Numerical simulation of dispersive waves

Size: px
Start display at page:

Download "Numerical simulation of dispersive waves"

Transcription

1 Numerical simulation of dispersive waves DENYS DUTYKH 1 Chargé de Recherche CNRS 1 LAMA, Université de Savoie Le Bourget-du-Lac, France Colloque EDP-Normandie DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 1 / 25

2 Acknowledgements Special thanks to: Frédéric Dias: Professor, ENS Cachan on leave to: University College Dublin Collaborators: Dimitrios Mitsotakis: Post-Doc, Paris-Sud, Orsay Theodoros Katsaounis: Assistant professor, Crete DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 2 / 25

3 Coastal hydrodynamics Physical motivation for this study Tsunami hazard estimation Harbour protection Ship generated waves Beach erosion by wave generated currents DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 3 / 25

4 Water wave problem - I Physical setting and assumptions z h() (, t) H(, t) O Physical assumptions: Fluid is perfect: Re = Flow is incompressible: u =... and irrotational: ω = u = Free surface is a graph z = (, t) Above free surface there is void DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 4 / 25

5 Water wave problem - II Mathematical setting the governing equations Continuity equation: u = ( φ) = φ = 2 φ+ 2 zz φ =, (, z) Ω [ h,] Free surface kinematic condition: t + φ z φ =, z = (, t) Free surface dynamic condition (free surface isobarity): t φ+ 1 2 φ ( zφ) 2 + g =, z = (, t) Bottom kinematic condition: φ h+ z φ =, z = h( ) DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 5 / 25

6 Dispersive long wave models Boussinesq-type equations Long wave (Boussinesq) scaling: Nonlinearity: ε := a h 1 Dispersion: µ 2 := ( h l ) 2 1 Stokes-Ursell number: S := ε µ 2 1 BCS (22); DL et al. (25): T = O( 1 ε ) t + u +ε(u) +ε[au b t ] = u t + +εuu +ε[c du t ] = DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 6 / 25

7 Conservative form of governing equations Flat bottom 1D case Boussinesq equations: (I D)v t +[F(v)] +[G(v )] = Conservative variables: v := (, u) Advective flu: F(v) = ( (1+)u, u2) Elliptic operator: I D = diag(1 b 2, 1 d 2 ) Dispersion: G(v ) = ( au, c ) Reference: D. Dutykh, T. Katsaounis, D. Mitsotakis. Finite volume schemes for dispersive wave propagation and runup. Submitted DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 7 / 25

8 Finite volume schemes for dispersive waves Ref: Dutykh, Katsaounis, Mitsotakis (hal ) (I D)v t +[F(v)] +[G(v )] = Advective flues: m-flu, KT, FVCF Reconstructions: TVD MUSCL2, UNO2, WENO3 Elliptic operator: 2nd or 4th order FD: (I D)v v i 1 + 1v i + v i+1 (b, d) v i+1 2v i + v i Dispersion: Centered flu: G m i+ 1 2 = (a, c) v(2) i + v (2) i+1, G lm 2 i+ 1 2 Time stepping: Eplicit SSP-RK2, SSP-RK3 v (2),L + v (2),R i+ = (a, c) 1 i DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 8 / 25

9 Solitary wave propagation Convergence tests for Bona-Smith system Bona-Smith system (we take θ 2 = 8 1 ): t + u +(u) 3θ2 1 6 t =, u t + + uu + 2 3θ2 3 3θ2 1 6 u t =. Eact solitary wave solution: (ξ) = sech 2 (λξ), u(ξ) = B(ξ), ξ := c s t = 9 2 θ2 7/9 1 θ 2, c s = 4(θ 2 2/3) 2(1 θ 2 )(θ 2 1/3) Ivariants: mass conservation I = (, t) d R ( I 1 = 2 (, t)+(1+(, t))u 2 (, t) c(, 2 t) au 2 (, t) ) d R DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 9 / 25

10 Convergence test-cases - I Numerical results on the solitary wave propagation ( ) 1/2 Eh 2 (k) = Uk h / U h, U k h = Ui k 2, Eh (k) = U k h, / U h,, U k h, = ma U k i i, i Rate(Eh 2) Rate(E h ) Rate(Eh 2) Rate(E h ) Table: m-flu Table: MUSCL2 MinMod DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 1 / 25

11 Convergence test-cases - II Invariants preservation Numerical parameters: [ 5, 5], T = 2, =.1, CFL =.5; = 1 2 Mass conservation: I h = U h, I h CF UNO2 CF TVD2 average t (a) -amplitude 1.2 CF UNO2 CF TVD2 average t (b) I 1 invariant DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 11 / 25

12 Head-on collision of solitary waves Comparison with eperimental data Comparison among following models: Eperimental data BBM-BBM system Bona-Smith system (θ 2 = 9 11 ) Numerical scheme: FVCF + UNO2 + SSP-RK3 Numerical parameters: [ 3, 3], =.5, CFL =.2 Reference: W. Craig, Ph. Guyenne, J. Hammack, D. Henderson, C. Sulem. Solitary water wave interactions. Phys. Fluids, 26 DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 12 / 25

13 Head-on collision eperiment Comparison with eperimental data by D. Henderson Bona Smith θ 2 =9/11 BBM BBM Eperimental data Figure: t = s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

14 Head-on collision eperiment Comparison with eperimental data by D. Henderson Bona Smith θ 2 =9/11 BBM BBM Eperimental data Figure: t = s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

15 Head-on collision eperiment Comparison with eperimental data by D. Henderson Bona Smith θ 2 =9/11 BBM BBM Eperimental data Figure: t = s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

16 Head-on collision eperiment Comparison with eperimental data by D. Henderson Bona Smith θ 2 =9/11 BBM BBM Eperimental data Figure: t = s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

17 Head-on collision eperiment Comparison with eperimental data by D. Henderson Bona Smith θ 2 =9/11 BBM BBM Eperimental data Figure: t = s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

18 Head-on collision eperiment Comparison with eperimental data by D. Henderson Bona Smith θ 2 =9/11 BBM BBM Eperimental data Figure: t = s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

19 Head-on collision eperiment Comparison with eperimental data by D. Henderson Bona Smith θ 2 =9/11 BBM BBM Eperimental data Figure: t = s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

20 Head-on collision eperiment Comparison with eperimental data by D. Henderson Bona Smith θ 2 =9/11 BBM BBM Eperimental data Figure: t = s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 13 / 25

21 Further numerical eperiments Additional test-cases: Overtaking solitary waves collision Dispersive shock wave formation (conservation of invariants, etc.) t= t=2 Reference: D. Dutykh, T. Katsaounis, D. Mitsotakis. Finite volume schemes for dispersive wave propagation and runup. Submitted DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 14 / 25

22 Dispersive wave runup computation Numerically stiff and tricky problem P. Madsen et al. (1997): However, to make this technique [slot technique] operational in connection with Boussinesq type models a couple of problems call for special attention. [...] Firstly the Boussinesq terms are switched off at the still water shoreline, where their relative importance is etremely small anyway. Hence in this region the equations simplify to the nonlinear shallow water equations. G. Belotti & M. Brocchini (22): In our attempt to use these equations from intermediate waters up to the shoreline we run into numerical troubles when reaching the run-up region, i.e. >. These problems were essentially related to numerical instabilities due to the uncontrolled growth of the dispersive contributions (i.e. O(µ 2 )-terms). DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 15 / 25

23 Boussinesq-type equations for non-flat bottom The celebrated Peregrine system (1967) Peregrine system in its original form: t + ( (h+)u ) =, u t + uu + g h 2 (hu) t + h2 6 u t = Reference: D.H. Peregrine. Long waves on a beach. JFM, 1967 Vertical translations (group G 5, Benjamin & Olver (1982)): z z+d, d, h h+d, u u, This symmetry is broken, only H = h+ remains invariant DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 16 / 25

24 Peregrine system invariantization Invariantization under vertical translations + conservative form of equations Pre-conservative form: H t +(Hu) =, (Hu) t + ( εhu ε H2) µ2( Hh 2 (hu) t Hh2 ) 6 u t Using h = H +O(ε), H t = O(ε), Q = Hu: = 1 ε Hh H t + Q = ( ( H2 1 6 HH ) 1 Q 3 H2 Q 1 ) ( Q 2 3 HH Q + t H +g 2 H2) = ghh New system is asymptotically equivalent to the original one Symmetry G 5 is recovered Dispersive terms naturally near the shoreline DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 17 / 25

25 m-peregrine system discretization With finite volumes method [D(v)] t +[F(v)] = S(v) Advection: KT, FVCF + MUSCL2, UNO2 Dispersion: 2nd order FD ( ) H D(v) = ( H2 1 6 HH )Q 1 3 HH Q H2 3 Q Source terms: Well-balanced hydrostatic reconstruction Time stepping: Eplicit SSP-RK3 Reference: D. Dutykh, T. Katsaounis, D. Mitsotakis. Finite volume schemes for dispersive wave propagation and runup. Submitted DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 18 / 25

26 W.M. Keck Laboratory of Hydraulics, Caltech PhD thesis of Costas Synolakis DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 19 / 25

27 Solitary wave runup on a plane beach Eperiments by C. Synolakis (1987), Caltech D H β Bottom shape: Initial condition: h() = { tanβ, cotβ, 1, > cotβ, () = A s sech 2 () (λ( X )), u () = c s D + () DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 2 / 25

28 Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 2 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

29 Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 26 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

30 Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 32 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

31 Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 38 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

32 Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 44 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

33 Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 5 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

34 Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 56 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

35 Solitary wave runup: A s =.4 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 62 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 21 / 25

36 Solitary wave runup: A s =.28 DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 22 / 25

37 Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 1 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

38 Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 15 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

39 Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 2 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

40 Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 25 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

41 Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 3 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

42 Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 45 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

43 Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 55 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

44 Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 6 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

45 Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 7 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

46 Solitary wave runup: A s =.28 Data from C. Synolakis (1987), β = Boussinesq (CF UNO2) Boussinesq (KT UNO2) Shallow water (CF UNO2) Eperimental data Figure: t = 8 s DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 23 / 25

47 Conclusions Several schemes to discretize dispersive wave equations have been proposed FVs are sufficiently accurate for solitons dynamics Dispersive effects are beneficial for breaking wave description DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 24 / 25

48 Thank you for your attention! dutykh/ DENYS DUTYKH (CNRS LAMA) Dispersive waves EDP Normandie (Caen) 25 / 25

Resonant wave run-up on sloping beaches and vertical walls

Resonant wave run-up on sloping beaches and vertical walls Resonant wave run-up on sloping beaches and vertical walls DENYS DUTYKH 1 Chargé de Recherche CNRS 1 Université de Savoie Mont Blanc Laboratoire de Mathématiques (LAMA) 73376 Le Bourget-du-Lac France Seminar:

More information

On the nonlinear dynamics of the traveling-wave solutions of the Serre system

On the nonlinear dynamics of the traveling-wave solutions of the Serre system On the nonlinear dynamics of the traveling-wave solutions of the Serre system Dimitrios Mitsotakis a,, Denys Dutykh b, John Carter c a Victoria University of Wellington, School of Mathematics, Statistics

More information

On weakly singular and fully nonlinear travelling shallow capillary gravity waves in the critical regime

On weakly singular and fully nonlinear travelling shallow capillary gravity waves in the critical regime arxiv:1611.115v3 [physics.class-ph] 8 Mar 17 Dimitrios Mitsotakis Victoria University of Wellington, New Zealand Denys Dutykh CNRS, Université Savoie Mont Blanc, France Aydar Assylbekuly Khoja Akhmet Yassawi

More information

Modified Serre Green Naghdi equations with improved or without dispersion

Modified Serre Green Naghdi equations with improved or without dispersion Modified Serre Green Naghdi equations with improved or without dispersion DIDIER CLAMOND Université Côte d Azur Laboratoire J. A. Dieudonné Parc Valrose, 06108 Nice cedex 2, France didier.clamond@gmail.com

More information

Algebraic geometry for shallow capillary-gravity waves

Algebraic geometry for shallow capillary-gravity waves Algebraic geometry for shallow capillary-gravity waves DENYS DUTYKH 1 Chargé de Recherche CNRS 1 Université de Savoie Laboratoire de Mathématiques (LAMA) 73376 Le Bourget-du-Lac France Seminar of Computational

More information

Mathematical modelling of tsunami wave generation

Mathematical modelling of tsunami wave generation Mathematical modelling of tsunami wave generation DENYS DUTYKH 1 Chargé de Recherche CNRS 1 CNRS-LAMA, Université de Savoie Campus Scientifique 73376 Le Bourget-du-Lac, France Institut Jean le Rond d Alembert

More information

RELAXED VARIATIONAL PRINCIPLE FOR WATER WAVE MODELING

RELAXED VARIATIONAL PRINCIPLE FOR WATER WAVE MODELING RELAXED VARIATIONAL PRINCIPLE FOR WATER WAVE MODELING DENYS DUTYKH 1 Senior Research Fellow UCD & Chargé de Recherche CNRS 1 University College Dublin School of Mathematical Sciences Workshop on Ocean

More information

ON THE GALERKIN / FINITE-ELEMENT METHOD FOR THE SERRE EQUATIONS

ON THE GALERKIN / FINITE-ELEMENT METHOD FOR THE SERRE EQUATIONS ON THE GALERKIN / FINITE-ELEMENT METHOD FOR THE SERRE EQUATIONS DIMITRIOS MITSOTAKIS, BOAZ ILAN, AND DENYS DUTYKH hal-83464, version 2-22 Sep 23 Abstract. A highly accurate numerical scheme is presented

More information

Numerical simulation of a solitonic gas in KdV and KdV-BBM equations

Numerical simulation of a solitonic gas in KdV and KdV-BBM equations Numerical simulation of a solitonic gas in KdV and KdV-BBM equations Denys Dutykh, Efim Pelinovsky To cite this version: Denys Dutykh, Efim Pelinovsky. Numerical simulation of a solitonic gas in KdV and

More information

Well-balanced shock-capturing hybrid finite volume-finite difference schemes for Boussinesq-type models

Well-balanced shock-capturing hybrid finite volume-finite difference schemes for Boussinesq-type models NUMAN 2010 Well-balanced shock-capturing hybrid finite volume-finite difference schemes for Boussinesq-type models Maria Kazolea 1 Argiris I. Delis 2 1 Environmental Engineering Department, TUC, Greece

More information

Extreme wave runup on a vertical cliff

Extreme wave runup on a vertical cliff GEOPHYSICAL RESEARCH LETTERS, VOL., 338 33, doi:./grl.5637, 3 Etreme wave runup on a vertical cliff Francesco Carbone, Denys Dutykh,, John M. Dudley, 3 and Frédéric Dias, Received May 3; accepted 5 June

More information

On the Whitham Equation

On the Whitham Equation On the Whitham Equation Henrik Kalisch Department of Mathematics University of Bergen, Norway Joint work with: Handan Borluk, Denys Dutykh, Mats Ehrnström, Daulet Moldabayev, David Nicholls Research partially

More information

NUMERICAL INVESTIGATION OF THE DECAY RATE OF SOLUTIONS TO MODELS FOR WATER WAVES WITH NONLOCAL VISCOSITY

NUMERICAL INVESTIGATION OF THE DECAY RATE OF SOLUTIONS TO MODELS FOR WATER WAVES WITH NONLOCAL VISCOSITY INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 1, Number 2, Pages 333 349 c 213 Institute for Scientific Computing and Information NUMERICAL INVESTIGATION OF THE DECAY RATE OF SOLUTIONS

More information

Advances and perspectives in numerical modelling using Serre-Green Naghdi equations. Philippe Bonneton

Advances and perspectives in numerical modelling using Serre-Green Naghdi equations. Philippe Bonneton Long wave & run-up workshop Santander 2012 Advances and perspectives in numerical modelling using Serre-Green Naghdi equations Philippe Bonneton EPOC, METHYS team, Bordeaux Univ., CNRS d0 µ = λ 0 2 small

More information

NUMERICAL SIMULATION OF LONG WAVE RUNUP ON A SLOPING BEACH*

NUMERICAL SIMULATION OF LONG WAVE RUNUP ON A SLOPING BEACH* NUMERICAL SIMULATION OF LONG WAVE RUNUP ON A SLOPING BEACH* * presented at Long Waves Symposium (in parallel with the XXX IAHR Congress) August 5-7, 003, AUTh, Thessaloniki, Greece. by HAKAN I. TARMAN

More information

EXTREME WAVE RUN-UP ON A VERTICAL CLIFF

EXTREME WAVE RUN-UP ON A VERTICAL CLIFF EXTREME WAVE RUN-UP ON A VERTICAL CLIFF FRANCESCO CARBONE, DENYS DUTYKH, JOHN M. DUDLEY, AND FRÉDÉRIC DIAS hal-799118, version 3-31 May 13 Abstract. Wave impact and run-up onto vertical obstacles are among

More information

Tsunami wave impact on walls & beaches. Jannette B. Frandsen

Tsunami wave impact on walls & beaches. Jannette B. Frandsen Tsunami wave impact on walls & beaches Jannette B. Frandsen http://lhe.ete.inrs.ca 27 Mar. 2014 Tsunami wave impact on walls & beaches Numerical predictions Experiments Small scale; Large scale. Numerical

More information

Energy of tsunami waves generated by bottom motion arxiv: v2 [physics.ao-ph] 23 Oct 2008

Energy of tsunami waves generated by bottom motion arxiv: v2 [physics.ao-ph] 23 Oct 2008 Energy of tsunami waves generated by bottom motion arxiv:0808.2861v2 [physics.ao-ph] 23 Oct 2008 By Denys Dutykh, Frédéric Dias CMLA, ENS Cachan, CNRS, PRES UniverSud, 61, avenue du President Wilson, 94230

More information

arxiv: v1 [physics.flu-dyn] 30 Oct 2014

arxiv: v1 [physics.flu-dyn] 30 Oct 2014 The Equation as a Model for Surface Water Waves arxiv:4.899v physics.flu-dyn] 3 Oct 4 Daulet Moldabayev, Henrik Kalisch Department of Mathematics, University of Bergen Postbox 78, 5 Bergen, Norway Denys

More information

Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations

Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations H. A. Erbay Department of Natural and Mathematical Sciences, Faculty of Engineering, Ozyegin University, Cekmekoy 34794,

More information

Shoaling of Solitary Waves

Shoaling of Solitary Waves Shoaling of Solitary Waves by Harry Yeh & Jeffrey Knowles School of Civil & Construction Engineering Oregon State University Water Waves, ICERM, Brown U., April 2017 Motivation The 2011 Heisei Tsunami

More information

arxiv: v1 [physics.flu-dyn] 14 Jun 2014

arxiv: v1 [physics.flu-dyn] 14 Jun 2014 Observation of the Inverse Energy Cascade in the modified Korteweg de Vries Equation D. Dutykh and E. Tobisch LAMA, UMR 5127 CNRS, Université de Savoie, Campus Scientifique, 73376 Le Bourget-du-Lac Cedex,

More information

A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system

A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system Dimitrios Mitsotakis, Costas Synolakis, Mark Mcguinness To cite this version: Dimitrios Mitsotakis,

More information

The Whitham equation with surface tension

The Whitham equation with surface tension The equation with surface tension Evgueni Dinvay, Daulet Moldabayev, Denys Dutykh, Henrik Kalisch To cite this version: Evgueni Dinvay, Daulet Moldabayev, Denys Dutykh, Henrik Kalisch. The equation with

More information

3 where g is gravity. S o and S f are bed slope and friction slope at x and y direction, respectively. Here, friction slope is calculated based on Man

3 where g is gravity. S o and S f are bed slope and friction slope at x and y direction, respectively. Here, friction slope is calculated based on Man 東北地域災害科学研究第 48 巻 () 3 D FORCE MUSCL SCHEME FOR SIMULATING BREAKING SOLITARY WAVE RUNUP Mohammad Bagus Adityawan * Hitoshi Tanaka ABSTRACT Breaking wave simulation using depth averaged based model, i.e.

More information

Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations

Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations Euro. Jnl of Applied Mathematics: page 1 of 7 c Cambridge University Press 13 doi:1.117/s95795131 1 1 3 5 7 9 1 11 1 13 1 15 Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations

More information

Finite Volume Schemes: an introduction

Finite Volume Schemes: an introduction Finite Volume Schemes: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola di dottorato

More information

Shock Waves & Solitons

Shock Waves & Solitons 1 / 1 Shock Waves & Solitons PDE Waves; Oft-Left-Out; CFD to Follow Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support from

More information

Modeling and simulation of bedload transport with viscous effects

Modeling and simulation of bedload transport with viscous effects Introduction Modeling and simulation of bedload transport with viscous effects E. Audusse, L. Boittin, M. Parisot, J. Sainte-Marie Project-team ANGE, Inria; CEREMA; LJLL, UPMC Université Paris VI; UMR

More information

Tsunami Load Determination for On-Shore Structures. Harry Yeh Oregon State University

Tsunami Load Determination for On-Shore Structures. Harry Yeh Oregon State University Tsunami Load Determination for On-Shore Structures Harry Yeh Oregon State University Building survival Vertical Evacuation to Tsunami Shelters How can we estimate the tsunami forces on such onshore structures?

More information

NUMERICAL SOLITARY WAVE INTERACTION: THE ORDER OF THE INELASTIC EFFECT

NUMERICAL SOLITARY WAVE INTERACTION: THE ORDER OF THE INELASTIC EFFECT ANZIAM J. 44(2002), 95 102 NUMERICAL SOLITARY WAVE INTERACTION: THE ORDER OF THE INELASTIC EFFECT T. R. MARCHANT 1 (Received 4 April, 2000) Abstract Solitary wave interaction is examined using an extended

More information

BBM equation with non-constant coefficients

BBM equation with non-constant coefficients Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ Research Article Turk J Math (3) 37: 65 664 c TÜBİTAK doi:.396/mat-3-35 BBM equation with non-constant coefficients Amutha SENTHILKUMAR

More information

Families of steady fully nonlinear shallow capillary-gravity waves

Families of steady fully nonlinear shallow capillary-gravity waves Families of steady fully nonlinear shallow capillary-gravity waves DENYS DUTYKH 1 Chargé de Recherche CNRS 1 Université Savoie Mont Blanc Laboratoire de Mathématiques (LAMA) 73376 Le Bourget-du-Lac France

More information

Primary Results on Simulation of a New Kind Traveling Wave. of Permanent Form

Primary Results on Simulation of a New Kind Traveling Wave. of Permanent Form Primary Results on Simulation of a New Kind Traveling Wave of Permanent Form Min CHEN y Abstract This talk concerns the nonlinear dispersive waves in a water channel. Results from the study of a new version

More information

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the soliton p. 7 The soliton concept in physics p. 11 Linear

More information

Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations

Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations Denys Dutykh, Didier Clamond, Paul Milewski, Dimitrios Mitsotakis To cite this version: Denys Dutykh, Didier Clamond,

More information

Basics of surface wave simulation

Basics of surface wave simulation PASI Chile 2013 Basics of surface wave simulation L. Ridgway Scott Departments of Computer Science and Mathematics, Computation Institute, and Institute for Biophysical Dynamics, University of Chicago

More information

Modelling of Tsunami Waves

Modelling of Tsunami Waves MATEMATIKA, 2008, Volume 24, Number 2, 211 230 c Department of Mathematics, UTM. Modelling of Tsunami Waves 1 Nazeeruddin Yaacob, Norhafizah Md Sarif & 2 Zainal Abdul Aziz Department of Mathematics, Faculty

More information

Chapter 3. Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons.

Chapter 3. Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons. Chapter 3 Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons. 73 3.1 Introduction The study of linear and nonlinear wave propagation

More information

A Kinematic Conservation Law in Free Surface Flow

A Kinematic Conservation Law in Free Surface Flow A Kinematic Conservation Law in Free Surface Flow Sergey Gavrilyuk, Henrik Kalisch, Zahra Khorsand To cite this version: Sergey Gavrilyuk, Henrik Kalisch, Zahra Khorsand. A Kinematic Conservation Law in

More information

Painlevé Analysis, Lie Symmetries and Exact Solutions for Variable Coefficients Benjamin Bona Mahony Burger (BBMB) Equation

Painlevé Analysis, Lie Symmetries and Exact Solutions for Variable Coefficients Benjamin Bona Mahony Burger (BBMB) Equation Commun. Theor. Phys. 60 (2013) 175 182 Vol. 60, No. 2, August 15, 2013 Painlevé Analysis, Lie Symmetries and Exact Solutions for Variable Coefficients Benjamin Bona Mahony Burger (BBMB) Equation Vikas

More information

Violent Sloshing H.Bredmose M.Brocchini D.H.Peregrine L.Thais

Violent Sloshing H.Bredmose M.Brocchini D.H.Peregrine L.Thais Violent Sloshing H.Bredmose Technical University of Denmark, M.Brocchini University of Genoa, D.H.Peregrine School of Mathematics, University of Bristol, d.h.peregrine@bris.ac.uk L.Thais Université des

More information

Symmetry reductions and exact solutions for the Vakhnenko equation

Symmetry reductions and exact solutions for the Vakhnenko equation XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 1-5 septiembre 009 (pp. 1 6) Symmetry reductions and exact solutions for the Vakhnenko equation M.L.

More information

My doctoral research concentrated on elliptic quasilinear partial differential equations of the form

My doctoral research concentrated on elliptic quasilinear partial differential equations of the form 1 Introduction I am interested in applied analysis and computation of non-linear partial differential equations, primarily in systems that are motivated by the physics of fluid dynamics. My Ph.D. thesis

More information

Lecture 1: Water waves and Hamiltonian partial differential equations

Lecture 1: Water waves and Hamiltonian partial differential equations Lecture : Water waves and Hamiltonian partial differential equations Walter Craig Department of Mathematics & Statistics Waves in Flows Prague Summer School 208 Czech Academy of Science August 30 208 Outline...

More information

BOUSSINESQ-TYPE EQUATIONS WITH VARIABLE COEFFICIENTS FOR NARROW-BANDED WAVE PROPAGATION FROM ARBITRARY DEPTHS TO SHALLOW WATERS

BOUSSINESQ-TYPE EQUATIONS WITH VARIABLE COEFFICIENTS FOR NARROW-BANDED WAVE PROPAGATION FROM ARBITRARY DEPTHS TO SHALLOW WATERS BOUSSINESQ-TYPE EQUATIONS WITH VARIABLE COEFFICIENTS FOR NARROW-BANDED WAVE PROPAGATION FROM ARBITRARY DEPTHS TO SHALLOW WATERS Gonzalo Simarro 1, Alvaro Galan, Alejandro Orfila 3 A fully nonlinear Boussinessq-type

More information

is large when compared to the undisturbed water depth h, and that the Stokes

is large when compared to the undisturbed water depth h, and that the Stokes EXACT TRAVELING-WAVE SOLUTIONS TO BI-DIRECTIONAL WAVE EQUATIONS Min CHEN Department of Mathematics, Penn State University University Park, PA 1680 U.S.A. Abstract. In this paper, we present several systematic

More information

Maejo International Journal of Science and Technology

Maejo International Journal of Science and Technology Full Paper Maejo International Journal of Science and Technology ISSN 905-7873 Available online at www.mijst.mju.ac.th New eact travelling wave solutions of generalised sinh- ordon and ( + )-dimensional

More information

Exact Solutions of The Regularized Long-Wave Equation: The Hirota Direct Method Approach to Partially Integrable Equations

Exact Solutions of The Regularized Long-Wave Equation: The Hirota Direct Method Approach to Partially Integrable Equations Thai Journal of Mathematics Volume 5(2007) Number 2 : 273 279 www.math.science.cmu.ac.th/thaijournal Exact Solutions of The Regularized Long-Wave Equation: The Hirota Direct Method Approach to Partially

More information

NONLINEAR(PROPAGATION(OF(STORM(WAVES:( INFRAGRAVITY(WAVE(GENERATION(AND(DYNAMICS((

NONLINEAR(PROPAGATION(OF(STORM(WAVES:( INFRAGRAVITY(WAVE(GENERATION(AND(DYNAMICS(( PanQAmericanAdvancedStudiesInsLtute TheScienceofPredicLngandUnderstandingTsunamis,Storm SurgesandTidalPhenomena BostonUniversity MechanicalEngineering NONLINEARPROPAGATIONOFSTORMWAVES: INFRAGRAVITYWAVEGENERATIONANDDYNAMICS

More information

Tsunami modeling. Philip L-F. Liu Class of 1912 Professor School of Civil and Environmental Engineering Cornell University Ithaca, NY USA

Tsunami modeling. Philip L-F. Liu Class of 1912 Professor School of Civil and Environmental Engineering Cornell University Ithaca, NY USA Tsunami modeling Philip L-F. Liu Class of 1912 Professor School of Civil and Environmental Engineering Cornell University Ithaca, NY USA PASI 2013: Tsunamis and storm surges Valparaiso, Chile January 2-13,

More information

Breather propagation in shallow water. 1 Introduction. 2 Mathematical model

Breather propagation in shallow water. 1 Introduction. 2 Mathematical model Breather propagation in shallow water O. Kimmoun 1, H.C. Hsu 2, N. Homann 3,4, A. Chabchoub 5, M.S. Li 2 & Y.Y. Chen 2 1 Aix-Marseille University, CNRS, Centrale Marseille, IRPHE, Marseille, France 2 Tainan

More information

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves p. 1/1 Model Equation, Stability and Dynamics for Wavepacket Solitary Waves Paul Milewski Mathematics, UW-Madison Collaborator: Ben Akers, PhD student p. 2/1 Summary Localized solitary waves exist in the

More information

Non-Hydrostatic Pressure Shallow Flows: GPU Implementation Using Finite Volume and Finite Difference Scheme.

Non-Hydrostatic Pressure Shallow Flows: GPU Implementation Using Finite Volume and Finite Difference Scheme. arxiv:1706.04551v [math.na] 1 Jul 018 Non-Hydrostatic Pressure Shallow Flows: GPU Implementation Using Finite Volume and Finite Difference Scheme. C. Escalante 1 T. Morales de Luna and M.J. Castro 1 1

More information

B O S Z. - Boussinesq Ocean & Surf Zone model - International Research Institute of Disaster Science (IRIDeS), Tohoku University, JAPAN

B O S Z. - Boussinesq Ocean & Surf Zone model - International Research Institute of Disaster Science (IRIDeS), Tohoku University, JAPAN B O S Z - Boussinesq Ocean & Surf Zone model - Volker Roeber 1 Troy W. Heitmann 2, Kwok Fai Cheung 2, Gabriel C. David 3, Jeremy D. Bricker 1 1 International Research Institute of Disaster Science (IRIDeS),

More information

arxiv: v1 [math.na] 27 Jun 2017

arxiv: v1 [math.na] 27 Jun 2017 Behaviour of the Serre Equations in the Presence of Steep Gradients Revisited J.P.A. Pitt a,, C. Zoppou a, S.G. Roberts a arxiv:706.08637v [math.na] 27 Jun 207 a Mathematical Sciences Institute, Australian

More information

arxiv: v1 [physics.flu-dyn] 22 Jan 2016

arxiv: v1 [physics.flu-dyn] 22 Jan 2016 arxiv:1601.068v1 [physics.flu-dyn] Jan 016 Solitary wave shoaling and breaking in a regularized Boussinesq system Amutha Senthilkumar Department of Mathematics, University of Bergen Postbox 7803, 500 Bergen,

More information

Visco-potential free-surface flows and long wave modelling

Visco-potential free-surface flows and long wave modelling Visco-potential free-surface flows and long wave modelling Denys Dutykh To cite this version: Denys Dutykh. Visco-potential free-surface flows and long wave modelling. European Journal of Mechanics - B/Fluids,

More information

The Force of a Tsunami on a Wave Energy Converter

The Force of a Tsunami on a Wave Energy Converter The Force of a Tsunami on a Wave Energy Converter Laura O Brien, Paul Christodoulides, Emiliano Renzi, Denys Dutykh, Frédéric Dias To cite this version: Laura O Brien, Paul Christodoulides, Emiliano Renzi,

More information

Global well-posedness and decay for the viscous surface wave problem without surface tension

Global well-posedness and decay for the viscous surface wave problem without surface tension Global well-posedness and decay for the viscous surface wave problem without surface tension Ian Tice (joint work with Yan Guo) Université Paris-Est Créteil Laboratoire d Analyse et de Mathématiques Appliquées

More information

Recovering water wave elevation from pressure measurements

Recovering water wave elevation from pressure measurements Recovering water wave elevation from pressure measurements Philippe Bonneton, David Lannes To cite this version: Philippe Bonneton, David Lannes. Recovering water wave elevation from pressure measurements.

More information

NATURAL CONVECTION IN INCLINED RECTANGULAR POROUS CAVITY SUBJECT TO HEAT FLUXES ON THE LONG SIDE WALLS

NATURAL CONVECTION IN INCLINED RECTANGULAR POROUS CAVITY SUBJECT TO HEAT FLUXES ON THE LONG SIDE WALLS Proceedings of 4 th ICCHMT May 7 0, 005, Paris-Cachan, FRANCE ICCHMT 05-53 NATURAL CONVECTION IN INCLINED RECTANGULAR POROUS CAVITY SUBJECT TO HEAT FLUXES ON THE LONG SIDE WALLS L. Storesletten*, D.A.S.

More information

Kelvin-Helmholtz instabilities in shallow water

Kelvin-Helmholtz instabilities in shallow water Kelvin-Helmholtz instabilities in shallow water Propagation of large amplitude, long wavelength, internal waves Vincent Duchêne 1 Samer Israwi 2 Raafat Talhouk 2 1 IRMAR, Univ. Rennes 1 UMR 6625 2 Faculté

More information

Research Article Linearized Shallow-water Wave Theory of Tsunami Generation and Propagation by Three-dimensional Stochastic Seismic Bottom Topography

Research Article Linearized Shallow-water Wave Theory of Tsunami Generation and Propagation by Three-dimensional Stochastic Seismic Bottom Topography Research Journal of Applied Sciences, Engineering and Technology 7(19): 4035-4055, 2014 DOI:10.19026/rjaset.7.765 ISSN: 2040-7459; e-issn: 2040-7467 2014 Maxwell Scientific Publication Corp. Submitted:

More information

Waves on deep water, II Lecture 14

Waves on deep water, II Lecture 14 Waves on deep water, II Lecture 14 Main question: Are there stable wave patterns that propagate with permanent form (or nearly so) on deep water? Main approximate model: i" # A + $" % 2 A + &" ' 2 A +

More information

Viscous non-linear theory of Richtmyer-Meshkov Instability. Abstract

Viscous non-linear theory of Richtmyer-Meshkov Instability. Abstract Viscous non-linear theory of Richtmyer-Meshkov Instability Pierre Carles and Stéphane Popinet Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie, Case 162, 4 place Jussieu, 75252

More information

A short tutorial on optical rogue waves

A short tutorial on optical rogue waves A short tutorial on optical rogue waves John M Dudley Institut FEMTO-ST CNRS-Université de Franche-Comté Besançon, France Experiments in collaboration with the group of Guy Millot Institut Carnot de Bourgogne

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Gennady El 1, Roger Grimshaw 1 and Noel Smyth 2 1 Loughborough University, UK, 2 University of Edinburgh, UK

More information

Procedia Computer Science

Procedia Computer Science Procedia Computer Science 1 (01) 645 654 Procedia Computer Science 00 (009) 000000 Procedia Computer Science www.elsevier.com/locate/procedia www.elsevier.com/locate/procedia International Conference on

More information

On the leapfrogging phenomenon in fluid mechanics

On the leapfrogging phenomenon in fluid mechanics On the leapfrogging phenomenon in fluid mechanics Didier Smets Université Pierre et Marie Curie - Paris Based on works with Robert L. Jerrard U. of Toronto) CIRM, Luminy, June 27th 2016 1 / 22 Single vortex

More information

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

in Bounded Domains Ariane Trescases CMLA, ENS Cachan CMLA, ENS Cachan Joint work with Yan GUO, Chanwoo KIM and Daniela TONON International Conference on Nonlinear Analysis: Boundary Phenomena for Evolutionnary PDE Academia Sinica December 21, 214 Outline

More information

Exact solutions through symmetry reductions for a new integrable equation

Exact solutions through symmetry reductions for a new integrable equation Exact solutions through symmetry reductions for a new integrable equation MARIA LUZ GANDARIAS University of Cádiz Department of Mathematics PO.BOX, 1151 Puerto Real, Cádiz SPAIN marialuz.gandarias@uca.es

More information

Recovering water wave elevation from pressure measurements

Recovering water wave elevation from pressure measurements J. Fluid Mech. 207, vol. 833, pp. 399 429. c Cambridge University Press 207 doi:0.07/jfm.207.666 399 Recovering water wave elevation from pressure measurements P. Bonneton, and D. Lannes 2 University of

More information

Fission of a longitudinal strain solitary wave in a delaminated bar

Fission of a longitudinal strain solitary wave in a delaminated bar Fission of a longitudinal strain solitary wave in a delaminated bar Karima Khusnutdinova Department of Mathematical Sciences, Loughborough University, UK K.Khusnutdinova@lboro.ac.uk and G.V. Dreiden, A.M.

More information

On the Equation of Fourth Order with. Quadratic Nonlinearity

On the Equation of Fourth Order with. Quadratic Nonlinearity International Journal of Mathematical Analysis Vol. 9, 015, no. 5, 659-666 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.5109 On the Equation of Fourth Order with Quadratic Nonlinearity

More information

Mechanical Balance Laws for Boussinesq Models of Surface Water Waves

Mechanical Balance Laws for Boussinesq Models of Surface Water Waves J Nonlinear Sci 1) :371 398 DOI 1.17/s33-11-911- Mechanical Balance Laws for Boussinesq Models of Surface Water Waves Alfatih Ali Henrik Kalisch Received: 8 March 11 / Accepted: 11 December 11 / Published

More information

Available online at J. Math. Comput. Sci. 2 (2012), No. 1, ISSN:

Available online at   J. Math. Comput. Sci. 2 (2012), No. 1, ISSN: Available online at http://scik.org J. Math. Comput. Sci. 2 (2012), No. 1, 15-22 ISSN: 1927-5307 BRIGHT AND DARK SOLITON SOLUTIONS TO THE OSTROVSKY-BENJAMIN-BONA-MAHONY (OS-BBM) EQUATION MARWAN ALQURAN

More information

Vortex knots dynamics and momenta of a tangle:

Vortex knots dynamics and momenta of a tangle: Lecture 2 Vortex knots dynamics and momenta of a tangle: - Localized Induction Approximation (LIA) and Non-Linear Schrödinger (NLS) equation - Integrable vortex dynamics and LIA hierarchy - Torus knot

More information

Head-on collisions of electrostatic solitons in nonthermal plasmas

Head-on collisions of electrostatic solitons in nonthermal plasmas Head-on collisions of electrostatic solitons in nonthermal plasmas Frank Verheest 1,2, Manfred A Hellberg 2 and Willy A. Hereman 3 1 Sterrenkundig Observatorium, Universiteit Gent, Belgium 2 School of

More information

Spectral dynamics of modulation instability described using Akhmediev breather theory

Spectral dynamics of modulation instability described using Akhmediev breather theory Spectral dynamics of modulation instability described using Akhmediev breather theory Kamal Hammani, Benjamin Wetzel, Bertrand Kibler, Julien Fatome, Christophe Finot, Guy Millot, Nail Akhmediev, John

More information

Pattern Formation and Chaos

Pattern Formation and Chaos Developments in Experimental Pattern Formation - Isaac Newton Institute, 2005 1 Pattern Formation and Chaos Insights from Large Scale Numerical Simulations of Rayleigh-Bénard Convection Collaborators:

More information

arxiv: v2 [math.ap] 18 Dec 2012

arxiv: v2 [math.ap] 18 Dec 2012 Decoupled and unidirectional asymptotic models for the propagation of internal waves Vincent Duchêne arxiv:08.6394v [math.ap] 8 Dec 0 October 3, 08 Abstract We study the relevance of various scalar equations,

More information

Strongly nonlinear long gravity waves in uniform shear flows

Strongly nonlinear long gravity waves in uniform shear flows Strongly nonlinear long gravity waves in uniform shear flows Wooyoung Choi Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA Received 14 January

More information

Laser wakefield electron acceleration to multi-gev energies

Laser wakefield electron acceleration to multi-gev energies Laser wakefield electron acceleration to multi-gev energies N.E. Andreev Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia Moscow Institute of Physics and Technology, Russia

More information

The shallow water equations Lecture 8. (photo due to Clark Little /SWNS)

The shallow water equations Lecture 8. (photo due to Clark Little /SWNS) The shallow water equations Lecture 8 (photo due to Clark Little /SWNS) The shallow water equations This lecture: 1) Derive the shallow water equations 2) Their mathematical structure 3) Some consequences

More information

Mathematical and computational modeling for the generation and propagation of waves in marine and coastal environments

Mathematical and computational modeling for the generation and propagation of waves in marine and coastal environments Mathematical and computational modeling for the generation and propagation of waves in marine and coastal environments Maria Kazolea School of Environmental Engineering Technical University of Crete September

More information

Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas

Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas S. Mahmood Theoretical Plasma Physics Division, PINSTECH Islamabad Collaborators: H. Saleem National Center for Physics,

More information

The VOLNA code for the numerical modelling of tsunami waves: generation, propagation and inundation

The VOLNA code for the numerical modelling of tsunami waves: generation, propagation and inundation The VOLNA code for the numerical modelling of tsunami waves: generation, propagation and inundation Denys Dutykh, Raphaël Poncet, Frédéric Dias To cite this version: Denys Dutykh, Raphaël Poncet, Frédéric

More information

Convection. U y. U u(y) T s. T y

Convection. U y. U u(y) T s. T y Convection Heat transfer in the presence of a fluid motion on a solid surface Various mechanisms at play in the fluid: - advection physical transport of the fluid - diffusion conduction in the fluid -

More information

Stability and Shoaling in the Serre Equations. John D. Carter. March 23, Joint work with Rodrigo Cienfuegos.

Stability and Shoaling in the Serre Equations. John D. Carter. March 23, Joint work with Rodrigo Cienfuegos. March 23, 2009 Joint work with Rodrigo Cienfuegos. Outline The Serre equations I. Derivation II. Properties III. Solutions IV. Solution stability V. Wave shoaling Derivation of the Serre Equations Derivation

More information

Emmanuel PLAUT. Example of an hypertext Report written with L A TEX. This is a public document.

Emmanuel PLAUT. Example of an hypertext Report written with L A TEX. This is a public document. Emmanuel PLAUT Example of an hypertext Report written with L A TEX This is a public document. Contents Introduction 3 1 Presentation of the corporation 4 1.1 UL............................................

More information

Asymptotic models for internal waves in Oceanography

Asymptotic models for internal waves in Oceanography Asymptotic models for internal waves in Oceanography Vincent Duchêne École Normale Supérieure de Paris Applied Mathematics Colloquium APAM February 01, 2010 Internal waves in ocean The large picture Figure:

More information

FullSWOF a software for overland flow simulation

FullSWOF a software for overland flow simulation FullSWOF a software for overland flow simulation O. Delestre, S. Cordier, F. Darboux, M. Du, F. James, C. Laguerre, C. Lucas & O. Planchon LJA Dieudonn e & Polytech Nice Sophia SIMHYDRO 2012 Sophia-Antipolis

More information

NEW EXACT SOLUTIONS OF SOME NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS VIA THE IMPROVED EXP-FUNCTION METHOD

NEW EXACT SOLUTIONS OF SOME NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS VIA THE IMPROVED EXP-FUNCTION METHOD www.arpapress.com/volumes/vol8issue2/ijrras_8_2_04.pdf NEW EXACT SOLUTIONS OF SOME NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS VIA THE IMPROVED EXP-FUNCTION METHOD M. F. El-Sabbagh, R. Zait and R. M. Abdelazeem

More information

Quasi-periodic solutions of the 2D Euler equation

Quasi-periodic solutions of the 2D Euler equation Quasi-periodic solutions of the 2D Euler equation Nicolas Crouseilles, Erwan Faou To cite this version: Nicolas Crouseilles, Erwan Faou. Quasi-periodic solutions of the 2D Euler equation. Asymptotic Analysis,

More information

Elliptic Solutions and Solitary Waves of a Higher Order KdV-BBM Long Wave Equation

Elliptic Solutions and Solitary Waves of a Higher Order KdV-BBM Long Wave Equation Publications 8-15-2017 Elliptic Solutions and Solitary Waves of a Higher Order KdV-BBM Long Wave Equation Stefan C. Mancas Embry-iddle Aeronautical University mancass@erau.edu onald Adams Embry-iddle Aeronautical

More information

FDM for wave equations

FDM for wave equations FDM for wave equations Consider the second order wave equation Some properties Existence & Uniqueness Wave speed finite!!! Dependence region Analytical solution in 1D Finite difference discretization Finite

More information

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Alexander Chesnokov Lavrentyev Institute of Hydrodynamics Novosibirsk, Russia chesnokov@hydro.nsc.ru July 14,

More information

Transformation of irregular waves in the inner surf zone

Transformation of irregular waves in the inner surf zone Transformation of irregular waves in the inner surf zone Philippe Bonneton and Hélène Dupuis 1 Abstract A numerical model based on a high order non-oscillatory MacCormack TVD scheme is presented for the

More information