Primary Results on Simulation of a New Kind Traveling Wave. of Permanent Form

Size: px
Start display at page:

Download "Primary Results on Simulation of a New Kind Traveling Wave. of Permanent Form"

Transcription

1 Primary Results on Simulation of a New Kind Traveling Wave of Permanent Form Min CHEN y Abstract This talk concerns the nonlinear dispersive waves in a water channel. Results from the study of a new version of the classical Boussinesq model system for the two-way propagation of water waves will be presented. The talk will feature presentations about theoretical work, numerical analysis, implementation ofnumerical schemes and the use of these schemes to better understand the models, reports on laboratory eperiments and comparisons of model predictions with real-world data. Some interesting simulations will be presented, which include a new set of traveling waves of permanent form, the generation of tidal waves and head-on collision of tidal waves. 1 Introduction In this paper, we study the propagation of waves in a uniform horizontal channel of length L lled to a depth h with an incompressible perfect uid. Assuming the wave motionis generated irrotationally and that it is uniform across the width of the channel, the twodimensional Euler equations are the full equations of motion. Since the numerical simulation of Euler equations are rather challenging and costly (cf. [1]), especially when a relative long time period is involved, further approimations are often made in practice. Assuming that the maimum deviation a of the free surface from its undisturbed position is small relative to h (small-amplitude waves), that the typical wavelength is large relative to h (long waves), and that the Ursell number S = a 2 =h is of order one, the Euler equations may be formally approimated by (1) t, 1 6 t =,u, (u) ; u t, 1 6 u t =,, uu ; for (,t) 2 =[;L] [;T]; where p L = L =h, is distance along the channel scaled by h, t is elapsed time scaled by h=g with g being the acceleration of gravity. The dependent variable is such that h(1 + (; t)) is the total depth at location at time t, andu = u(; t) is the horizontal velocity scaled by c = p gh at the water level time t. q 2 h at the location along the channel at As pointed out in [4], the system (1) is formally equivalent and correct to the Boussinesq's original system (cf. [6]) through rst order with regard to the small parameter This work was supported in part by NSF grant DMS and DMS y Department of Mathematics, Penn State University, University Park, PA, 1682

2 = a=h, and has the same formal status as the famous KdV equation which describe waves moving in one direction. Among a class of formally equivalent systems studied in [4], system (1) is particularly interesting because that the dispersive relation is stabilizing for all wave numbers and the natural initial-boundary-value problems that arise in laboratory eperiments are well-posed, which is to say that when (1) is associated with the initial and boundary conditions (2) (;t)=h 1 (t); (L; t) =h 2 (t); (; ) = h (); u(;t)=v 1 (t); u(l; t) =v 2 (t); u(; ) = v (); which satisfy the consistency requirements h 1 () = h (); h 2 () = h (L); v 1 () = v (); v 2 () = v (L); there eists an unique solution over a positive time interval and the solution is as regular as the initial and boundary data aords. 2 Numerical Scheme In this section, we present the scheme which was shown in [2] to be fourth-order accurate both in time and in space, unconditional stable, and have optimal computational compleity, which istosay the operation cost per time step is of order M with M being the number of grid points in the spatial discretization. The numerical scheme is based on the integral equations of (1). Inverting the operator (1, 1 ) subject to the boundary conditions in (2) and integrating the right-hand side by parts, one nds () with t = u t = Z L Z L K(; s) = 1 12 K(; s)(u + u)ds + S(L, )h 1 + S()h 2; K(; s)( u2 )ds + S(L, )v 1 + S()v 2;, S(L,, s)+sign(, s)s(l,j, sj) and S() = sinh(=p 6) sinh(l= p 6) : Let t be the step-size for the temporal discretization and the length of the spatial discretization; let (M + 1) be the number of spatial mesh points, so that M = L. The equations in () are rst discretized in space via numerical quadrature; the resultant system of ordinary dierential equations are then integrated forward in time by a nite-dierence, predictor-corrector method. Spatial Discretization The spatial discretization is eected by approimating ( i ) = R L K( i;s)y(s)ds; i =; 1; ;M. Using the trapezoidal rule with boundary corrections

3 and taking account of the fact that K(; s) isdiscontinuous at = s, one has that ( i ) 1 2 K i ()y() + (K i (i, )+K i (i + ))y(i)+k i (L)y(L) + M,1 X j=1;j6=i K i (j)y(j) (K i (s)y(s)) +, (K i (s)y(s)) i, +(K i (s)y(s)) i +,(K i (s)y(s)) M, where K i (s) =K( i ;s). The derivatives y (i), i =; ;M,may be replaced by the second-order nite dierences. Therefore ( i )may be approimated by a function i (y) where y =(y ; ;y M )withy i = y(i). The semi-discrete algorithm of () is then to nd vectors n =(n (t); ;n M (t)) and w =(w (t); ;w M (t)) which are approimations to and u respectively, such that for i =1; ;M, 1, (4) (n i ) t = i (w + n w)+s(l, i )h 1 + S( i)h 2; n = h 1 ; n M = h 2 ; (w i ) t = i (n w w)+s(l, i)v 1 + S( i)v 2; w = v 1 ; w M = v 2 : The symbol n w denotes the component-wise product of n and w, which is to say n w =( u ; ; M u M ). If M +1 is the number of spatial mesh points, a direct evaluation of i (y), i = ; 1; ;M,willinvolve on the order of M 2 operations. To reduce the computation to order M operations, an acceleration technique which was put forward in [] and[2] is used in the computation. Temporal Discretization dierential equations (5) The system (4) may be written as a system of ordinary d u = f(t; u); dt where u (n; w) T. The Adams fourth-order predictor-corrector scheme (P 4 EC 4 E)isused for the integration of (5) in time. The numerical scheme for u is ~u l+1 = u l + t 24 u l+1 = u l + t 24 55f l (u l ), 59f l,1 (u l,1 )+7f l,2 (u l,2 ), 9f l, (u l, ) ; 9f l+1 (~u l+1 )+19f l (u l ), 5f l,1 (u l,1 )+f l,2 (u l,2 ) ; where f l (u l )=f(lt; u l ). In case the eact values of the boundary terms h 1 ;h 2 ;v 1 and v 2 in (4) are not available, they are calculated via the fourth-order central dierence formula. Eistence of oscillatory waves of permanent form and their stability. In paper [5], an eact oscillatory traveling-wave solution u e (; t; )= 15 2 sech2 p (, t) ; (6) e (; t; )= 15 2sech 2 p (, t), sech 4 p 1 (, 5 2 t) ;

4 Eact solution subjected to an ocsilatary disturbance Fig. 1. Overview of the wave prole which consists a big trough in the middle, a smaller crest in front the trough R and another +1 after the trough, was found. Solution (6) represents a zero-volume, namely,1 ed =, traveling wave of permanent form. In this eperiment, we subjected the eact solution to two kinds of disturbances and observed the evolution of the wave for a relatively long time interval. In both cases, wetookl = 8, = t = 1=64, and conducted the simulation for t 2 [; 18]. In the rst case, the perturbation on the eact solution is oscillatory and has a volume,:27. More precisely, () =(1+:1 sin()) e (; ; 24); u () =(1+:1 cos())u e (; ; 24); was used as initial condition. An overview of the evolution is plotted in gure 1, which shows that a leading steady traveling wave followed by a small tail were developed as time evolves. In gure 2, we compared the leading wave of the solution at t = 18 with the eact solution (6). The trough of the leading wave has a depth,:544 which is not as deep as theonein(6),andthecrestshave a height 1:265 which is about 82:1% of that in (6). The velocity prole of the leading wave isvery close to that in (6). Based on the numerical data, we found that the phase velocity of the leading wave is approimately 2:4688 which is slight smaller than 2:5, the phase velocity of the eact solution. It is worth to note that the leading wave has a volume which equals to,:41. Since our numerical computation preserves the mass conservation, which was conrmed throughout the computation, the tail part of the solution has a volume :41, :27 = :827. Acloserlookofthetail(bystretching the y-ais) can be found in gure which shows that the tail consists a leading solitary wave followed by a dispersive tail of an even smaller amplitude. The leading solitary wave can be understood by the positive volume of the tail, which isequalto:827.

5 2 Wave profile at t=18 compared with eact solution, h=ht=1/64 8 Velocity profile at t=18 compared with eact solution, h=ht=1/ Fig. 2. The leading wave prole of (; u) at t =18(solid line) compared with (6) (dash line).1 Wave profile at t=18, h=ht=1/64.1 Velocity profile at t=18, h=ht=1/ Maimum value = 1.265; Minimum value= Maimum value = Fig.. Wave and velocity proles at t =18 (7) In the second case, solution (6) was subjected to a volume-free disturbance, namely ()=(1+:1) e (; ; 24); u () =u e (; ; 24); was used as initial data. Although the disturbance in this case is rather dierent from the one in the rst case, it is worth to note that the solutions at t =18arevery similar. The leading oscillatory wave developed in this case is almost identical to that in the rst case. References [1] J. Thomas Beale, Thomas Y. Hou and John Lowengrub, Convergence ofboundary integral methods for water waves, SIAM J. Numer. Anal,, 5 (1996), pp [2] J. Bona and M. Chen, A Boussinesq system for two-way propagation of nonlinear dispersive waves, to appear in Physica D (1998). [] J. L. Bona, W. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Phil. Trans. Royal Soc. London A, 2 (1981), pp [4] J. L. Bona, J. -C. Saut and J. F. Toland, Boussinesq equations for small-amplitude long wavelength water waves, preprint. [5] M. Chen, Eact Solutions of Various Boussinesq systems, to appear in Appl. Math. Lett. (1998). [6] G. B. Whitham, Linear and nonlinear waves, John Wiley & Sons: New York, (1974).

is large when compared to the undisturbed water depth h, and that the Stokes

is large when compared to the undisturbed water depth h, and that the Stokes EXACT TRAVELING-WAVE SOLUTIONS TO BI-DIRECTIONAL WAVE EQUATIONS Min CHEN Department of Mathematics, Penn State University University Park, PA 1680 U.S.A. Abstract. In this paper, we present several systematic

More information

Long Time Dynamics of Forced Oscillations of the Korteweg-de Vries Equation Using Homotopy Perturbation Method

Long Time Dynamics of Forced Oscillations of the Korteweg-de Vries Equation Using Homotopy Perturbation Method Studies in Nonlinear Sciences 1 (3): 57-6, 1 ISSN 1-391 IDOSI Publications, 1 Long Time Dynamics of Forced Oscillations of the Korteweg-de Vries Equation Using Homotopy Perturbation Method 1 Rahmat Ali

More information

What we do understand by the notion of soliton or rather solitary wave is a wave prole which is very stable in the following sense

What we do understand by the notion of soliton or rather solitary wave is a wave prole which is very stable in the following sense Introduction to Waves and Solitons What we do understand by the notion of soliton or rather solitary wave is a wave prole which is very stable in the following sense i) It is localized, which means it

More information

Strongly nonlinear long gravity waves in uniform shear flows

Strongly nonlinear long gravity waves in uniform shear flows Strongly nonlinear long gravity waves in uniform shear flows Wooyoung Choi Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA Received 14 January

More information

BBM equation with non-constant coefficients

BBM equation with non-constant coefficients Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ Research Article Turk J Math (3) 37: 65 664 c TÜBİTAK doi:.396/mat-3-35 BBM equation with non-constant coefficients Amutha SENTHILKUMAR

More information

On the Whitham Equation

On the Whitham Equation On the Whitham Equation Henrik Kalisch Department of Mathematics University of Bergen, Norway Joint work with: Handan Borluk, Denys Dutykh, Mats Ehrnström, Daulet Moldabayev, David Nicholls Research partially

More information

Time dependent hydraulic falls and trapped waves over submerged obstructions. Keywords: free surface flows; hydraulic falls; gravity-capillary waves

Time dependent hydraulic falls and trapped waves over submerged obstructions. Keywords: free surface flows; hydraulic falls; gravity-capillary waves Time dependent hydraulic falls and trapped waves over submerged obstructions C. Page 2, a) and E.I.Părău ) School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK 2) School of Mathematics,

More information

The effect of a background shear current on large amplitude internal solitary waves

The effect of a background shear current on large amplitude internal solitary waves The effect of a background shear current on large amplitude internal solitary waves Wooyoung Choi Dept. of Mathematical Sciences New Jersey Institute of Technology CAMS Report 0506-4, Fall 005/Spring 006

More information

NUMERICAL SOLITARY WAVE INTERACTION: THE ORDER OF THE INELASTIC EFFECT

NUMERICAL SOLITARY WAVE INTERACTION: THE ORDER OF THE INELASTIC EFFECT ANZIAM J. 44(2002), 95 102 NUMERICAL SOLITARY WAVE INTERACTION: THE ORDER OF THE INELASTIC EFFECT T. R. MARCHANT 1 (Received 4 April, 2000) Abstract Solitary wave interaction is examined using an extended

More information

Lecture 7: Oceanographic Applications.

Lecture 7: Oceanographic Applications. Lecture 7: Oceanographic Applications. Lecturer: Harvey Segur. Write-up: Daisuke Takagi June 18, 2009 1 Introduction Nonlinear waves can be studied by a number of models, which include the Korteweg de

More information

NUMERICAL INVESTIGATION OF THE DECAY RATE OF SOLUTIONS TO MODELS FOR WATER WAVES WITH NONLOCAL VISCOSITY

NUMERICAL INVESTIGATION OF THE DECAY RATE OF SOLUTIONS TO MODELS FOR WATER WAVES WITH NONLOCAL VISCOSITY INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 1, Number 2, Pages 333 349 c 213 Institute for Scientific Computing and Information NUMERICAL INVESTIGATION OF THE DECAY RATE OF SOLUTIONS

More information

Fourier spectral methods for solving some nonlinear partial differential equations

Fourier spectral methods for solving some nonlinear partial differential equations Int. J. Open Problems Compt. Math., Vol., No., June ISSN 99-; Copyright ICSRS Publication, www.i-csrs.org Fourier spectral methods for solving some nonlinear partial differential equations Hany N. HASSAN

More information

Dispersion in Shallow Water

Dispersion in Shallow Water Seattle University in collaboration with Harvey Segur University of Colorado at Boulder David George U.S. Geological Survey Diane Henderson Penn State University Outline I. Experiments II. St. Venant equations

More information

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Gennady El 1, Roger Grimshaw 1 and Noel Smyth 2 1 Loughborough University, UK, 2 University of Edinburgh, UK

More information

A Note On Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation

A Note On Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation A Note On Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation arxiv:math/6768v1 [math.ap] 6 Jul 6 Claire David, Rasika Fernando, and Zhaosheng Feng Université Pierre et Marie Curie-Paris

More information

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations Chapter 3 Shallow Water Equations and the Ocean Over most of the globe the ocean has a rather distinctive vertical structure, with an upper layer ranging from 20 m to 200 m in thickness, consisting of

More information

ON THE GALERKIN / FINITE-ELEMENT METHOD FOR THE SERRE EQUATIONS

ON THE GALERKIN / FINITE-ELEMENT METHOD FOR THE SERRE EQUATIONS ON THE GALERKIN / FINITE-ELEMENT METHOD FOR THE SERRE EQUATIONS DIMITRIOS MITSOTAKIS, BOAZ ILAN, AND DENYS DUTYKH hal-83464, version 2-22 Sep 23 Abstract. A highly accurate numerical scheme is presented

More information

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws Zhengfu Xu, Jinchao Xu and Chi-Wang Shu 0th April 010 Abstract In this note, we apply the h-adaptive streamline

More information

Stability of gravity-capillary waves generated by a moving pressure disturbance in water of finite depth

Stability of gravity-capillary waves generated by a moving pressure disturbance in water of finite depth Stability of gravity-capillary waves generated by a moving disturbance in water of finite depth Roger Grimshaw 1, Montri Maleewong 2, and Jack Asavanant 3 1 Department of Mathematical Sciences, Loughborough

More information

Exact and approximate nonlinear waves generated by the periodic superposition of solitons

Exact and approximate nonlinear waves generated by the periodic superposition of solitons Journal of Applied Mathematics and Physics (ZAMP) 0044-2275/89/060940-05 $ 1.50 + 0.20 Vol. 40, November 1989 9 1989 Birkhguser Verlag, Basel Exact and approximate nonlinear waves generated by the periodic

More information

Lecture 12: Transcritical flow over an obstacle

Lecture 12: Transcritical flow over an obstacle Lecture 12: Transcritical flow over an obstacle Lecturer: Roger Grimshaw. Write-up: Erinna Chen June 22, 2009 1 Introduction The flow of a fluid over an obstacle is a classical and fundamental problem

More information

Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain*

Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain* Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain* PHUOC X. TRAN, DONALD W. BRENNER, and C. T. WHITE Naval Research Laboratory, Washington, DC 20375-5000 Abstract The propagation

More information

The Whitham Equation. John D. Carter April 2, Based upon work supported by the NSF under grant DMS

The Whitham Equation. John D. Carter April 2, Based upon work supported by the NSF under grant DMS April 2, 2015 Based upon work supported by the NSF under grant DMS-1107476. Collaborators Harvey Segur, University of Colorado at Boulder Diane Henderson, Penn State University David George, USGS Vancouver

More information

Central Schemes for Systems of Balance Laws Salvatore Fabio Liotta, Vittorio Romano, Giovanni Russo Abstract. Several models in mathematical physics a

Central Schemes for Systems of Balance Laws Salvatore Fabio Liotta, Vittorio Romano, Giovanni Russo Abstract. Several models in mathematical physics a Central Schemes for Systems of Balance Laws Salvatore Fabio Liotta, Vittorio Romano, Giovanni Russo Abstract. Several models in mathematical physics are described by quasilinear hyperbolic systems with

More information

Undular Bores and the Morning Glory

Undular Bores and the Morning Glory Undular Bores and the Morning Glory Noel F. Smyth School of Mathematics and Mawell Institute for Mathematical Sciences, The King s Buildings, University of Edinburgh, Edinburgh, Scotland, U.K., EH9 3JZ.

More information

v t + fu = 1 p y w t = 1 p z g u x + v y + w

v t + fu = 1 p y w t = 1 p z g u x + v y + w 1 For each of the waves that we will be talking about we need to know the governing equators for the waves. The linear equations of motion are used for many types of waves, ignoring the advective terms,

More information

Higher-order Boussinesq equations for two-way propagation of shallow water waves

Higher-order Boussinesq equations for two-way propagation of shallow water waves European Journal of Mechanics B/Fluids 25 (2006) 008 02 Higher-order Boussinesq equations for two-way propagation of shallow water waves Prabir Daripa Department of Mathematics, Texas A&M University, College

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

Free surface flows over submerged obstructions

Free surface flows over submerged obstructions Free surface flows over submerged obstructions A thesis submitted to the School of Computing Sciences of the University of East Anglia in partial fulfilment of the requirements for the degree of Doctor

More information

NUMERICAL INVESTIGATION OF A TWO-DIMENSIONAL BOUSSINESQ SYSTEM. Min Chen

NUMERICAL INVESTIGATION OF A TWO-DIMENSIONAL BOUSSINESQ SYSTEM. Min Chen DISCRETE AND CONTINUOUS doi:1.3934/dcds.29.23.1169 DYNAMICAL SYSTEMS Volume 23, Number 4, April 29 pp. 1169 119 NUMERICAL INVESTIGATION OF A TWO-DIMENSIONAL BOUSSINESQ SYSTEM Min Chen Department of Mathematics,

More information

Exact Solutions of The Regularized Long-Wave Equation: The Hirota Direct Method Approach to Partially Integrable Equations

Exact Solutions of The Regularized Long-Wave Equation: The Hirota Direct Method Approach to Partially Integrable Equations Thai Journal of Mathematics Volume 5(2007) Number 2 : 273 279 www.math.science.cmu.ac.th/thaijournal Exact Solutions of The Regularized Long-Wave Equation: The Hirota Direct Method Approach to Partially

More information

Contact Information: Department of Mathematics tel: , fax:

Contact Information: Department of Mathematics tel: , fax: Min Chen Contact Information: Department of Mathematics tel: 765-494-1964, fax: 765-494-0548 Purdue University email: chen@math.purdue.edu West Lafayette, IN 47907 http://www.math.purdue.edu/ chen/ Current

More information

H. L. Atkins* NASA Langley Research Center. Hampton, VA either limiters or added dissipation when applied to

H. L. Atkins* NASA Langley Research Center. Hampton, VA either limiters or added dissipation when applied to Local Analysis of Shock Capturing Using Discontinuous Galerkin Methodology H. L. Atkins* NASA Langley Research Center Hampton, A 68- Abstract The compact form of the discontinuous Galerkin method allows

More information

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity.

(i) find the points where f(x) is discontinuous, and classify each point of discontinuity. Math Final Eam - Practice Problems. A function f is graphed below. f() 5 4 8 7 5 4 4 5 7 8 4 5 (a) Find f(0), f( ), f(), and f(4) Find the domain and range of f (c) Find the intervals where f () is positive

More information

Name of the Student: Unit I (Solution of Equations and Eigenvalue Problems)

Name of the Student: Unit I (Solution of Equations and Eigenvalue Problems) Engineering Mathematics 8 SUBJECT NAME : Numerical Methods SUBJECT CODE : MA6459 MATERIAL NAME : University Questions REGULATION : R3 UPDATED ON : November 7 (Upto N/D 7 Q.P) (Scan the above Q.R code for

More information

Modelling of Tsunami Waves

Modelling of Tsunami Waves MATEMATIKA, 2008, Volume 24, Number 2, 211 230 c Department of Mathematics, UTM. Modelling of Tsunami Waves 1 Nazeeruddin Yaacob, Norhafizah Md Sarif & 2 Zainal Abdul Aziz Department of Mathematics, Faculty

More information

On weakly singular and fully nonlinear travelling shallow capillary gravity waves in the critical regime

On weakly singular and fully nonlinear travelling shallow capillary gravity waves in the critical regime arxiv:1611.115v3 [physics.class-ph] 8 Mar 17 Dimitrios Mitsotakis Victoria University of Wellington, New Zealand Denys Dutykh CNRS, Université Savoie Mont Blanc, France Aydar Assylbekuly Khoja Akhmet Yassawi

More information

Notes on the Inverse Scattering Transform and Solitons. November 28, 2005 (check for updates/corrections!)

Notes on the Inverse Scattering Transform and Solitons. November 28, 2005 (check for updates/corrections!) Notes on the Inverse Scattering Transform and Solitons Math 418 November 28, 2005 (check for updates/corrections!) Among the nonlinear wave equations are very special ones called integrable equations.

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 29 Almost Done! No

More information

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t Math 111 - Eam 1a 1) Evaluate the following limits: 7 3 1 4 36 a) lim b) lim 5 1 3 6 + 4 c) lim tan( 3 ) + d) lim ( ) 100 1+ h 1 h 0 h ) Calculate the derivatives of the following. DON'T SIMPLIFY! a) y

More information

Are Solitary Waves Color Blind to Noise?

Are Solitary Waves Color Blind to Noise? Are Solitary Waves Color Blind to Noise? Dr. Russell Herman Department of Mathematics & Statistics, UNCW March 29, 2008 Outline of Talk 1 Solitary Waves and Solitons 2 White Noise and Colored Noise? 3

More information

18-660: Numerical Methods for Engineering Design and Optimization

18-660: Numerical Methods for Engineering Design and Optimization 8-66: Numerical Methods or Engineering Design and Optimization Xin Li Department o ECE Carnegie Mellon University Pittsburgh, PA 53 Slide Overview Linear Regression Ordinary least-squares regression Minima

More information

An evaluation of the Lyapunov characteristic exponent of chaotic continuous systems

An evaluation of the Lyapunov characteristic exponent of chaotic continuous systems INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2003; 56:145 163 (DOI: 10.1002/nme.560) An evaluation of the Lyapunov characteristic exponent of chaotic continuous

More information

Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations 1

Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations 1 Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations Feng Zheng, Chi-Wang Shu 3 and Jianian Qiu 4 Abstract In this paper, a new type of finite difference Hermite weighted essentially

More information

BOUSSINESQ-TYPE EQUATIONS WITH VARIABLE COEFFICIENTS FOR NARROW-BANDED WAVE PROPAGATION FROM ARBITRARY DEPTHS TO SHALLOW WATERS

BOUSSINESQ-TYPE EQUATIONS WITH VARIABLE COEFFICIENTS FOR NARROW-BANDED WAVE PROPAGATION FROM ARBITRARY DEPTHS TO SHALLOW WATERS BOUSSINESQ-TYPE EQUATIONS WITH VARIABLE COEFFICIENTS FOR NARROW-BANDED WAVE PROPAGATION FROM ARBITRARY DEPTHS TO SHALLOW WATERS Gonzalo Simarro 1, Alvaro Galan, Alejandro Orfila 3 A fully nonlinear Boussinessq-type

More information

2 Introduction T(,t) = = L Figure..: Geometry of the prismatical rod of Eample... T = u(,t) = L T Figure..2: Geometry of the taut string of Eample..2.

2 Introduction T(,t) = = L Figure..: Geometry of the prismatical rod of Eample... T = u(,t) = L T Figure..2: Geometry of the taut string of Eample..2. Chapter Introduction. Problems Leading to Partial Dierential Equations Many problems in science and engineering are modeled and analyzed using systems of partial dierential equations. Realistic models

More information

AN EFFECTIVE COMPLEX PERMITTIVITY FOR WAVES IN RANDOM MEDIA WITH FINITE WAVELENGTH LYUBIMA B. SIMEONOVA, DAVID C. DOBSON, OLAKUNLE ESO, AND KENNETH M. GOLDEN y Abstract. When we consider wave propagation

More information

Anumerical and analytical study of the free convection thermal boundary layer or wall jet at

Anumerical and analytical study of the free convection thermal boundary layer or wall jet at REVERSED FLOW CALCULATIONS OF HIGH PRANDTL NUMBER THERMAL BOUNDARY LAYER SEPARATION 1 J. T. Ratnanather and P. G. Daniels Department of Mathematics City University London, England, EC1V HB ABSTRACT Anumerical

More information

Algebraic geometry for shallow capillary-gravity waves

Algebraic geometry for shallow capillary-gravity waves Algebraic geometry for shallow capillary-gravity waves DENYS DUTYKH 1 Chargé de Recherche CNRS 1 Université de Savoie Laboratoire de Mathématiques (LAMA) 73376 Le Bourget-du-Lac France Seminar of Computational

More information

B-splines Collocation Algorithms for Solving Numerically the MRLW Equation

B-splines Collocation Algorithms for Solving Numerically the MRLW Equation ISSN 1749-889 (print), 1749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.2,pp.11-140 B-splines Collocation Algorithms for Solving Numerically the MRLW Equation Saleh M. Hassan,

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 58 (29) 27 26 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Study on

More information

Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water

Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water By Tae-Chang Jo and Wooyoung Choi We study the dynamics of large amplitude internal solitary waves in shallow water by using a strongly

More information

FAST COMMUNICATION THREE-DIMENSIONAL LOCALIZED SOLITARY GRAVITY-CAPILLARY WAVES

FAST COMMUNICATION THREE-DIMENSIONAL LOCALIZED SOLITARY GRAVITY-CAPILLARY WAVES COMM. MATH. SCI. Vol. 3, No., pp. 89 99 c 5 International Press FAST COMMUNICATION THREE-DIMENSIONAL LOCALIZED SOLITARY GRAVITY-CAPILLARY WAVES PAUL A. MILEWSKI Abstract. In a weakly nonlinear model equation

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 998 AP Calculus AB: 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 33 Almost Done! Last

More information

STUDIES IN RECURRENCE IN NONLINEAR DISPERSIVE WAVE EQUATIONS

STUDIES IN RECURRENCE IN NONLINEAR DISPERSIVE WAVE EQUATIONS STUDIES IN RECURRENCE IN NONLINEAR DISPERSIVE WAVE EQUATIONS T. Arbogast, J. L. Bona, and J.-M. Yuan December 25, 29 Abstract This paper is concerned with the study of recurrence phenomena in nonlinear

More information

9 Rossby Waves. 9.1 Non-divergent barotropic vorticity equation. CSU ATS601 Fall (Holton Chapter 7, Vallis Chapter 5)

9 Rossby Waves. 9.1 Non-divergent barotropic vorticity equation. CSU ATS601 Fall (Holton Chapter 7, Vallis Chapter 5) 9 Rossby Waves (Holton Chapter 7, Vallis Chapter 5) 9.1 Non-divergent barotropic vorticity equation We are now at a point that we can discuss our first fundamental application of the equations of motion:

More information

Numerical simulation of dispersive waves

Numerical simulation of dispersive waves Numerical simulation of dispersive waves DENYS DUTYKH 1 Chargé de Recherche CNRS 1 LAMA, Université de Savoie 73376 Le Bourget-du-Lac, France Colloque EDP-Normandie DENYS DUTYKH (CNRS LAMA) Dispersive

More information

arxiv: v1 [math-ph] 14 Jan 2019

arxiv: v1 [math-ph] 14 Jan 2019 REMARKS ON EXISTENCE/NONEXISTENCE OF ANALYTIC SOLUTIONS TO HIGHER ORDER KDV EQUATIONS ANNA KARCZEWSKA AND PIOTR ROZMEJ arxiv:1901.04176v1 [math-ph] 14 Jan 2019 ABSTRACT. In this note, we discuss the existence

More information

Modified Serre Green Naghdi equations with improved or without dispersion

Modified Serre Green Naghdi equations with improved or without dispersion Modified Serre Green Naghdi equations with improved or without dispersion DIDIER CLAMOND Université Côte d Azur Laboratoire J. A. Dieudonné Parc Valrose, 06108 Nice cedex 2, France didier.clamond@gmail.com

More information

arxiv: v2 [physics.flu-dyn] 4 Aug 2017

arxiv: v2 [physics.flu-dyn] 4 Aug 2017 Single soliton solution to the etended KdV equation over uneven depth George Rowlands arxiv:62.522v2 [physics.flu-dyn 4 Aug 27 Department of Physics, University of Warwick, Coventry, CV4 7A, UK Piotr Rozmej

More information

Transactions on Engineering Sciences vol 9, 1996 WIT Press, ISSN

Transactions on Engineering Sciences vol 9, 1996 WIT Press,   ISSN Fundamentals concerning Stokes waves M. Rahman Department of Applied Mathematics, Technical University of Nova Scotia, Halifax, Nova Scotia, Canada B3J 2X4 Abstract In the study of water waves, it is well

More information

Shallow Water Gravity Waves: A Note on the Particle Orbits

Shallow Water Gravity Waves: A Note on the Particle Orbits Journal of Oceanography Vol. 5, pp. 353 to 357. 1996 Shallow Water Gravity Waves: A Note on the Particle Orbits KERN E. KENYON 463 North Lane, Del Mar, CA 9014-4134, U.S.A. (Received 4 July 1995; in revised

More information

The General Form of Linearized Exact Solution for the KdV Equation by the Simplest Equation Method

The General Form of Linearized Exact Solution for the KdV Equation by the Simplest Equation Method Applied and Computational Mathematics 015; 4(5): 335-341 Published online August 16 015 (http://www.sciencepublishinggroup.com/j/acm) doi: 10.11648/j.acm.0150405.11 ISSN: 38-5605 (Print); ISSN: 38-5613

More information

Solitons : An Introduction

Solitons : An Introduction Solitons : An Introduction p. 1/2 Solitons : An Introduction Amit Goyal Department of Physics Panjab University Chandigarh Solitons : An Introduction p. 2/2 Contents Introduction History Applications Solitons

More information

Propagation of Solitons Under Colored Noise

Propagation of Solitons Under Colored Noise Propagation of Solitons Under Colored Noise Dr. Russell Herman Departments of Mathematics & Statistics, Physics & Physical Oceanography UNC Wilmington, Wilmington, NC January 6, 2009 Outline of Talk 1

More information

Weakly non-local solitary wave solutions of a singularly perturbed Boussinesq equation

Weakly non-local solitary wave solutions of a singularly perturbed Boussinesq equation Mathematics and Computers in Simulation 55 (2001) 393 405 Weakly non-local solitary wave solutions of a singularly perturbed Boussinesq equation Prabir Daripa, Ranjan K. Dash Department of Mathematics,

More information

(a). t = 0 (b). t = 0.276

(a). t = 0 (b). t = 0.276 10 (a). t = 0 (b). t = 0.276 Figure 8: Snapshots of the sedimentation of 5040 disks of diameter 10/192 cm in 2D (W =8 cm). The initial lattice is disordered. from t = 0:026 to t = 0:476. In Figure 6, a

More information

ChE 385M Surface Phenomena University of Texas at Austin. Marangoni-Driven Finger Formation at a Two Fluid Interface. James Stiehl

ChE 385M Surface Phenomena University of Texas at Austin. Marangoni-Driven Finger Formation at a Two Fluid Interface. James Stiehl ChE 385M Surface Phenomena University of Texas at Austin Marangoni-Driven Finger Formation at a Two Fluid Interface James Stiehl Introduction Marangoni phenomena are driven by gradients in surface tension

More information

Math 231 Final Exam Review

Math 231 Final Exam Review Math Final Eam Review Find the equation of the line tangent to the curve 4y y at the point (, ) Find the slope of the normal line to y ) ( e at the point (,) dy Find d if cos( y) y 4 y 4 Find the eact

More information

GFD 2013 Lecture 4: Shallow Water Theory

GFD 2013 Lecture 4: Shallow Water Theory GFD 213 Lecture 4: Shallow Water Theory Paul Linden; notes by Kate Snow and Yuki Yasuda June 2, 214 1 Validity of the hydrostatic approximation In this lecture, we extend the theory of gravity currents

More information

Review: A Cross Section of the Midterm. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review: A Cross Section of the Midterm. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review: A Cross Section of the Midterm Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the limit, if it eists. 4 + ) lim - - ) A) - B) -

More information

F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNER and dissipation are many decades apart, the intermediate scales span the so{called turbulent

F. MENZAQUE, R. R. ROSALES, E. G. TABAK, AND C. V. TURNER and dissipation are many decades apart, the intermediate scales span the so{called turbulent The Forced Inviscid Burgers Equation as a Model for Nonlinear Interactions among Dispersive Waves Fernando Menzaque, Rodolfo R. Rosales, Esteban G. Tabak, and Cristina V. Turner Abstract. The forced inviscid

More information

An improved collocation method based on deviation of the error for solving BBMB equation

An improved collocation method based on deviation of the error for solving BBMB equation Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 6, No. 2, 2018, pp. 238-247 An improved collocation method based on deviation of the error for solving BBMB equation Reza

More information

Source Free Surface x

Source Free Surface x Finite-dierence time-domain model for elastic waves in the ground Christoph T. Schroeder and Waymond R. Scott, Jr. School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta,

More information

2. The generalized Benjamin- Bona-Mahony (BBM) equation with variable coefficients [30]

2. The generalized Benjamin- Bona-Mahony (BBM) equation with variable coefficients [30] ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.12(2011) No.1,pp.95-99 The Modified Sine-Cosine Method and Its Applications to the Generalized K(n,n) and BBM Equations

More information

Interfacial waves in steady and oscillatory, two-layer Couette flows

Interfacial waves in steady and oscillatory, two-layer Couette flows Interfacial waves in steady and oscillatory, two-layer Couette flows M. J. McCready Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556 Page 1 Acknowledgments Students: M.

More information

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION 8 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each of the following problems. After eamining the form

More information

Brian Nguyen. Medtronic, Inc.

Brian Nguyen. Medtronic, Inc. Solitary Waves in the Critical Surface Tension Model Yi A. Li School of Mathematics University of Minnesota Minneapolis, MN 55455 yili@math.umn.edu Brian Nguyen Medtronic, Inc. 7 Central Avenue N.E. Minneapolis,

More information

y(x,5) (cm) x (m)

y(x,5) (cm) x (m) Spring 99 Problem Set Optional Problems Physics February 9, 999 Handout Wave Propagation and Reection. pulse has shape shown in gure as it travels at 00 Asawtooth along a stretched wire. At t = 0, leading

More information

Travelling Wave Solutions for the Gilson-Pickering Equation by Using the Simplified G /G-expansion Method

Travelling Wave Solutions for the Gilson-Pickering Equation by Using the Simplified G /G-expansion Method ISSN 1749-3889 (print, 1749-3897 (online International Journal of Nonlinear Science Vol8(009 No3,pp368-373 Travelling Wave Solutions for the ilson-pickering Equation by Using the Simplified /-expansion

More information

Spurious Chaotic Solutions of Dierential. Equations. Sigitas Keras. September Department of Applied Mathematics and Theoretical Physics

Spurious Chaotic Solutions of Dierential. Equations. Sigitas Keras. September Department of Applied Mathematics and Theoretical Physics UNIVERSITY OF CAMBRIDGE Numerical Analysis Reports Spurious Chaotic Solutions of Dierential Equations Sigitas Keras DAMTP 994/NA6 September 994 Department of Applied Mathematics and Theoretical Physics

More information

Euclidean Special Relativity

Euclidean Special Relativity Euclidean Special Relativity R.F.J. van Linden e-mail rob@vlinden.com web http://www.euclideanrelativity.com September 2017 Abstract A Euclidean interpretation of special relativity is given wherein proper

More information

MATH 220 solution to homework 1

MATH 220 solution to homework 1 MATH solution to homework Problem. Define z(s = u( + s, y + s, then z (s = u u ( + s, y + s + y ( + s, y + s = e y, z( y = u( y, = f( y, u(, y = z( = z( y + y If we prescribe the data u(, = f(, then z

More information

Lecture17: Generalized Solitary Waves

Lecture17: Generalized Solitary Waves Lecture17: Generalized Solitary Waves Lecturer: Roger Grimshaw. Write-up: Andrew Stewart and Yiping Ma June 24, 2009 We have seen that solitary waves, either with a pulse -like profile or as the envelope

More information

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations ECE257 Numerical Methods and Scientific Computing Ordinary Differential Equations Today s s class: Stiffness Multistep Methods Stiff Equations Stiffness occurs in a problem where two or more independent

More information

Making Waves in Vector Calculus

Making Waves in Vector Calculus Making Waves in Vector Calculus J. B. Thoo Yuba College 2014 MAA MathFest, Portland, OR This presentation was produced

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate of the point

More information

A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS

A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS HASEENA AHMED AND HAILIANG LIU Abstract. High resolution finite difference methods

More information

2. Theory of Small Amplitude Waves

2. Theory of Small Amplitude Waves . Theory of Small Amplitude Waves.1 General Discussion on Waves et us consider a one-dimensional (on -ais) propagating wave that retains its original shape. Assume that the wave can be epressed as a function

More information

2017 年環境流體力學短期講座 Short Course on Environmental Flows

2017 年環境流體力學短期講座 Short Course on Environmental Flows 2017 年環境流體力學短期講座 Short Course on Environmental Flows 數學 海浪 與沿海動態過程 Mathematics, ocean waves and coastal dynamic processes Philip L-F. Liu National University of Singapore Cornell University September 2017

More information

Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

More information

Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations

Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations H. A. Erbay Department of Natural and Mathematical Sciences, Faculty of Engineering, Ozyegin University, Cekmekoy 34794,

More information

Lecture 10: Whitham Modulation Theory

Lecture 10: Whitham Modulation Theory Lecture 10: Whitham Modulation Theory Lecturer: Roger Grimshaw. Write-up: Andong He June 19, 2009 1 Introduction The Whitham modulation theory provides an asymptotic method for studying slowly varying

More information

Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation

Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 1, Issue 1Ver. I. (Jan. 214), PP 8-12 Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation Saad A.

More information

M445: Heat equation with sources

M445: Heat equation with sources M5: Heat equation with sources David Gurarie I. On Fourier and Newton s cooling laws The Newton s law claims the temperature rate to be proportional to the di erence: d dt T = (T T ) () The Fourier law

More information

Calculus - Chapter 2 Solutions

Calculus - Chapter 2 Solutions Calculus - Chapter Solutions. a. See graph at right. b. The velocity is decreasing over the entire interval. It is changing fastest at the beginning and slowest at the end. c. A = (95 + 85)(5) = 450 feet

More information

lim x c) lim 7. Using the guidelines discussed in class (domain, intercepts, symmetry, asymptotes, and sign analysis to

lim x c) lim 7. Using the guidelines discussed in class (domain, intercepts, symmetry, asymptotes, and sign analysis to Math 7 REVIEW Part I: Problems Using the precise definition of the it, show that [Find the that works for any arbitrarily chosen positive and show that it works] Determine the that will most likely work

More information

Interactive comment on The open boundary equation by D. Diederen et al.

Interactive comment on The open boundary equation by D. Diederen et al. Ocean Sci. Discuss., 12, C558 C578, 2015 www.ocean-sci-discuss.net/12/c558/2015/ Author(s) 2015. This work is distributed under the Creative Commons Attribute 3.0 License. Ocean Science Discussions Open

More information

On the nonlinear dynamics of the traveling-wave solutions of the Serre system

On the nonlinear dynamics of the traveling-wave solutions of the Serre system On the nonlinear dynamics of the traveling-wave solutions of the Serre system Dimitrios Mitsotakis a,, Denys Dutykh b, John Carter c a Victoria University of Wellington, School of Mathematics, Statistics

More information