Coverage: through class #7 material (updated June 14, 2017) Terminology/miscellaneous. for a linear instrument:

Size: px
Start display at page:

Download "Coverage: through class #7 material (updated June 14, 2017) Terminology/miscellaneous. for a linear instrument:"

Transcription

1 Boston University ME 310: Summer 017 Course otes to-date Prof. C. Farny DISCLAIMER: This document is meant to serve as a reference and an overview, and not an exclusive study guide for the course. Coverage: through class #7 material (updated June 14, 017) Terminology/miscellaneous Precision Accuracy Resolution Full Scale Input, Output Significant figures Static sensitivity for a linear instrument: K = f(x) x K = output input where f(x) is the output (the functional response of the instrument) and x is the input parameter. Probability density function p(x) p(x) = 1 σ π exp [ ] (x x) σ The absolute probability percentage P is defined over a defined interval of deviation ±δx about the average value x: P ( x δx x x + δx) = x+δx x δx (1) () (3) p(x)dx (4) Convert to a simplified scale by defining β, the normal variate for all samples x, and z 1, the normal variate for a particular sample value x 1 : β = x x σ ; z 1 = x 1 x ; σ dx = σdβ (5) and substituting into Eqn??, P ( z 1 β z 1 ) = 1 π z1 z 1 exp( β /) dβ (6) or the more common version to reflect the symmetrical distribution assumption (note change in the integration bounds and constant term): P ( z 1 β z 1 ) = π z1 1 0 exp( β /) dβ (7)

2 Analog-Digital Conversion (ADC) The ADC process discretizes the analog signal at discrete time points (sampling frequency) and discrete voltage amplitudes. Amplitude discretization: The resulting amplitude discretization corresponds to n = V F SR V res (8) where n is the number of bits (an integer value, commonly even). The full scale range must be greater than the amplitude of the analog signal in order to properly resolve the signal. Temporal discretization: The ADC can only sample incoming data at a certain rate. This rate is generally adjustable, and should be set according to the yquist frequency. The yquist sampling criterium states that at least two data points are required to in order to resolve the highest frequency present. This results in: f s f max (9) (10) f yq = f s = 1 (11) t s Aliasing: Effect occurs when f yquist is lower than one or more frequencies in the analog signal. The energy from these higher analog frequencies appears as energy at a frequency lower than f yquist. ADC Uncertainty: Due to its discrete nature, there are two types of uncertainty related to ADC, both of which act like resolution-based bias sources: Temporal: The digitizer is sampling the signal at discrete time points, so the amplitude at any given time has an inherent uncertainty: U B,t = ± t s Magnitude resolution: The vertical resolution due to the number of bits and full scale range introduces a resolution error: (1) U B,V = ± V res (13)

3 Uncertainty analysis Precision Uncertainty: Inherent scatter in a measurable x about a mean x due to uncontrolled fluctuations. 1. Infinite Statistics: Large sample sets (sample size > 63) σ x U P,x = ±z 1 ; (14) z 1 = x 1 x ; (15) σ (xi x) σ x =. Finite Statistics: Small sample sets. Degrees of freedom ν = -1 (16) S x U P,x = ±t ν,95% ; (17) (xi x) S x = (18) ν ote: The subscript P stands for precision (not pressure!). If the measurement were for a pressure, it would be denoted U P,p and if it were for a voltage, it would be denoted U P,V. Bias Uncertainty: Systematic uncertainties from instrumentation. Affects every data point in a data set of measurable x. Common bias sources: Resolution: Arises from rounding error. U B,resolution,x = ±resolution/ (19) Hysteresis: Arises from discrepancy in output due to direction-dependent loading effects. Commonly found in elastic systems. U B,hysteresis,x = ±%FS (0) Linearity (also referred to as onlinearity): Arises from instrument response, when output deviates from a linear response over the full scale range. U B,linearity,x = ±%FS (1) Sensitivity (also referred to as a Calibration Error): Arises from drift in sensitivity over time. Total bias uncertainty: U B,sensitivity,x = ±%FS () U B,x,total = (U B,x,i ) (3) 3

4 Total Uncertainty: Combine bias and precision sources for each measurable x using root-sum-square (RSS) method U total,x = (U P,x,i ) + (U B,x,i ) = U P,x,total + U B,x,total (4) Class 5 Error propagation: Combining uncertainty from multiple measurables x, y, z, where f(...) represents the generic analytical expression that relates x, y, z to the resultant parameter R: U total,r = U total,r = f(u x, U y, U z ) (5) ( f ) ( ) ( ) f f x U x + y U y + z U z (6) where each individual measurable uncertainty (U x, etc) is the total uncertainty for that parameter. Error propagation can be used in a single-instrument setting for the purpose of converting its input and output units. Measurement analysis Input/output impedance: Recall the voltage divider scenario that the function generator and oscilloscope describe: [ ] R L V L = V S (7) R S + R L where V is the generic instrument voltage, R is the generic instrument impedance, L represents the load (the downstream measurement instrument, or the oscilloscope), and S represents the source (the signal source instrument, or function generator). Linear system modeling Given 3 linear instruments 1,, and 3 in line with each other, an instrument-specific static sensitivity K i and static offset O i, and an input parameter x, the instrument I output is y, instrument II output is z and instrument III output is W. In generic functional response terms: y = f 1 (x); z = f (y); W = f 3 (z) = g(x); (8) Plugging in for the instrument-specific sensitivities: W = f 3 (f (f 1 (x))) = g(x); (9) y = K 1 x + O 1 ; z = K y + O ; W = K 3 z + O 3 ; (30) W = K sys x + O sys ; (31) where K sys = K 1 K K 3, O sys = O 3 + K 3 O + K K 3 O 1 (3) 4

5 Resistance measurement methods RTDs Strain gauge/wheatstone bridge Bridge constant Compensation techniques Linear System Calibration Linear Regression Analysis: The method of least squares error gives the following relationship for a linear system (with additional terms for an appropriately-nonlinear relationship): y fit = f(x) = a 0 + a 1 x (33) x a 0 = i ym,i x i xi y m,i ; a 1 = x i y m,i x i ym,i (34) B B B = x i ( xi ) (35) where x i is each control point (input) value, y m,i is each measured response (output) point value, y fit is the calibration value for a given input x, and is the number of unique control points involved in the calibration. ote that it is helpful at times to invert the functional relationship to instead solve for x in terms of a measurement of y: x = f 1 (y) = y a 0 a 1 (36) For an exercise involving multiple output measurements per control point, a weighted scheme is used: wi x i wi y m,i w i x i wi x i y m,i a 0 = (37) B w wi wi x i y m,i w i x i wi y m,i a 1 = (38) B w B w = w i wi x i ( wi x i ) (39) w i = 1 U i where U i is the precision uncertainty value per control point. Calibration uncertainty: Potentially the most confusing of the uncertainty calculations. The goal is to understand the relationship between an output y (likely a voltage) and a physical input parameter x for an uncalibrated instrument A. Remember that A is being used to measure x, so x is unknown, and y is simply a voltage (and thus not helpful on its own). The functional response of A may only be known via use of a calibrated 5 (40)

6 instrument C that is capable of knowing what the input x actually is. C tells us what x is, and a regression analysis can then reveal how to get the constants in Eq?? for instrument A. It gets confusing because both instruments can have bias uncertainties, and both may have their own precision uncertainties. We re dealing with multiple units (for x and for y), so a final, total uncertainty value can only be obtained via propagation of the multiple uncertainties to a final uncertainty in units of x or of y. Try to clearly differentiate which uncertainties belong with each instrument; keeping careful track of units helps a good deal. Here U meas refers to the uncertainties from the uncalibrated instrument A and U cal refers to those from the calibrated instrument C. Obtaining a total uncertainty from C is familiar and straightforward: U cal,x = ± ( U B,x,cal,i) + U p,x,cal,max (41) Remember that these will all be in units of x. Here the precision uncertainty would come from the scenario where you ve taken multiple measurements of x i at each control point value, for the purpose of accounting for scatter in the measurement. This would give rise to values of U p,x,cal ; since only one such value would be considered for the uncertainty, you should take the maximum such value over the that you ve calculated. For the uncalibrated instrument A, the various uncertainty parameters will likely be in units of y, or voltage. The new component of the analysis here involves the precision uncertainty of instrument A. The precision uncertainty is now a scatter of the data about a linear trend (the calibration curve), known as the precision uncertainty of the fit U p,fit that relies on a standard error of the fit S yx : U p,y,fit = ±t ν,95% Syx (4) (yfit,i y m,i ) S yx = (43) ν The number of statistical degrees of freedom in this case (specifically, calibration uncertainty analysis) ν is (I sometimes notate ν here as ν fit as a reminder of the calibration aspect), and is the number of control points on the x axis. The parameter y fit,i represents the known/calibrated output value at each control point. The uncertainty from instrument A may be then found per the usual method: U meas,y = ± ( U B,y,i) + U p,y,fit (44) Since the values of the calibration for instrument A depend on the inherent uncertainties of instrument C, the two uncertainties U meas and U cal must be combined, to obtain a total uncertainty. Error propagation must be used to properly combine the different units of x and y: ( f ) U total,y = ± x U cal,x + Umeas,y (45) 6

7 ( f 1 or: U total,x = ± y U meas,y ) + U cal,x (46) where f represents the calibration equation y = a 1 x + a 0 and f 1 is the inverse of that equation, or x = y a 0 a 1. 7

Coverage: through entire course material (updated July 18, 2017) Terminology/miscellaneous. for a linear instrument:

Coverage: through entire course material (updated July 18, 2017) Terminology/miscellaneous. for a linear instrument: Boston University ME 310: Summer 017 Course Notes Prof. C. Farny DISCLAIMER: This document is meant to serve as a reference and an overview, and not an exclusive study guide for the course. Coverage: through

More information

Chapter 4. Probability and Statistics. Probability and Statistics

Chapter 4. Probability and Statistics. Probability and Statistics Chapter 4 Probability and Statistics Figliola and Beasley, (999) Probability and Statistics Engineering measurements taken repeatedly under seemingly ideal conditions will normally show variability. Measurement

More information

ik () uk () Today s menu Last lecture Some definitions Repeatability of sensing elements

ik () uk () Today s menu Last lecture Some definitions Repeatability of sensing elements Last lecture Overview of the elements of measurement systems. Sensing elements. Signal conditioning elements. Signal processing elements. Data presentation elements. Static characteristics of measurement

More information

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13 EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 0//3 This experiment demonstrates the use of the Wheatstone Bridge for precise resistance measurements and the use of error propagation to determine the uncertainty

More information

PARADISE VALLEY COMMUNITY COLLEGE PHYSICS COLLEGE PHYSICS I LABORATORY

PARADISE VALLEY COMMUNITY COLLEGE PHYSICS COLLEGE PHYSICS I LABORATORY PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 111 - COLLEGE PHYSICS I LABORATORY PURPOSE OF THE LABORATORY: The laboratory exercises are designed to accomplish two objectives. First, the exercises will illustrate

More information

Introduction to Error Analysis

Introduction to Error Analysis Introduction to Error Analysis Part 1: the Basics Andrei Gritsan based on lectures by Petar Maksimović February 1, 2010 Overview Definitions Reporting results and rounding Accuracy vs precision systematic

More information

Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers. Midterm Examination.

Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers. Midterm Examination. Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Midterm Examination October 19, 2005 o Closed Book and Notes o Fill in your name on your scoring

More information

Theory and Design for Mechanical Measurements

Theory and Design for Mechanical Measurements Theory and Design for Mechanical Measurements Third Edition Richard S. Figliola Clemson University Donald E. Beasley Clemson University John Wiley & Sons, Inc. New York / Chichester / Weinheim / Brisbane

More information

Notes Errors and Noise PHYS 3600, Northeastern University, Don Heiman, 6/9/ Accuracy versus Precision. 2. Errors

Notes Errors and Noise PHYS 3600, Northeastern University, Don Heiman, 6/9/ Accuracy versus Precision. 2. Errors Notes Errors and Noise PHYS 3600, Northeastern University, Don Heiman, 6/9/2011 1. Accuracy versus Precision 1.1 Precision how exact is a measurement, or how fine is the scale (# of significant figures).

More information

4/3/2019. Advanced Measurement Systems and Sensors. Dr. Ibrahim Al-Naimi. Chapter one. Introduction to Measurement Systems

4/3/2019. Advanced Measurement Systems and Sensors. Dr. Ibrahim Al-Naimi. Chapter one. Introduction to Measurement Systems Advanced Measurement Systems and Sensors Dr. Ibrahim Al-Naimi Chapter one Introduction to Measurement Systems 1 Outlines Control and measurement systems Transducer/sensor definition and classifications

More information

Introduction to Uncertainty and Treatment of Data

Introduction to Uncertainty and Treatment of Data Introduction to Uncertainty and Treatment of Data Introduction The purpose of this experiment is to familiarize the student with some of the instruments used in making measurements in the physics laboratory,

More information

2.4 The ASME measurement-uncertainty formulation

2.4 The ASME measurement-uncertainty formulation Friday, May 14, 1999 2.5 Propagation of uncertainty estimates Page: 1 next up previous contents Next: 2.5 Propagation of uncertainty Up: 2. Measurement Uncertainty Previous: 2.3 More terminology 2.4 The

More information

STATISTICS OF OBSERVATIONS & SAMPLING THEORY. Parent Distributions

STATISTICS OF OBSERVATIONS & SAMPLING THEORY. Parent Distributions ASTR 511/O Connell Lec 6 1 STATISTICS OF OBSERVATIONS & SAMPLING THEORY References: Bevington Data Reduction & Error Analysis for the Physical Sciences LLM: Appendix B Warning: the introductory literature

More information

Patrick F. Dunn 107 Hessert Laboratory Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556

Patrick F. Dunn 107 Hessert Laboratory Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Learning Objectives to Accompany MEASUREMENT AND DATA ANALYSIS FOR ENGINEERING AND SCIENCE Second Edition, Taylor and Francis/CRC Press, c 2010 ISBN: 9781439825686 Patrick F. Dunn pdunn@nd.edu 107 Hessert

More information

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are

More information

Error analysis for IPhO contestants

Error analysis for IPhO contestants Error analysis for IPhO contestants Heikki Mäntysaari University of Jyväskylä, Department of Physics Abstract In the experimental part of IPhO (and generally when performing measurements) you have to estimate

More information

3. Measurement Error and Precision

3. Measurement Error and Precision 3.1 Measurement Error 3.1.1 Definition 3. Measurement Error and Precision No physical measurement is completely exact or even completely precise. - Difference between a measured value and the true value

More information

Statistics for Data Analysis. Niklaus Berger. PSI Practical Course Physics Institute, University of Heidelberg

Statistics for Data Analysis. Niklaus Berger. PSI Practical Course Physics Institute, University of Heidelberg Statistics for Data Analysis PSI Practical Course 2014 Niklaus Berger Physics Institute, University of Heidelberg Overview You are going to perform a data analysis: Compare measured distributions to theoretical

More information

A Quick Introduction to Data Analysis (for Physics)

A Quick Introduction to Data Analysis (for Physics) A Quick Introduction to Data Analysis for Physics Dr. Jeff A. Winger What is data analysis? Data analysis is the process by which experimental data is used to obtain a valid and quantifiable result. Part

More information

EE 230 Lecture 40. Data Converters. Amplitude Quantization. Quantization Noise

EE 230 Lecture 40. Data Converters. Amplitude Quantization. Quantization Noise EE 230 Lecture 40 Data Converters Amplitude Quantization Quantization Noise Review from Last Time: Time Quantization Typical ADC Environment Review from Last Time: Time Quantization Analog Signal Reconstruction

More information

Topic 1.2 Measurement and Uncertainties Uncertainty and error in measurement. Random Errors

Topic 1.2 Measurement and Uncertainties Uncertainty and error in measurement. Random Errors Uncertainty and error in measurement Random Errors Definition of Random Error Random errors are sources of uncertainties in the measurement, whose effect can be reduced by a repeated experiment, and taking

More information

MECHANICAL ENGINEERING SYSTEMS LABORATORY

MECHANICAL ENGINEERING SYSTEMS LABORATORY MECHANICAL ENGINEERING SYSTEMS LABORATORY Group 02 Asst. Prof. Dr. E. İlhan KONUKSEVEN FUNDAMENTAL CONCEPTS IN MEASUREMENT AND EXPERIMENTATION MEASUREMENT ERRORS AND UNCERTAINTY THE ERROR IN A MEASUREMENT

More information

Sensor Characteristics

Sensor Characteristics Lecture (3) Sensor Characteristics (Part Two) Prof. Kasim M. Al-Aubidy Philadelphia University-Jordan AMSS-MSc Prof. Kasim Al-Aubidy 1 3. Computation of Stimulus: The main objective of sensing is to determine

More information

Trial version. Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator?

Trial version. Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing page: 1 of 13 Contents Initial Problem Statement 2 Narrative

More information

(A) (B) (D) (C) 1.5. Amplitude (volts) 1.5. Amplitude (volts) Time (seconds) Time (seconds)

(A) (B) (D) (C) 1.5. Amplitude (volts) 1.5. Amplitude (volts) Time (seconds) Time (seconds) Reminder: Lab #1 : Limitations of A/D conversion Lab #2 : Thermocouple, static and dynamic calibration Lab #3 : Conversion of work into heat Lab #4 : Pressure transducer, static and dynamic calibration

More information

The SuperBall Lab. Objective. Instructions

The SuperBall Lab. Objective. Instructions 1 The SuperBall Lab Objective This goal of this tutorial lab is to introduce data analysis techniques by examining energy loss in super ball collisions. Instructions This laboratory does not have to be

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 12, 2003 Closed Book and Notes 1. Be sure to fill in your

More information

JAB NOTE4. ESTIMATION OF MEASUREMENT UNCERTAINTY (Electrical Testing / High Power Testing) Japan Accreditation Board (JAB)

JAB NOTE4. ESTIMATION OF MEASUREMENT UNCERTAINTY (Electrical Testing / High Power Testing) Japan Accreditation Board (JAB) JAB NOTE4 ESTIMATION OF MEASUREMENT UNCERTAINTY (Electrical Testing / High Power Testing) nd edition: January 5 01 1 st edition: March 5 00 Japan Accreditation Board (JAB) Initial edition: 00-0-5 1/ nd

More information

AE2160 Introduction to Experimental Methods in Aerospace

AE2160 Introduction to Experimental Methods in Aerospace AE160 Introduction to Experimental Methods in Aerospace Uncertainty Analysis C.V. Di Leo (Adapted from slides by J.M. Seitzman, J.J. Rimoli) 1 Accuracy and Precision Accuracy is defined as the difference

More information

Application Note AN37. Noise Histogram Analysis. by John Lis

Application Note AN37. Noise Histogram Analysis. by John Lis AN37 Application Note Noise Histogram Analysis by John Lis NOISELESS, IDEAL CONVERTER OFFSET ERROR σ RMS NOISE HISTOGRAM OF SAMPLES PROBABILITY DISTRIBUTION FUNCTION X PEAK-TO-PEAK NOISE Crystal Semiconductor

More information

Uncertainty, Measurement, and Models. Lecture 2 Physics 2CL Summer Session 2011

Uncertainty, Measurement, and Models. Lecture 2 Physics 2CL Summer Session 2011 Uncertainty, Measurement, and Models Lecture 2 Physics 2CL Summer Session 2011 Outline What is uncertainty (error) analysis and what can it do for you Issues with measurement and observation What does

More information

(TRAVELLING) 1D WAVES. 1. Transversal & Longitudinal Waves

(TRAVELLING) 1D WAVES. 1. Transversal & Longitudinal Waves (TRAVELLING) 1D WAVES 1. Transversal & Longitudinal Waves Objectives After studying this chapter you should be able to: Derive 1D wave equation for transversal and longitudinal Relate propagation speed

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture VIa (19.11.07) Contents: Uncertainties (II): Re: error propagation Correlated uncertainties Systematic uncertainties Re: Error Propagation (I) x = Vi,j and µi known

More information

FUNDAMENTAL CONCEPTS IN MEASUREMENT & EXPERIMENTATION (continued) Measurement Errors and Uncertainty:

FUNDAMENTAL CONCEPTS IN MEASUREMENT & EXPERIMENTATION (continued) Measurement Errors and Uncertainty: FUNDAMENTAL CNCEPTS N MEASUREMENT & EXPERMENTATN (continued) Measurement Errors and Uncertainty: The Error in a measurement is the difference between the Measured Value and the True Value of the Measurand.

More information

ACCURATE MAGNETIC FLUX MEASUREMENTS IN ELECTROMAGNETIC RAIL LAUNCHERS

ACCURATE MAGNETIC FLUX MEASUREMENTS IN ELECTROMAGNETIC RAIL LAUNCHERS Progress In Electromagnetics Research C, Vol. 40, 243 256, 203 ACCURATE MAGNETIC FLUX MEASUREMENTS IN ELECTROMAGNETIC RAIL LAUNCHERS Roberto Ferrero, Mirko Marracci, and Bernardo Tellini * Department of

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 11 January 7, 2013 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline How to communicate the statistical uncertainty

More information

Introduction to Data Analysis

Introduction to Data Analysis Introduction to Data Analysis Analysis of Experimental Errors How to Report and Use Experimental Errors Statistical Analysis of Data Simple statistics of data Plotting and displaying the data Summary Errors

More information

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6.

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. STAT 45: Statistical Theory Distribution Theory Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. Basic Problem: Start with assumptions about f or CDF of random vector X (X 1,..., X p

More information

Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator?

Temperature Sensing. How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing How does the temperature sensor work and how can it be used to control the temperature of a refrigerator? Temperature Sensing page: 1 of 22 Contents Initial Problem Statement 2 Narrative

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis E X P E R I M E N T 1 Experimental Uncertainty (Error) and Data Analysis INTRODUCTION AND OBJECTIVES Laboratory investigations involve taking measurements of physical quantities, and the process of taking

More information

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination.

Department of Mechanical and Aerospace Engineering. MAE334 - Introduction to Instrumentation and Computers. Final Examination. Name: Number: Department of Mechanical and Aerospace Engineering MAE334 - Introduction to Instrumentation and Computers Final Examination December 17, 2001 Closed Book and Notes 1. Be sure to fill in your

More information

Errors: What they are, and how to deal with them

Errors: What they are, and how to deal with them Errors: What they are, and how to deal with them A series of three lectures plus exercises, by Alan Usher Room 111, a.usher@ex.ac.uk Synopsis 1) Introduction ) Rules for quoting errors 3) Combining errors

More information

Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Spring 2003 M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis Experimental Uncertainty (Error) and Data Analysis Advance Study Assignment Please contact Dr. Reuven at yreuven@mhrd.org if you have any questions Read the Theory part of the experiment (pages 2-14) and

More information

CE 321 Sample Laboratory Report Packet

CE 321 Sample Laboratory Report Packet CE 321 Sample Laboratory Report Packet This packet contains the following materials to help you prepare your lab reports in CE 321: An advice table with Dr. Wallace s hints regarding common strengths and

More information

STAT 801: Mathematical Statistics. Distribution Theory

STAT 801: Mathematical Statistics. Distribution Theory STAT 81: Mathematical Statistics Distribution Theory Basic Problem: Start with assumptions about f or CDF of random vector X (X 1,..., X p ). Define Y g(x 1,..., X p ) to be some function of X (usually

More information

ME EXAM #1 Tuesday, October 7, :30 7:30 pm PHYS 112 and 114

ME EXAM #1 Tuesday, October 7, :30 7:30 pm PHYS 112 and 114 ME 36500 EXAM # Tuesday, October 7, 04 6:30 7:30 pm PHYS and 4 Division: Chiu(0:30) / Shelton(:30) / Bae(:30) (circle one) HW ID: Name: Solution Instructions () This is a closed book examination, but you

More information

Math 480 The Vector Space of Differentiable Functions

Math 480 The Vector Space of Differentiable Functions Math 480 The Vector Space of Differentiable Functions The vector space of differentiable functions. Let C (R) denote the set of all infinitely differentiable functions f : R R. Then C (R) is a vector space,

More information

Measurement And Uncertainty

Measurement And Uncertainty Measurement And Uncertainty Based on Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, 1994 Edition PHYS 407 1 Measurement approximates or

More information

Uncertainties in Measurement

Uncertainties in Measurement Uncertainties in Measurement Laboratory investigations involve taking measurements of physical quantities. All measurements will involve some degree of experimental uncertainty. QUESTIONS 1. How does one

More information

Data Analysis, Standard Error, and Confidence Limits E80 Spring 2015 Notes

Data Analysis, Standard Error, and Confidence Limits E80 Spring 2015 Notes Data Analysis Standard Error and Confidence Limits E80 Spring 05 otes We Believe in the Truth We frequently assume (believe) when making measurements of something (like the mass of a rocket motor) that

More information

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question Linear regression Reminders Thought questions should be submitted on eclass Please list the section related to the thought question If it is a more general, open-ended question not exactly related to a

More information

EE 435. Lecture 26. Data Converters. Data Converter Characterization

EE 435. Lecture 26. Data Converters. Data Converter Characterization EE 435 Lecture 26 Data Converters Data Converter Characterization . Review from last lecture. Data Converter Architectures n DAC R-2R (4-bits) R R R R V OUT 2R 2R 2R 2R R d 3 d 2 d 1 d 0 V REF By superposition:

More information

Laboratory III: Operational Amplifiers

Laboratory III: Operational Amplifiers Physics 33, Fall 2008 Lab III - Handout Laboratory III: Operational Amplifiers Introduction Operational amplifiers are one of the most useful building blocks of analog electronics. Ideally, an op amp would

More information

Data Analysis, Standard Error, and Confidence Limits E80 Spring 2012 Notes

Data Analysis, Standard Error, and Confidence Limits E80 Spring 2012 Notes Data Analysis Standard Error and Confidence Limits E80 Spring 0 otes We Believe in the Truth We frequently assume (believe) when making measurements of something (like the mass of a rocket motor) that

More information

Laboratory I: Impedance

Laboratory I: Impedance Physics 33, Fall 2008 ab I - Exercises aboratory I: Impedance eading: ab handout Simpson hapter if necessary) & hapter 2 particularly 2.9-2.3) ab Exercises. Part I What is the input impedance of the oscilloscope

More information

Control Engineering BDA30703

Control Engineering BDA30703 Control Engineering BDA30703 Lecture 3: Performance characteristics of an instrument Prepared by: Ramhuzaini bin Abd. Rahman Expected Outcomes At the end of this lecture, students should be able to; 1)

More information

Error Analysis How Do We Deal With Uncertainty In Science.

Error Analysis How Do We Deal With Uncertainty In Science. How Do We Deal With Uncertainty In Science. 1 Error Analysis - the study and evaluation of uncertainty in measurement. 2 The word error does not mean mistake or blunder in science. 3 Experience shows no

More information

MFJ 259/259B Operation & Simplified Calibration

MFJ 259/259B Operation & Simplified Calibration MFJ 259/259B Operation & Simplified Calibration Bill Leonard N0CU 1 March 2014 What Is An MFJ-259 MFJ lists it as a HF/VHF SWR Analyzer It is essentially a ONE PORT NETWORK ANALYZER Measures the electrical

More information

Capacitance Measurement

Capacitance Measurement Overview The goal of this two-week laboratory is to develop a procedure to accurately measure a capacitance. In the first lab session, you will explore methods to measure capacitance, and their uncertainties.

More information

4.3 General attacks on LFSR based stream ciphers

4.3 General attacks on LFSR based stream ciphers 67 4.3 General attacks on LFSR based stream ciphers Recalling our initial discussion on possible attack scenarios, we now assume that z = z 1,z 2,...,z N is a known keystream sequence from a generator

More information

Physics 3150, Laboratory X January 22, 2014 Ann Onymous (lab partner: John Doe)

Physics 3150, Laboratory X January 22, 2014 Ann Onymous (lab partner: John Doe) A. Procedure and Results Physics 150, Laboratory X January, 01 Ann Onymous (lab partner: John Doe) A.1. Voltage and current for a resistor bridge We constructed a resistor bridge circuit as indicated in

More information

Module 1: Introduction to Experimental Techniques Lecture 6: Uncertainty analysis. The Lecture Contains: Uncertainity Analysis

Module 1: Introduction to Experimental Techniques Lecture 6: Uncertainty analysis. The Lecture Contains: Uncertainity Analysis The Lecture Contains: Uncertainity Analysis Error Propagation Analysis of Scatter Table A1: Normal Distribution Table A2: Student's-t Distribution file:///g /optical_measurement/lecture6/6_1.htm[5/7/2012

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY191 Experiment 2: Random Error and Basic Statistics 7/12/2011 Page 1 Experiment 2 Random Error and Basic Statistics Homework 2: turn in the second week of the experiment. This is a difficult homework

More information

Project TOUCAN. A Study of a Two-Can System. Prof. R.G. Longoria Update Fall ME 144L Prof. R.G. Longoria Dynamic Systems and Controls Laboratory

Project TOUCAN. A Study of a Two-Can System. Prof. R.G. Longoria Update Fall ME 144L Prof. R.G. Longoria Dynamic Systems and Controls Laboratory Project TOUCAN A Study of a Two-Can System Prof. R.G. Longoria Update Fall 2009 Laboratory Goals Gain familiarity with building models that reflect reality. Show how a model can be used to guide physical

More information

Chapter 3. Second Order Measurement System Behaviour

Chapter 3. Second Order Measurement System Behaviour Chapter 3 Second Order Measurement System Behaviour 1 GENERAL MEASUREMENT SYSTEM MODEL INITIAL CONDITIONS y(0) SIGNAL INPUT F(t) MEASUREMENT SYSTEM SYSTEM OUTPUT y(t) Understanding the theoretical response

More information

Math 341: Probability Eighteenth Lecture (11/12/09)

Math 341: Probability Eighteenth Lecture (11/12/09) Math 341: Probability Eighteenth Lecture (11/12/09) Steven J Miller Williams College Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public html/341/ Bronfman Science Center Williams

More information

Math 142 (Summer 2018) Business Calculus 6.1 Notes

Math 142 (Summer 2018) Business Calculus 6.1 Notes Math 142 (Summer 2018) Business Calculus 6.1 Notes Antiderivatives Why? So far in the course we have studied derivatives. Differentiation is the process of going from a function f to its derivative f.

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

Chapter 1: System of Linear Equations 1.3 Application of Li. (Read Only) Satya Mandal, KU. Summer 2017: Fall 18 Update

Chapter 1: System of Linear Equations 1.3 Application of Li. (Read Only) Satya Mandal, KU. Summer 2017: Fall 18 Update Chapter 1: System of Linear Equations 1.3 Application of Linear systems (Read Only) Summer 2017: Fall 18 Update Goals In this section, we do a few applications of linear systems, as follows. Fitting polynomials,

More information

Appendix A: Significant Figures and Error Analysis

Appendix A: Significant Figures and Error Analysis 1 Appendix A: Significant Figures and Error Analysis Every measurement of a physical quantity contains some amount of uncertainty or error. We often speak of a certain number or measurement as being precise

More information

Linear Elasticity ( ) Objectives. Equipment. Introduction. ε is then

Linear Elasticity ( ) Objectives. Equipment. Introduction. ε is then Linear Elasticity Objectives In this lab you will measure the Young s Modulus of a steel wire. In the process, you will gain an understanding of the concepts of stress and strain. Equipment Young s Modulus

More information

Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases

Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases September 22, 2018 Recall from last week that the purpose of a proof

More information

6. The default plot created by Excel meets all of the requirements for a formal report plot in ME 360.

6. The default plot created by Excel meets all of the requirements for a formal report plot in ME 360. ME 360 Fall 2008 Semester Test #1 9/24/08 Closed book, closed notes portion of test. When you turn in this part of the test you will get the second part which allows a page of handwritten formulas. There

More information

MA3232 Summary 5. d y1 dy1. MATLAB has a number of built-in functions for solving stiff systems of ODEs. There are ode15s, ode23s, ode23t, ode23tb.

MA3232 Summary 5. d y1 dy1. MATLAB has a number of built-in functions for solving stiff systems of ODEs. There are ode15s, ode23s, ode23t, ode23tb. umerical solutions of higher order ODE We can convert a high order ODE into a system of first order ODEs and then apply RK method to solve it. Stiff ODEs Stiffness is a special problem that can arise in

More information

Integer-Valued Polynomials

Integer-Valued Polynomials Integer-Valued Polynomials LA Math Circle High School II Dillon Zhi October 11, 2015 1 Introduction Some polynomials take integer values p(x) for all integers x. The obvious examples are the ones where

More information

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis Introduction to Natural Computation Lecture 9 Multilayer Perceptrons and Backpropagation Peter Lewis 1 / 25 Overview of the Lecture Why multilayer perceptrons? Some applications of multilayer perceptrons.

More information

Lab 5a: Magnetic Levitation (Week 1)

Lab 5a: Magnetic Levitation (Week 1) ME C134 / EE C128 Fall 2017 Lab 5a Lab 5a: Magnetic Levitation (Week 1) Magnetism, as you recall from physics class, is a powerful force that causes certain items to be attracted to refrigerators. Dave

More information

Math 5311 Constrained Optimization Notes

Math 5311 Constrained Optimization Notes ath 5311 Constrained Optimization otes February 5, 2009 1 Equality-constrained optimization Real-world optimization problems frequently have constraints on their variables. Constraints may be equality

More information

Uncertainties and Error Propagation Part I of a manual on Uncertainties, Graphing, and the Vernier Caliper

Uncertainties and Error Propagation Part I of a manual on Uncertainties, Graphing, and the Vernier Caliper Contents Uncertainties and Error Propagation Part I of a manual on Uncertainties, Graphing, and the Vernier Caliper Copyright July 1, 2000 Vern Lindberg 1. Systematic versus Random Errors 2. Determining

More information

CS 147: Computer Systems Performance Analysis

CS 147: Computer Systems Performance Analysis CS 147: Computer Systems Performance Analysis Summarizing Variability and Determining Distributions CS 147: Computer Systems Performance Analysis Summarizing Variability and Determining Distributions 1

More information

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1 LECTURE 310 OPEN-LOOP COMPARATORS LECTURE ORGANIZATION Outline Characterization of comparators Dominant pole, open-loop comparators Two-pole, open-loop

More information

EAS 535 Laboratory Exercise Weather Station Setup and Verification

EAS 535 Laboratory Exercise Weather Station Setup and Verification EAS 535 Laboratory Exercise Weather Station Setup and Verification Lab Objectives: In this lab exercise, you are going to examine and describe the error characteristics of several instruments, all purportedly

More information

Solution to the exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY May 20, 2011

Solution to the exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY May 20, 2011 NTNU Page 1 of 5 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Solution to the exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY May 20, 2011 This solution consists of 5 pages. Problem

More information

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6.

STAT 450: Statistical Theory. Distribution Theory. Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. STAT 450: Statistical Theory Distribution Theory Reading in Casella and Berger: Ch 2 Sec 1, Ch 4 Sec 1, Ch 4 Sec 6. Example: Why does t-statistic have t distribution? Ingredients: Sample X 1,...,X n from

More information

Measurement: The Basics

Measurement: The Basics I. Introduction Measurement: The Basics Physics is first and foremost an experimental science, meaning that its accumulated body of knowledge is due to the meticulous experiments performed by teams of

More information

Lab 0 Appendix C L0-1 APPENDIX C ACCURACY OF MEASUREMENTS AND TREATMENT OF EXPERIMENTAL UNCERTAINTY

Lab 0 Appendix C L0-1 APPENDIX C ACCURACY OF MEASUREMENTS AND TREATMENT OF EXPERIMENTAL UNCERTAINTY Lab 0 Appendix C L0-1 APPENDIX C ACCURACY OF MEASUREMENTS AND TREATMENT OF EXPERIMENTAL UNCERTAINTY A measurement whose accuracy is unknown has no use whatever. It is therefore necessary to know how to

More information

NUMERICAL EVALUATION OF DISPLACEMENT AND ACCELERATION FOR A MASS, SPRING, DASHPOT SYSTEM

NUMERICAL EVALUATION OF DISPLACEMENT AND ACCELERATION FOR A MASS, SPRING, DASHPOT SYSTEM American Society for Engineering Education Salt Lake City, Utah June 24 NUMERICAL EVALUATION OF DISPLACEMENT AND ACCELERATION FOR A MASS, SPRING, DASHPOT SYSTEM ACCELEROMETER MASS SPRING FIXED SUPPORT

More information

ANALYTICAL CHEMISTRY 1 LECTURE NOTES

ANALYTICAL CHEMISTRY 1 LECTURE NOTES ANALYTICAL CHEMISTRY 1 LECTURE NOTES FUNDAMENTALS OF PRE ANALYSES TOPIC 1: Theory of Errors 1.0 Introduction Analytical chemistry is a specialised aspect of chemistry that deals with both qualitative analysis

More information

2009 Assessment Report Physics GA 1: Written examination 1

2009 Assessment Report Physics GA 1: Written examination 1 2009 Physics GA 1: Written examination 1 GENERAL COMMENTS The number of students who sat for the 2009 Physics examination 1 was 6868. With a mean score of 68 per cent, students generally found the paper

More information

More Techniques. for Solving First Order ODE'S. and. a Classification Scheme for Techniques

More Techniques. for Solving First Order ODE'S. and. a Classification Scheme for Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 1 A COLLECTION OF HANDOUTS ON FIRST ORDER ORDINARY DIFFERENTIAL

More information

POWER QUALITY MEASUREMENT PROCEDURE. Version 4 October Power-Quality-Oct-2009-Version-4.doc Page 1 / 12

POWER QUALITY MEASUREMENT PROCEDURE. Version 4 October Power-Quality-Oct-2009-Version-4.doc Page 1 / 12 POWER QUALITY MEASUREMENT PROCEDURE Version 4 October 2009 Power-Quality-Oct-2009-Version-4.doc Page 1 / 12 MEASNET 2009 Copyright all rights reserved This publication may not be reproduced or utilized

More information

When a function is defined by a fraction, the denominator of that fraction cannot be equal to zero

When a function is defined by a fraction, the denominator of that fraction cannot be equal to zero As stated in the previous lesson, when changing from a function to its inverse the inputs and outputs of the original function are switched, because we take the original function and solve for x. This

More information

that relative errors are dimensionless. When reporting relative errors it is usual to multiply the fractional error by 100 and report it as a percenta

that relative errors are dimensionless. When reporting relative errors it is usual to multiply the fractional error by 100 and report it as a percenta Error Analysis and Significant Figures Errors using inadequate data are much less than those using no data at all. C. Babbage No measurement of a physical quantity can be entirely accurate. It is important

More information

Logarithms Tutorial for Chemistry Students

Logarithms Tutorial for Chemistry Students 1 Logarithms 1.1 What is a logarithm? Logarithms Tutorial for Chemistry Students Logarithms are the mathematical function that is used to represent the number (y) to which a base integer (a) is raised

More information

Laboratory 7 Measurement on Strain & Force. Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170

Laboratory 7 Measurement on Strain & Force. Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Laboratory 7 Measurement on Strain & Force Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Megan Ong Diana Wu Wong B01 Tuesday 11am May 17 th, 2015 Abstract:

More information

Statistical Analysis of Engineering Data The Bare Bones Edition. Precision, Bias, Accuracy, Measures of Precision, Propagation of Error

Statistical Analysis of Engineering Data The Bare Bones Edition. Precision, Bias, Accuracy, Measures of Precision, Propagation of Error Statistical Analysis of Engineering Data The Bare Bones Edition (I) Precision, Bias, Accuracy, Measures of Precision, Propagation of Error PRIOR TO DATA ACQUISITION ONE SHOULD CONSIDER: 1. The accuracy

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE 102 Engineering Computation Phillip Wong Error Analysis Accuracy vs. Precision Significant Figures Systematic and Random Errors Basic Error Analysis Physical measurements are never exact. Uncertainty

More information

Instrument types and performance characteristics

Instrument types and performance characteristics 2 Instrument types and performance characteristics 2.1 Review of instrument types Instruments can be subdivided into separate classes according to several criteria. These subclassifications are useful

More information

Applied Numerical Analysis Homework #3

Applied Numerical Analysis Homework #3 Applied Numerical Analysis Homework #3 Interpolation: Splines, Multiple dimensions, Radial Bases, Least-Squares Splines Question Consider a cubic spline interpolation of a set of data points, and derivatives

More information