year Plan Effects of non-axisymmetric fields

More information

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER TRANSPORT PROGRAM C-Mod C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER C-MOD - OPPORTUNITIES AND CHALLENGES Prediction and control are the ultimate goals

More information

TOKAMAK EXPERIMENTS - Summary -

TOKAMAK EXPERIMENTS - Summary - 17 th IAEA Fusion Energy Conference, Yokohama, October, 1998 TOKAMAK EXPERIMENTS - Summary - H. KISHIMOTO Japan Atomic Energy Research Institute 2-2 Uchisaiwai-Cho, Chiyoda-Ku, Tokyo, Japan 1. Introduction

More information

DT Fusion Power Production in ELM-free H-modes in JET

DT Fusion Power Production in ELM-free H-modes in JET JET C(98)69 FG Rimini and e JET Team DT Fusion ower roduction in ELM-free H-modes in JET This document is intended for publication in e open literature. It is made available on e understanding at it may

More information

H-mode performance and pedestal studies with enhanced particle control on Alcator C-Mod

H-mode performance and pedestal studies with enhanced particle control on Alcator C-Mod H-mode performance and pedestal studies with enhanced particle control on Alcator C-Mod J.W. Hughes, B. LaBombard, M. Greenwald, A. Hubbard, B. Lipschultz, K. Marr, R. McDermott, M. Reinke, J.L. Terry

More information

Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection

Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection Reduction of Turbulence and Transport in the Alcator C-Mod Tokamak by Dilution of Deuterium Ions with Nitrogen and Neon Injection M. Porkolab, P. C. Ennever, S. G. Baek, E. M. Edlund, J. Hughes, J. E.

More information

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OVERVIEW OF THE ALCATOR C-MOD PROGRAM IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center OUTLINE C-Mod is compact, high field, high density, high power

More information

Critical Physics Issues for DEMO

Critical Physics Issues for DEMO Max-Planck-Institut für Plasmaphysik Critical Physics Issues for DEMO L.D. Horton with thanks to the contributors to the EFDA DEMO physics tasks in 2006 and to D.J. Campbell, who organized this effort

More information

Enhanced Energy Confinement Discharges with L-mode-like Edge Particle Transport*

Enhanced Energy Confinement Discharges with L-mode-like Edge Particle Transport* Enhanced Energy Confinement Discharges with L-mode-like Edge Particle Transport* E. Marmar, B. Lipschultz, A. Dominguez, M. Greenwald, N. Howard, A. Hubbard, J. Hughes, B. LaBombard, R. McDermott, M. Reinke,

More information

ITER/Burning Plasma Support Research Program on Alcator C-Mod

ITER/Burning Plasma Support Research Program on Alcator C-Mod ITER/Burning Plasma Support Research Program on Alcator C-Mod Presented by: Stephen M Wolfe Alcator C-Mod PAC Meeting MIT Plasma Science & Fusion Center Cambridge, MA Feb 23,2004 Support for Burning Plasma

More information

Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device

Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device Studies of Lower Hybrid Range of Frequencies Actuators in the ARC Device P. T. Bonoli, Y. Lin. S. Shiraiwa, G. M. Wallace, J. C. Wright, and S. J. Wukitch MIT PSFC, Cambridge, MA 02139 59th Annual Meeting

More information

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER M.L. Reinke 1, A. Loarte 2, M. Chilenski 3, N. Howard 3, F. Köchl 4, A. Polevoi 2, A. Hubbard 3, J.W. Hughes

More information

Recent results from lower hybrid current drive experiments on Alcator C-Mod

Recent results from lower hybrid current drive experiments on Alcator C-Mod Recent results from lower hybrid current drive experiments on Alcator C-Mod R. R. Parker, S.-G. Baek, C. Lau, Y. Ma, O. Meneghini, R. T. Mumgaard, Y. Podpaly, M. Porkolab, J.E. Rice, A. E. Schmidt, S.

More information

1999 RESEARCH SUMMARY

1999 RESEARCH SUMMARY 1999 RESEARCH SUMMARY by S.L. Allen Presented to DIII D Program Advisory Committee Meeting January 2 21, 2 DIII D NATIONAL FUSION FACILITY SAN DIEGO 3 /SLA/wj Overview of Physics Results from the 1999

More information

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER

Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics October Introduction to Fusion Leading to ITER 2267-1 Joint ITER-IAEA-ICTP Advanced Workshop on Fusion and Plasma Physics 3-14 October 2011 Introduction to Fusion Leading to ITER SNIPES Joseph Allan Directorate for Plasma Operation Plasma Operations

More information

Lower Hybrid RF: Results, Goals and Plans. J.R. Wilson Alcator C-Mod Program Advisory Meeting January 27, 2010

Lower Hybrid RF: Results, Goals and Plans. J.R. Wilson Alcator C-Mod Program Advisory Meeting January 27, 2010 Lower Hybrid RF: Results, Goals and Plans J.R. Wilson Alcator C-Mod Program Advisory Meeting January 27, 2010 ITER Needs and the RENEW Report Provide a Context for LH Research on C-Mod ITER Needs: Hea-ng

More information

CORSICA Modelling of ITER Hybrid Operation Scenarios

CORSICA Modelling of ITER Hybrid Operation Scenarios 1 CORSICA Modelling of ITER Hybrid Operation Scenarios S.H. Kim 1, T.A. Casper 1, D.J. Campbell 1, J.A. Snipes 1, R.H. Bulmer 2, L.L. LoDestro 2, W.H. Meyer 2 and L.D. Pearlstein 2 1 ITER Organization,

More information

Predicting the Rotation Profile in ITER

Predicting the Rotation Profile in ITER Predicting the Rotation Profile in ITER by C. Chrystal1 in collaboration with B. A. Grierson2, S. R. Haskey2, A. C. Sontag3, M. W. Shafer3, F. M. Poli2, and J. S. degrassie1 1General Atomics 2Princeton

More information

Time-domain simulation and benchmark of LHCD experiment at ITER relevant parameters

Time-domain simulation and benchmark of LHCD experiment at ITER relevant parameters Time-domain simulation and benchmark of LHCD experiment at ITER relevant parameters S. Shiraiwa, P. Bonoli, F. Poli 1, R. W, Harvey 2, C. Kessel 1, R. Parker, and G. Wallace MIT-PSFC, PPPL 1, and CompX

More information

ARIES ACT1 progress & ACT2

ARIES ACT1 progress & ACT2 ARIES ACT1 progress & ACT2 C. Kessel and F. Poli Princeton Plasma Physics Laboratory ARIES Project Meeting, 9/26-27/2012 Wash. DC Outline Temperature and density profile variations at R = 5.5 m in order

More information

Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas

Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas Low-collisionality density-peaking in GYRO simulations of C-Mod plasmas D. R. Mikkelsen, M. Bitter, K. Hill, PPPL M. Greenwald, J.W. Hughes, J. Rice, MIT J. Candy, R. Waltz, General Atomics APS Division

More information

Physics of fusion power. Lecture 14: Anomalous transport / ITER

Physics of fusion power. Lecture 14: Anomalous transport / ITER Physics of fusion power Lecture 14: Anomalous transport / ITER Thursday.. Guest lecturer and international celebrity Dr. D. Gericke will give an overview of inertial confinement fusion.. Instabilities

More information

THE DIII D PROGRAM THREE-YEAR PLAN

THE DIII D PROGRAM THREE-YEAR PLAN THE PROGRAM THREE-YEAR PLAN by T.S. Taylor Presented to Program Advisory Committee Meeting January 2 21, 2 3 /TST/wj PURPOSE OF TALK Show that the program plan is appropriate to meet the goals and is well-aligned

More information

Characteristics of the H-mode H and Extrapolation to ITER

Characteristics of the H-mode H and Extrapolation to ITER Characteristics of the H-mode H Pedestal and Extrapolation to ITER The H-mode Pedestal Study Group of the International Tokamak Physics Activity presented by T.Osborne 19th IAEA Fusion Energy Conference

More information

ELMs on C-Mod. J.W. Hughes for the Alcator C-Mod team. C-Mod/NSTX Pedestal Workshop Princeton, NJ September 7 8, 2010

ELMs on C-Mod. J.W. Hughes for the Alcator C-Mod team. C-Mod/NSTX Pedestal Workshop Princeton, NJ September 7 8, 2010 ELMs on C-Mod J.W. Hughes for the Alcator C-Mod team C-Mod/NSTX Pedestal Workshop Princeton, NJ September 7 8, 1 EDA H-mode is supplanted by small ELMs at higher beta 7 6 5 T e ped (ev) 4 3 Unstable Stable

More information

Experimental studies of ITER demonstration discharges

Experimental studies of ITER demonstration discharges IT/2-2 Experimental studies of ITER demonstration discharges George Sips MPI für Plasmaphysik, EURATOM-Association, Garching, Germany T.A. Casper 2, E.J. Doyle 3, G. Giruzzi 4, Y. Gribov 5, J. Hobirk 1,

More information

DIII D Research in Support of ITER

DIII D Research in Support of ITER Research in Support of ITER by E.J. Strait and the Team Presented at 22nd IAEA Fusion Energy Conference Geneva, Switzerland October 13-18, 28 DIII-D Research Has Made Significant Contributions in the Design

More information

F. Exception Handling Physics and Disruption Mitigation Control

F. Exception Handling Physics and Disruption Mitigation Control Novel Aspects of Plasma Control in ITER D. Humphreys 1, G. Ambrosino 2, P. de Vries 3, F. Felici 4, S.H. Kim 3, G. Jackson 1, A Kallenbach 5, E. Kolemen 6, J. Lister 7, D. Moreau 8, A. Pironti 2, G. Raupp

More information

Role of Magnetic Configuration and Heating Power in ITB Formation in JET.

Role of Magnetic Configuration and Heating Power in ITB Formation in JET. Role of Magnetic Configuration and Heating Power in ITB Formation in JET. The JET Team (presented by V. Parail 1 ) JET Joint Undertaking, Abingdon, Oxfordshire, United Kingdom 1 present address: EURATOM/UKAEA

More information

The performance of improved H-modes at ASDEX Upgrade and projection to ITER

The performance of improved H-modes at ASDEX Upgrade and projection to ITER EX/1-1 The performance of improved H-modes at ASDEX Upgrade and projection to George Sips MPI für Plasmaphysik, EURATOM-Association, D-85748, Germany G. Tardini 1, C. Forest 2, O. Gruber 1, P. Mc Carthy

More information

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER D. BOUCHER 1, D. MOREAU 2, G. VAYAKIS 1, I. VOITSEKHOVITCH 3, J.M. ANÉ 2, X. GARBET 2, V. GRANDGIRARD 2, X. LITAUDON 2, B. LLOYD

More information

Modelling plasma scenarios for MAST-Upgrade

Modelling plasma scenarios for MAST-Upgrade Modelling plasma scenarios for MAST-Upgrade Neutral beam requirements, sensitivity studies and stability D. Keeling R. Akers, I. Chapman, G. Cunningham, H. Meyer, S. Pinches, S. Saarelma, O. Zolotukhin

More information

On tokamak plasma rotation without the neutral beam torque

On tokamak plasma rotation without the neutral beam torque On tokamak plasma rotation without the neutral beam torque Antti Salmi (VTT) With contributions from T. Tala (VTT), C. Fenzi (CEA) and O. Asunta (Aalto) 2 Motivation: Toroidal rotation Plasma rotation

More information

Confinement and edge studies towards low ρ* and ν* at JET

Confinement and edge studies towards low ρ* and ν* at JET 1 Confinement and edge studies towards low ρ* and ν* at JET I Nunes 1,2, P J Lomas 3, D C McDonald 3, G Saibene 4, R Sartori 4, I Voitsekhovitch 3, M Beurskens 3, G Arnoux 3, A Boboc 3, T Eich 5, C Giroud

More information

Summary of CDBM Joint Experiments

Summary of CDBM Joint Experiments 11th Meeting of the ITPA CDBM TG, Chengdu, 23-24 Oct. 2006 Summary of CDBM Joint Experiments Mon. 23 Oct, morning T. Takizuka (JAEA) CDB-2: Confinement scaling in ELMy H-modes; β degradation C.C. Petty

More information

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options A.M. Garofalo, T. Petrie, J. Smith, V. Chan, R. Stambaugh (General Atomics) J. Canik, A. Sontag, M. Cole (Oak Ridge National Laboratory)

More information

ITER A/M/PMI Data Requirements and Management Strategy

ITER A/M/PMI Data Requirements and Management Strategy ITER A/M/PMI Data Requirements and Management Strategy Steven Lisgo, R. Barnsley, D. Campbell, A. Kukushkin, M. Hosokawa, R. A. Pitts, M. Shimada, J. Snipes, A. Winter ITER Organisation with contributions

More information

THE ADVANCED TOKAMAK DIVERTOR

THE ADVANCED TOKAMAK DIVERTOR I Department of Engineering Physics THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and the team 14th PSI QTYUIOP MA D S O N UCLAUCLA UCLA UNIVERSITY OF WISCONSIN THE ADVANCED TOKAMAK DIVERTOR S.L. Allen and

More information

OV/2-5: Overview of Alcator C-Mod Results

OV/2-5: Overview of Alcator C-Mod Results OV/2-5: Overview of Alcator C-Mod Results Research in Support of ITER and Steps Beyond* E.S. Marmar on behalf of the C-Mod Team 25 th IAEA Fusion Energy Conference, Saint Petersburg, Russia, 13 October,

More information

Critical Gaps between Tokamak Physics and Nuclear Science. Clement P.C. Wong General Atomics

Critical Gaps between Tokamak Physics and Nuclear Science. Clement P.C. Wong General Atomics Critical Gaps between Tokamak Physics and Nuclear Science (Step 1: Identifying critical gaps) (Step 2: Options to fill the critical gaps initiated) (Step 3: Success not yet) Clement P.C. Wong General Atomics

More information

Steady State, Transient and Off-Normal Heat Loads in ARIES Power Plants

Steady State, Transient and Off-Normal Heat Loads in ARIES Power Plants Steady State, Transient and Off-Normal Heat Loads in ARIES Power Plants C. E. Kessel 1, M. S. Tillack 2, and J. P. Blanchard 3 1 Princeton Plasma Physics Laboratory 2 University of California, San Diego

More information

Impact of Neon Injection on Electron Density Peaking in JET Hybrid Plasmas

Impact of Neon Injection on Electron Density Peaking in JET Hybrid Plasmas 1 P/233 Impact of Neon Injection on Electron Density Peaking in JET Hybrid Plasmas D. Frigione 1, M. Romanelli 2, C. Challis 2, J. Citrin 3, L. Frassinetti 4, J. Graves 5, J. Hobirk 6, F. Koechl 2, M.

More information

GA A26858 DIII-D EXPERIMENTAL SIMULATION OF ITER SCENARIO ACCESS AND TERMINATION

GA A26858 DIII-D EXPERIMENTAL SIMULATION OF ITER SCENARIO ACCESS AND TERMINATION GA A26858 DIII-D EXPERIMENTAL SIMULATION OF ITER SCENARIO ACCESS AND TERMINATION by G.L. JACKSON, P.A. POLITZER, D.A. HUMPHREYS, T.A. CASPER, A.W. HYATT, J.A. LEUER, J. LOHR, T.C. LUCE, M.A. VAN ZEELAND,

More information

Highlights from (3D) Modeling of Tokamak Disruptions

Highlights from (3D) Modeling of Tokamak Disruptions Highlights from (3D) Modeling of Tokamak Disruptions Presented by V.A. Izzo With major contributions from S.E. Kruger, H.R. Strauss, R. Paccagnella, MHD Control Workshop 2010 Madison, WI ..onset of rapidly

More information

S1/2 EX/S, EX/D, EX/W

S1/2 EX/S, EX/D, EX/W S1/2 EX/S, EX/D, EX/W S1/2 EX/S - Magnetic Confinement Experiments: Stability 47 papers EX/W - Magnetic Confinement Experiments: Wave plasma interactions, current drive & heating, energetic particles 58

More information

Advanced Tokamak Research in JT-60U and JT-60SA

Advanced Tokamak Research in JT-60U and JT-60SA I-07 Advanced Tokamak Research in and JT-60SA A. Isayama for the JT-60 team 18th International Toki Conference (ITC18) December 9-12, 2008 Ceratopia Toki, Toki Gifu JAPAN Contents Advanced tokamak development

More information

Theory Work in Support of C-Mod

Theory Work in Support of C-Mod Theory Work in Support of C-Mod 2/23/04 C-Mod PAC Presentation Peter J. Catto for the PSFC theory group MC & LH studies ITB investigations Neutrals & rotation BOUT improvements TORIC ICRF Mode Conversion

More information

Mission Elements of the FNSP and FNSF

Mission Elements of the FNSP and FNSF Mission Elements of the FNSP and FNSF by R.D. Stambaugh PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Presented at FNST Workshop August 3, 2010 In Addition to What Will Be Learned

More information

Radiative type-iii ELMy H-mode in all-tungsten ASDEX Upgrade

Radiative type-iii ELMy H-mode in all-tungsten ASDEX Upgrade Radiative type-iii ELMy H-mode in all-tungsten ASDEX Upgrade J. Rapp 1, A. Kallenbach 2, R. Neu 2, T. Eich 2, R. Fischer 2, A. Herrmann 2, S. Potzel 2, G.J. van Rooij 3, J.J. Zielinski 3 and ASDEX Upgrade

More information

Non-ohmic ignition scenarios in Ignitor

Non-ohmic ignition scenarios in Ignitor Non-ohmic ignition scenarios in Ignitor Augusta Airoldi IFP, EURATOM-ENEA-CNR Association, Milano, Italy Francesca Bombarda, Giovanna Cenacchi Ignitor Group, ENEA, Italy Bruno Coppi MIT, USA DPP1 APS Meeting

More information

Fast ion generation with novel three-ion radiofrequency heating scenarios:

Fast ion generation with novel three-ion radiofrequency heating scenarios: 1 Fast ion generation with novel three-ion radiofrequency heating scenarios: from JET, W7-X and ITER applications to aneutronic fusion studies Yevgen Kazakov 1, D. Van Eester 1, J. Ongena 1, R. Bilato

More information

C-MOD PAC FEBRUARY, 2005 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER

C-MOD PAC FEBRUARY, 2005 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER TRANSPORT PROGRAM C-Mod C-MOD PAC FEBRUARY, 2005 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER TRANSPORT IS A BROAD TOPIC WHERE DO WE FOCUS? We emphasize areas where C-Mod - Has unique

More information

Spherical Torus Fusion Contributions and Game-Changing Issues

Spherical Torus Fusion Contributions and Game-Changing Issues Spherical Torus Fusion Contributions and Game-Changing Issues Spherical Torus (ST) research contributes to advancing fusion, and leverages on several game-changing issues 1) What is ST? 2) How does research

More information

High fusion performance at high T i /T e in JET-ILW baseline plasmas with high NBI heating power and low gas puffing

High fusion performance at high T i /T e in JET-ILW baseline plasmas with high NBI heating power and low gas puffing High fusion performance at high T i /T e in JET-ILW baseline plasmas with high NBI heating power and low gas puffing Hyun-Tae Kim, A.C.C. Sips, C. D. Challis, F. Rimini, L. Garzotti, E. Lerche, L. Frassinetti,

More information

Alcator C-Mod. Double Transport Barrier Plasmas. in Alcator C-Mod. J.E. Rice for the C-Mod Group. MIT PSFC, Cambridge, MA 02139

Alcator C-Mod. Double Transport Barrier Plasmas. in Alcator C-Mod. J.E. Rice for the C-Mod Group. MIT PSFC, Cambridge, MA 02139 Alcator C-Mod Double Transport Barrier Plasmas in Alcator C-Mod J.E. Rice for the C-Mod Group MIT PSFC, Cambridge, MA 139 IAEA Lyon, Oct. 17, Outline Double Barrier Plasma Profiles and Modeling Conditions

More information

Performance limits. Ben Dudson. 24 th February Department of Physics, University of York, Heslington, York YO10 5DD, UK

Performance limits. Ben Dudson. 24 th February Department of Physics, University of York, Heslington, York YO10 5DD, UK Performance limits Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th February 2014 Ben Dudson Magnetic Confinement Fusion (1 of 24) Previously... In the last few

More information

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER

Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER Tungsten impurity transport experiments in Alcator C-Mod to address high priority R&D for ITER A. Loarte ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex, France

More information

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France Exhaust scenarios Alberto Loarte Plasma Operation Directorate ITER Organization Route de Vinon sur Verdon, 13067 St Paul lez Durance, France Acknowledgements: Members of ITER Organization (especially R.

More information

GA A22443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D

GA A22443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D GA A443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D by R.J. GROEBNER, T.N. CARLSTROM, K.H. BURRELL, S. CODA, E.J. DOYLE, P. GOHIL, K.W. KIM, Q. PENG, R. MAINGI, R.A. MOYER, C.L. RETTIG, T.L. RHODES,

More information

Overview of Pilot Plant Studies

Overview of Pilot Plant Studies Overview of Pilot Plant Studies and contributions to FNST Jon Menard, Rich Hawryluk, Hutch Neilson, Stewart Prager, Mike Zarnstorff Princeton Plasma Physics Laboratory Fusion Nuclear Science and Technology

More information

Divertor Requirements and Performance in ITER

Divertor Requirements and Performance in ITER Divertor Requirements and Performance in ITER M. Sugihara ITER International Team 1 th International Toki Conference Dec. 11-14, 001 Contents Overview of requirement and prediction for divertor performance

More information

IF2011 Pedestal/JRT Summary. J.W. Hughes 21 Jan 2011

IF2011 Pedestal/JRT Summary. J.W. Hughes 21 Jan 2011 IF2011 Pedestal/JRT Summary J.W. Hughes 21 Jan 2011 Predictive capability for the H-mode pedestal is the subject of the FY11 JRT Statement of FY11 FES Joint Research Target: (1) Improve the understanding

More information

First plasma operation of Wendelstein 7-X

First plasma operation of Wendelstein 7-X First plasma operation of Wendelstein 7-X R. C. Wolf on behalf of the W7-X Team *) robert.wolf@ipp.mpg.de *) see author list Bosch et al. Nucl. Fusion 53 (2013) 126001 The optimized stellarator Wendelstein

More information

First Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIII-D Matched-Shape Plasmas

First Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIII-D Matched-Shape Plasmas 1 PD/1-1 First Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIII-D Matched-Shape Plasmas R. Nazikian 1, W. Suttrop 2, A. Kirk 3, M. Cavedon 2, T.E. Evans

More information

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5.

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5. 1. Motivation power exhaust in JT-60SA tokamak 2. Tool COREDIV code 3. Operational scenarios of JT-60SA 4. Results 5. Conclusions K. Gałązka Efficient power exhaust in JT-60SA by COREDIV Page 2 The Institute

More information

I-mode and H-mode plasmas at high magnetic field and pressure on Alcator C-Mod

I-mode and H-mode plasmas at high magnetic field and pressure on Alcator C-Mod I-mode and H-mode plasmas at high magnetic field and pressure on Alcator C-Mod A. E. Hubbard, J. W Hughes, S.-G. Baek, D. Brunner, I. Cziegler 1, E. Edlund, T. Golfinopoulos, M.J. Greenwald, J. Irby, B.

More information

Self-consistent modeling of ITER with BALDUR integrated predictive modeling code

Self-consistent modeling of ITER with BALDUR integrated predictive modeling code Self-consistent modeling of ITER with BALDUR integrated predictive modeling code Thawatchai Onjun Sirindhorn International Institute of Technology, Thammasat University, Klong Luang, Pathumthani, 12121,

More information

Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod

Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod PFC/JA-96-42 Local Plasma Parameters and H-Mode Threshold in Alcator C-Mod A.E. Hubbard, J.A. Goetz, I.H. Hutchinson, Y. In, J. Irby, B. LaBombard, P.J. O'Shea, J.A. Snipes, P.C. Stek, Y. Takase, S.M.

More information

ITB Transport Studies in Alcator C-Mod. Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co

ITB Transport Studies in Alcator C-Mod. Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co Transport Studies in Alcator C-Mod Catherine Fiore MIT Plasma Science and Fusion Center Transport Task Force March 26th Boulder, Co With Contributions from: I. Bespamyatnov, P. T. Bonoli*, D. Ernst*, M.

More information

First Experiments in SST-1

First Experiments in SST-1 First Experiments in SST-1 Subrata Pradhan & SST-1 Team Institute for Plasma Research India OV 5-5 Steady State Superconducting Tokamak (SST-1) at IPR Outline SST-1 Parameters Results in SST-1 from Engineering

More information

Optimization of Stationary High-Performance Scenarios

Optimization of Stationary High-Performance Scenarios Optimization of Stationary High-Performance Scenarios Presented by T.C. Luce National Fusion Program Midterm Review Office of Fusion Energy Science Washington, DC September, 6 QTYUIOP 8-6/TCL/rs Strategy

More information

PHYSICS OF CFETR. Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China.

PHYSICS OF CFETR. Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China. PHYSICS OF CFETR Baonian Wan for CFETR physics group Institute of Plasma Physcis, Chinese Academy of Sciences, Hefei, China Dec 4, 2013 Mission of CFETR Complementary with ITER Demonstration of fusion

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

Macroscopic Stability Research Program on Alcator C-Mod

Macroscopic Stability Research Program on Alcator C-Mod Macroscopic Stability Research Program on Alcator C-Mod Presented by R. Granetz Alcator C-Mod PAC 04-06 Feb 2009 Principal areas of MHD research on C-Mod Disruptions and disruption mitigation, including

More information

(Inductive tokamak plasma initial start-up)

(Inductive tokamak plasma initial start-up) (Inductive tokamak plasma initial start-up) 24. 6. 7. (tapl1.kaist.ac.kr) Outline Conventional inductive tokamak plasma start-up Inductive outer PF coil-only plasma start-up Inductive plasma start-up in

More information

Integrated modeling of LHCD non- induc6ve scenario development on Alcator C- Mod

Integrated modeling of LHCD non- induc6ve scenario development on Alcator C- Mod Integrated modeling of LHCD non- induc6ve scenario development on Alcator C- Mod S. Shiraiwa, P. Bonoli, R. Parker, F. Poli 1, G. Wallace, and J, R. Wilson 1 PSFC, MIT and 1 PPPL 40th European Physical

More information

Correlation Between Core and Pedestal Temperatures in JT-60U: Experiment and Modeling

Correlation Between Core and Pedestal Temperatures in JT-60U: Experiment and Modeling Correlation Between Core and Pedestal Temperatures in JT-U: Experiment and Modeling D. R. MIKKELSEN, Princeton Plasmas Physics Laboratory; E-mail: mikk@pppl.gov H. SHIRAI, N. ASAKURA, T. FUJITA, T. FUKUDA,

More information

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011 Tokamak Divertor System Concept and the Design for ITER Chris Stoafer April 14, 2011 Presentation Overview Divertor concept and purpose Divertor physics General design considerations Overview of ITER divertor

More information

Fusion Development Facility (FDF) Divertor Plans and Research Options

Fusion Development Facility (FDF) Divertor Plans and Research Options Fusion Development Facility (FDF) Divertor Plans and Research Options A.M. Garofalo, T. Petrie, J. Smith, M. Wade, V. Chan, R. Stambaugh (General Atomics) J. Canik (Oak Ridge National Laboratory) P. Stangeby

More information

1997 PRIORITIES FOR ITER PHYSICS RESEARCH S A1 OT F 1

1997 PRIORITIES FOR ITER PHYSICS RESEARCH S A1 OT F 1 1997 PRIORITIES FOR ITER PHYSICS RESEARCH S A1 OT 1 97-01-15 F 1 DATABASES Confinement Divertor Disruption H L Power Threshold (Urgent) Include edge quantities: n e, T e,t i, P sep H-mode Thermal Confinement

More information

Plasma Start-Up Results with EC Assisted Breakdown on FTU

Plasma Start-Up Results with EC Assisted Breakdown on FTU 1 EXW/P2-03 Plasma Start-Up Results with EC Assisted Breakdown on FTU G. Granucci 1), G. Ramponi 1), G. Calabrò 2), F. Crisanti 2), G. Ramogida 2), W. Bin 1), A. Botrugno 2), P.Buratti 2), O. D Arcangelo1,

More information

Control of Sawtooth Oscillation Dynamics using Externally Applied Stellarator Transform. Jeffrey Herfindal

Control of Sawtooth Oscillation Dynamics using Externally Applied Stellarator Transform. Jeffrey Herfindal Control of Sawtooth Oscillation Dynamics using Externally Applied Stellarator Transform Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A. Roberds,

More information