My doctoral research concentrated on elliptic quasilinear partial differential equations of the form

Size: px
Start display at page:

Download "My doctoral research concentrated on elliptic quasilinear partial differential equations of the form"

Transcription

1 1 Introduction I am interested in applied analysis and computation of non-linear partial differential equations, primarily in systems that are motivated by the physics of fluid dynamics. My Ph.D. thesis concentrated on answering questions of well posedness of free boundary problems, which involved the study of existence and uniqueness of solutions. The problems addressed were a vortex sheet problem and the Boussinesq equations. In the following discussion a more detailed overview of my Ph.D. thesis, directed under the supervision of Prof. David Ambrose at Drexel University, is provided. Some of the current and future problems of interest to me are described. Several are direct consequences of Ph.D. research and others are from related areas I am interested in exploring. 2 Ph.D. Research My doctoral research concentrated on elliptic quasilinear partial differential equations of the form v y + Aw = F (v, w) x, (2.1) w y + Av = G(v, w) x, (2.2) where v, w are functions of (x, y), A is a linear operator which acts as a multiplier in Fourier space and F, G are some non-linearities. These types of equations were studied on two types of domains: First, an infinite strip where (x, y) (, ) [0, Y ], for some Y > 0; and second, for periodic problems where (x, y) [0, 2π] [0, Y ]. In each case Dirichelet, Neumann and mixed types of boundary conditions, are considered on the boundary {y = 0} {y = Y }. The existence of solutions of a boundary value problem is usually treated with a maximal principal argument such as in Gilbarg and Trudinger [7]. Instead, I used a contraction mapping argument, which is typically used for initial value problems. The question of the existence of a solution to equations (2.1) and (2.2) is formulated as a contraction mapping problem by using the Duhamel s formula to construct a weak solution representation, in the form of T (v, w) = (v, w). Such a formulation allows us to treat the original system as a fixed point problem of the mapping T. Since A is a multiplier in Fourier space we define σ A by the Fourier transform of Ah(x) with respect to x: Âh(x) = σ A ĥ(ξ). My thesis work shows that if σ A is of order ξ and if F and G are Lipschitz continuous on an analytic function space, with the boundary conditions satisfying a smallness property, then the mapping T will be a contraction on the given function space, and its fixed point will be the unique solution to equations (2.1) and (2.2) with appropriate 1

2 boundary conditions. An application of these results is a vortex sheet problem and the Bona-Chen-Saut type Boussinesq equations. The result of this work was accepted for publication in Applicable Analysis [10]. 2.1 Vortex Sheet A vortex sheet is an interface between two fluids which have a discontinuity in the tangential component of velocity. For the particular vortex sheet considered, the two fluids have the same density, and are incompressible and irrotational away from the interface. Since there is a discontinuity in the velocity of the fluid, if we define the velocity by u, then along the interface the vorticity ω = curl(u) is analogous to a Dirac measure. It is possible to model the evolution of a vortex sheet using the Euler equations with the discontinuity condition on velocity. There is a fair amount of analytical and computational work in the literature on the vortex sheet problem. Specifically the work of Sulem, Sulem, Bardos, and Frisch [12] and Duchon and Robert [6] directly relates to my contribution. In [12] the initial value problem is reformulated and the existence of an analytic solution in finite time is proven. In [6] the result is extended to existence of an analytic solution for infinite time to the initial value problem formulated in [12]. My work is largely motivated by [6]; I generalized their methodology to treat this vortex sheet boundary value problem where the boundary is taken to be {t = 0} {t = T }. The vortex sheet formulation in [12] is of the form of (2.1) and (2.2) where y becomes the temporal variable t, A is the Hilbert transform with a derivative in the spatial variable x and F, G are principal value integrals that are Lipschitz continuous in an analytic function space. When applied to the general results of my work the vortex sheet has a non-periodic analytic solutions for finite time. The difference between these solutions and the work in [12] is the final time can be taken arbitrarily large. Also the smallness property of the boundary conditions is not time dependent, hence as the time is taken to go to infinity the results are consistent with the work of [6]. There are a number of extensions to this work I intend to consider in the future. First, it would be interesting to treat the problem in 3D. The theory used depends on a formulation of a weak solution to equations of the form (2.1) and (2.2). In [12] they derive the full 3D model for the vortex sheet. I would like to generalize my current work to formulate a weak solution to the 3D model and use a similar type of a contraction argument. In that case, not only would we be able to show existence of solutions to the boundary value problem, but we would also hope to be able to extend the work of [6] to show existence of solutions for infinite time of the initial value problem. Second, in the vortex sheet problem studied, the density of the two fluids is the same. Baker, Meiron, and Orszag [3] derive a generalized model for vortex sheet problem with the fluids having different densities. It is interesting to explore if it is possible to reformulate the generalized model into the form similar to (2.1) and (2.2). 2

3 2.2 Boussinesq Equations The Boussinesq equations are an approximation of the Euler equations with specific assumptions that model small amplitude long surface waves. The type of Boussinesq equation studied in my thesis are of the form η t + w x + (wη) x + aw xxx bη xxt = 0, (2.3) w t + η x + ww x + cη xxx dη xxt = 0, (2.4) where w is related to the velocity of the flow, η is related to the position of the free surface and a, b, c, d are parameters governed by a specific physical system. This model was first studied by Bona, Chen, and Saut [4], [5]; in their work they have answered the question of existence of a solution to the initial value problem for finite time, for certain values of the parameters. My Ph.D. thesis treats (2.3) and (2.4) as a boundary value problem with the boundary being {t = 0} {t = T }. It is possible to rewrite (2.3) and (2.4) into the form of (2.1) and (2.2). In the case of a > 0, b > 0, c < 0 and d sufficiently large, the corresponding operators A, F, G will satisfy the theory outlined in the previous section. This results in the existence of periodic solutions to the Boussinesq equations. The main advantage of the new solutions is that existence of solutions is proved for a different set of values of the parameters a, b, c, and d; as for the vortex sheet, the time interval can be taken to be as large as desired, without requiring the size of the data to go to zero. Some of the direct future work I will explore is analyzing (2.3) and (2.4) for more general values of a, b, c, and d. Currently these values are chosen so that A satisfies desired properties. In general, if the desired properties do not hold for a finite number of Fourier modes, it would be of interest to study those modes individually so that results could be generalized. Another direction of interest is to analyze higher order Boussinesq approximations. Since the Boussinesq equations are an approximation of the Euler equations, answers to questions of well posedness for higher order approximation may give us better understanding of the Euler equations. 3 Current Research Direction In order to complement the analysis work I have done during Ph.D. studies. I am interested in performing computational research. In particular I am interested in carrying out research similar to the work of Lopes Filho et al. [9]; there, they show evidence of nonuniqueness of weak solutions to the Euler equations. They do this by computing solutions of the initial value problem for vortex sheets. I am interested in addressing the same question on nonuniqueness of solutions, but by computing solutions of the vortex sheet boundary value problems. The evolution of the interface in the vortex sheet problem is given by the Birkhoff- Rott integral, which is a singular integral. One way to compute the Birkhoff-Rott 3

4 integral, is by regularizing the singularity using the vortex blob method as in [2], [8], [11]. My goal is to use a blob method along with a modified shooting method to compute the boundary value problem. I am currently working on a computation using Python numpy and scipy packages to compute a vortex sheet boundary value problem. The main challenge I am faced with is solving the resulting optimization problem. I intend to do solve the optimization problem using a quasi-newton line search algorithm such as the Broyden-Fletcher-Goldfarb-Shanno method, which was successfully done by Ambrose and Wilkening [1] for computing symmetric, timeperiodic solutions of a vortex sheet with surface tension. References [1] D.M. Ambrose and J. Wilkening. Computation of symmetric, time-periodic solutions of the vortex sheet with surface tension. Proc. Natl. Acad. Sci. USA, 107: , [2] G.R. Baker and J.T. Beale. Vortex blob methods applied to interfacial motion. Journal of Computational Physics, 196(1): , [3] G.R. Baker, D. Meiron, and S. Orszag. Generalized vortex methods for freesurface flow problems. J. of Fluid Mech., 123: , [4] J.L. Bona, M. Chen, and J.C. Saut. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. i: Derivation and linear theory. Journal of Nonlinear Science, 12: , [5] J.L. Bona, M. Chen, and J.C. Saut. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. ii: The nonlinear theory. Nonlinearity, 17: , [6] J. Duchon and R. Robert. Global vortex solutions of euler equations in the plane. Comm. Partial Differential Equations, 73: , [7] D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer Classics in Mathematics, [8] R. Krasny. A study of singularity formation in a vortex sheet by the point-vortex approximation. Journal of Fluid Mechanics, 167:65 93, [9] M.C. Lopes Filho, J. Lowengrub, H.J. Nussenzveig Lopes, and Y. Zheng. Numerical evidence of nonuniqueness in the evolution of vortex sheets. M2AN, 40: , [10] T. Milgrom and D.M. Ambrose. Temporal boundary value problems in interfacial fluid dynamics. Applicable Analysis. 4

5 [11] M.J. Shelley. A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method. Journal of Fluid Mechanics, 244: , [12] C. Sulem, P.L. Sulem, C. Bardos, and U. Frisch. Finite time analyticity for two and three dimensional kelvin-helmholtz instability. Comm. Math. Phys., 80: ,

Computing Time-Periodic Solutions of Nonlinear Systems of Partial Differential Equations

Computing Time-Periodic Solutions of Nonlinear Systems of Partial Differential Equations 1 Computing ime-periodic Solutions of Nonlinear Systems of Partial Differential Equations David M. Ambrose Department of Mathematics, Drexel University, Philadelphia, PA 191 USA E-mail: ambrose@math.drexel.edu

More information

THE RADIUS OF ANALYTICITY FOR SOLUTIONS TO A PROBLEM IN EPITAXIAL GROWTH ON THE TORUS

THE RADIUS OF ANALYTICITY FOR SOLUTIONS TO A PROBLEM IN EPITAXIAL GROWTH ON THE TORUS THE RADIUS OF ANALYTICITY FOR SOLUTIONS TO A PROBLEM IN EPITAXIAL GROWTH ON THE TORUS DAVID M AMBROSE Abstract A certain model for epitaxial film growth has recently attracted attention, with the existence

More information

SMALL STRONG SOLUTIONS FOR TIME-DEPENDENT MEAN FIELD GAMES WITH LOCAL COUPLING

SMALL STRONG SOLUTIONS FOR TIME-DEPENDENT MEAN FIELD GAMES WITH LOCAL COUPLING SMALL STRONG SOLUTIONS FOR TIME-DEPENDENT MEAN FIELD GAMES WITH LOCAL COUPLING DAVID M AMBROSE Abstract For mean field games with local coupling, existence results are typically for weak solutions rather

More information

A non-stiff boundary integral method for 3D porous media flow with surface tension

A non-stiff boundary integral method for 3D porous media flow with surface tension A non-stiff boundary integral method for 3D porous media flow with surface tension D. M. Ambrose 1 and M. Siegel 1 Department of Mathematics, Drexel University, Philadelphia, PA 191 Department of Mathematical

More information

The Rayleigh-Taylor condition for the evolution of irrotational fluid interfaces.

The Rayleigh-Taylor condition for the evolution of irrotational fluid interfaces. The Rayleigh-Taylor condition for the evolution of irrotational fluid interfaces. Antonio Cordoba Universidad Autonoma de Madrid ctra. de Colmenar Viejo, Km. 15 28049 Madrid e-mail: antonio.cordoba@uam.es

More information

On the limiting behaviour of regularizations of the Euler Equations with vortex sheet initial data

On the limiting behaviour of regularizations of the Euler Equations with vortex sheet initial data On the limiting behaviour of regularizations of the Euler Equations with vortex sheet initial data Monika Nitsche Department of Mathematics and Statistics University of New Mexico Collaborators: Darryl

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

KELVIN-HELMHOLTZ INSTABILITIES AND INTERFACIAL WAVES

KELVIN-HELMHOLTZ INSTABILITIES AND INTERFACIAL WAVES KELVIN-HELMHOLTZ INSTABILITIES AND INTERFACIAL WAVES DAVID LANNES 1. Introduction 1.1. General setting. We are interested here in the motion of the interface between two incompressible fluids of different

More information

The Nonlinear Evolution of Vortex Sheets with Surface Tension in Axisymmetric Flows

The Nonlinear Evolution of Vortex Sheets with Surface Tension in Axisymmetric Flows Journal of Computational Physics 174, 438 459 (2001) doi:10.1006/jcph.2001.6926, available online at http://www.idealibrary.com on The Nonlinear Evolution of Vortex Sheets with Surface Tension in Axisymmetric

More information

A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE. 1.

A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE. 1. A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE THOMAS CHEN AND NATAŠA PAVLOVIĆ Abstract. We prove a Beale-Kato-Majda criterion

More information

Blow up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation

Blow up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation Blow up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation Dong Li a,1 a School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, NJ 854,

More information

GLOBAL SOLUTIONS AND ILL-POSEDNESS FOR THE KAUP SYSTEM AND RELATED BOUSSINESQ SYSTEMS

GLOBAL SOLUTIONS AND ILL-POSEDNESS FOR THE KAUP SYSTEM AND RELATED BOUSSINESQ SYSTEMS GLOBAL SOLUTIONS AND ILL-POSEDNESS FOR THE KAUP SYSTEM AND RELATED BOUSSINESQ SYSTEMS DAVID M. AMBROSE, JERRY L. BONA, AND TIMUR MILGROM Abstract. The two-way propagation of a certain class of long-crested

More information

DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN

DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN KENGO NAKAI Abstract. We give a refined blow-up criterion for solutions of the D Navier-

More information

A RIEMANN PROBLEM FOR THE ISENTROPIC GAS DYNAMICS EQUATIONS

A RIEMANN PROBLEM FOR THE ISENTROPIC GAS DYNAMICS EQUATIONS A RIEMANN PROBLEM FOR THE ISENTROPIC GAS DYNAMICS EQUATIONS KATARINA JEGDIĆ, BARBARA LEE KEYFITZ, AND SUN CICA ČANIĆ We study a Riemann problem for the two-dimensional isentropic gas dynamics equations

More information

Diego Córdoba. Interface dynamics for incompressible flows in 2D

Diego Córdoba. Interface dynamics for incompressible flows in 2D Interface dynamics for incompressible flows in 2D Diego Córdoba Equation ρ t + u ρ = 0, u = 0, { ρ ρ(x 1, x 2, t) = 1, x Ω 1 (t) ρ 2, x Ω 2 (t), with ρ(x, t) an active scalar, (x, t) R 2 R +, ρ 1 ρ 2 are

More information

Kelvin Helmholtz Instability

Kelvin Helmholtz Instability Kelvin Helmholtz Instability A. Salih Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram November 00 One of the most well known instabilities in fluid

More information

REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID

REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID DRAGOŞ IFTIMIE AND JAMES P. KELLIHER Abstract. In [Math. Ann. 336 (2006), 449-489] the authors consider the two dimensional

More information

Convergence of Vortex Methods for Weak Solutions to the 2-D Euler Equations with Vortex Sheet Data

Convergence of Vortex Methods for Weak Solutions to the 2-D Euler Equations with Vortex Sheet Data Convergence of Vortex Methods for Weak Solutions to the 2-D Euler Equations with Vortex Sheet Data JIAN-GUO LIU Temple University AND ZHOUPING XIN Courant Institute Abstract We prove the convergence of

More information

AD-A )CUMENTAT!-N ELECTE MAX- Si FINAL/01 JUL 92 TO 30 JUN O T 4-0 6

AD-A )CUMENTAT!-N ELECTE MAX- Si FINAL/01 JUL 92 TO 30 JUN O T 4-0 6 AD-A277 453 )CUMENTAT!-N MAX- Si FINAL/01 JUL 92 TO 30 JUN 93 A STUDY OF WEAK SOLUTIONS AND THEIR REGULARIZATIONS BY NUMERICAL METHODS (U) Professor George Majda 2304!/A3 AFOSR-91-0309 ELECTE Ohio State

More information

On the Whitham Equation

On the Whitham Equation On the Whitham Equation Henrik Kalisch Department of Mathematics University of Bergen, Norway Joint work with: Handan Borluk, Denys Dutykh, Mats Ehrnström, Daulet Moldabayev, David Nicholls Research partially

More information

Finite-time singularity formation for Euler vortex sheet

Finite-time singularity formation for Euler vortex sheet Finite-time singularity formation for Euler vortex sheet Daniel Coutand Maxwell Institute Heriot-Watt University Oxbridge PDE conference, 20-21 March 2017 Free surface Euler equations Picture n N x Ω Γ=

More information

Global well-posedness and decay for the viscous surface wave problem without surface tension

Global well-posedness and decay for the viscous surface wave problem without surface tension Global well-posedness and decay for the viscous surface wave problem without surface tension Ian Tice (joint work with Yan Guo) Université Paris-Est Créteil Laboratoire d Analyse et de Mathématiques Appliquées

More information

A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION

A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION ASIAN J. MATH. c 2009 International Press Vol. 13, No. 1, pp. 001 006, March 2009 001 A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION Y. CHARLES LI Abstract. In this article, I will prove

More information

Global regularity of a modified Navier-Stokes equation

Global regularity of a modified Navier-Stokes equation Global regularity of a modified Navier-Stokes equation Tobias Grafke, Rainer Grauer and Thomas C. Sideris Institut für Theoretische Physik I, Ruhr-Universität Bochum, Germany Department of Mathematics,

More information

On Global Well-Posedness of the Lagrangian Averaged Euler Equations

On Global Well-Posedness of the Lagrangian Averaged Euler Equations On Global Well-Posedness of the Lagrangian Averaged Euler Equations Thomas Y. Hou Congming Li Abstract We study the global well-posedness of the Lagrangian averaged Euler equations in three dimensions.

More information

ANALYTIC SMOOTHING EFFECT FOR NONLI TitleSCHRÖDINGER EQUATION IN TWO SPACE DIMENSIONS. Citation Osaka Journal of Mathematics.

ANALYTIC SMOOTHING EFFECT FOR NONLI TitleSCHRÖDINGER EQUATION IN TWO SPACE DIMENSIONS. Citation Osaka Journal of Mathematics. ANALYTIC SMOOTHING EFFECT FOR NONLI TitleSCHRÖDINGER EQUATION IN TWO SPACE DIMENSIONS Author(s) Hoshino, Gaku; Ozawa, Tohru Citation Osaka Journal of Mathematics. 51(3) Issue 014-07 Date Text Version publisher

More information

SEMIGROUP APPROACH FOR PARTIAL DIFFERENTIAL EQUATIONS OF EVOLUTION

SEMIGROUP APPROACH FOR PARTIAL DIFFERENTIAL EQUATIONS OF EVOLUTION SEMIGROUP APPROACH FOR PARTIAL DIFFERENTIAL EQUATIONS OF EVOLUTION Istanbul Kemerburgaz University Istanbul Analysis Seminars 24 October 2014 Sabanc University Karaköy Communication Center 1 2 3 4 5 u(x,

More information

A small-scale decomposition for 3D boundary integral computations with surface tension

A small-scale decomposition for 3D boundary integral computations with surface tension A small-scale decomposition for 3D boundary integral computations with surface tension D. M. Ambrose b, M. Siegel a,, S. Tlupova c a Department of Mathematical Sciences and Center for Applied Mathematics

More information

The Zero Surface Tension Limit of Two-Dimensional Water Waves

The Zero Surface Tension Limit of Two-Dimensional Water Waves The Zero Surface Tension Limit of Two-Dimensional Water Waves DAVID M. AMBROSE Courant Institute AND NADER MASMOUDI Courant Institute Abstract We consider two-dimensional water waves of infinite depth,

More information

Kelvin-Helmholtz instabilities in shallow water

Kelvin-Helmholtz instabilities in shallow water Kelvin-Helmholtz instabilities in shallow water Propagation of large amplitude, long wavelength, internal waves Vincent Duchêne 1 Samer Israwi 2 Raafat Talhouk 2 1 IRMAR, Univ. Rennes 1 UMR 6625 2 Faculté

More information

Sound Generation from Vortex Sheet Instability

Sound Generation from Vortex Sheet Instability Sound Generation from Vortex Sheet Instability Hongbin Ju Department of Mathematics Florida State University, Tallahassee, FL.3306 www.aeroacoustics.info Please send comments to: hju@math.fsu.edu When

More information

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem 1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem Objective of the Chapter: Formulation of the potential flow around the hull of a ship advancing and oscillationg in waves Results of the Chapter:

More information

Gregory R. Baker. Department of Mathematics Ohio State University Columbus, Ohio

Gregory R. Baker. Department of Mathematics Ohio State University Columbus, Ohio Gregory R. Baker Department of Mathematics Ohio State University Columbus, Ohio 43210 baker@math.ohio-state.edu Education Ph.D. Department of Applied Mathematics, California Institute of Technology, Pasadena,

More information

On Ill-Posedness of Truncated Series Models for Water Waves

On Ill-Posedness of Truncated Series Models for Water Waves On Ill-Posedness of Truncated Series Models for Water Waves David M. Ambrose Department of Mathematics Drexel University Philadelphia, PA 19104 Jerry L. Bona Department of Mathematics, Statistics and Computer

More information

ARTICLE IN PRESS. Available online at Mathematics and Computers in Simulation xxx (2011) xxx xxx

ARTICLE IN PRESS. Available online at  Mathematics and Computers in Simulation xxx (2011) xxx xxx Available online at www.sciencedirect.com Mathematics and Computers in Simulation xxx (0) xxx xxx Suppression of Rayleigh Taylor instability using electric fields Lyudmyla L. Barannyk a,, Demetrios T.

More information

(1:1) 1. The gauge formulation of the Navier-Stokes equation We start with the incompressible Navier-Stokes equation 8 >< >: u t +(u r)u + rp = 1 Re 4

(1:1) 1. The gauge formulation of the Navier-Stokes equation We start with the incompressible Navier-Stokes equation 8 >< >: u t +(u r)u + rp = 1 Re 4 Gauge Finite Element Method for Incompressible Flows Weinan E 1 Courant Institute of Mathematical Sciences New York, NY 10012 Jian-Guo Liu 2 Temple University Philadelphia, PA 19122 Abstract: We present

More information

On the weakly nonlinear Kelvin-Helmholtz instability of tangential discontinuities in MHD

On the weakly nonlinear Kelvin-Helmholtz instability of tangential discontinuities in MHD On the weakly nonlinear Kelvin-Helmholtz instability of tangential discontinuities in MHD John K. Hunter Department of Mathematics University of California at Davis Davis, California 9566, U.S.A. and J.

More information

A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups

A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups PROC. ITB Eng. Science Vol. 35 B, No., 3, 39-53 39 A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups W. N. Tan,* & Andonowati Fakulti Sains, Universiti Teknologi Malaysia

More information

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves p. 1/1 Model Equation, Stability and Dynamics for Wavepacket Solitary Waves Paul Milewski Mathematics, UW-Madison Collaborator: Ben Akers, PhD student p. 2/1 Summary Localized solitary waves exist in the

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Analytical Solution Techniques J. Kevorkian University of Washington Wadsworth & Brooks/Cole Advanced Books & Software Pacific Grove, California C H A P T E R 1 The Diffusion

More information

Singularity formation during Rayleigh-Taylor instability

Singularity formation during Rayleigh-Taylor instability J. Fluid Mech. (1993), uol. 252, pp. 51-78 Copyright 0 1993 Cambridge University Press 51 Singularity formation during Rayleigh-Taylor instability By GREGORY BAKER,' RUSSEL E. CAFLISCH' AND MICHAEL SIEGEL'

More information

THE ELLIPTICITY PRINCIPLE FOR SELF-SIMILAR POTENTIAL FLOWS

THE ELLIPTICITY PRINCIPLE FOR SELF-SIMILAR POTENTIAL FLOWS Journal of Hyperbolic Differential Equations Vol., No. 4 005 909 917 c World Scientific Publishing Company THE ELLIPTICITY PRINCIPLE FOR SELF-SIMILAR POTENTIAL FLOWS VOLKER ELLING, and TAI-PING LIU, Dept.

More information

Eddy viscosity of cellular flows by upscaling

Eddy viscosity of cellular flows by upscaling Eddy viscosity of cellular flows by upscaling Alexei Novikov a a California Institute of Technology, Applied & Computational Mathematics 1200 E. California Boulevard, MC 217-50, Pasadena, CA 91125, USA

More information

Simple waves and characteristic decompositions of quasilinear hyperbolic systems in two independent variables

Simple waves and characteristic decompositions of quasilinear hyperbolic systems in two independent variables s and characteristic decompositions of quasilinear hyperbolic systems in two independent variables Wancheng Sheng Department of Mathematics, Shanghai University (Joint with Yanbo Hu) Joint Workshop on

More information

Surface Tension Effect on a Two Dimensional. Channel Flow against an Inclined Wall

Surface Tension Effect on a Two Dimensional. Channel Flow against an Inclined Wall Applied Mathematical Sciences, Vol. 1, 007, no. 7, 313-36 Surface Tension Effect on a Two Dimensional Channel Flow against an Inclined Wall A. Merzougui *, H. Mekias ** and F. Guechi ** * Département de

More information

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities Heiko Berninger, Ralf Kornhuber, and Oliver Sander FU Berlin, FB Mathematik und Informatik (http://www.math.fu-berlin.de/rd/we-02/numerik/)

More information

ALMOST OPTIMAL CONVERGENCE OF THE POINT VORTEX METHOD FOR VORTEX SHEETS USING NUMERICAL FILTERING

ALMOST OPTIMAL CONVERGENCE OF THE POINT VORTEX METHOD FOR VORTEX SHEETS USING NUMERICAL FILTERING MATHEMATICS OF COMPUTATION Volume 68, Number 228, Pages 1465 1496 S 0025-5718(99)01108-4 Article electronically published on May 21, 1999 ALMOST OPTIMAL CONVERGENCE OF THE POINT VORTEX METHOD FOR VORTEX

More information

Uniform Stabilization of a family of Boussinesq systems

Uniform Stabilization of a family of Boussinesq systems Uniform Stabilization of a family of Boussinesq systems Ademir Pazoto Instituto de Matemática Universidade Federal do Rio de Janeiro (UFRJ) ademir@im.ufrj.br In collaboration with Sorin Micu - University

More information

Classical solutions for the quasi-stationary Stefan problem with surface tension

Classical solutions for the quasi-stationary Stefan problem with surface tension Classical solutions for the quasi-stationary Stefan problem with surface tension Joachim Escher, Gieri Simonett We show that the quasi-stationary two-phase Stefan problem with surface tension has a unique

More information

GLOBAL WELL-POSEDNESS FOR NONLINEAR NONLOCAL CAUCHY PROBLEMS ARISING IN ELASTICITY

GLOBAL WELL-POSEDNESS FOR NONLINEAR NONLOCAL CAUCHY PROBLEMS ARISING IN ELASTICITY Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 55, pp. 1 7. ISSN: 1072-6691. UL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu GLOBAL WELL-POSEDNESS FO NONLINEA NONLOCAL

More information

Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water

Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water By Tae-Chang Jo and Wooyoung Choi We study the dynamics of large amplitude internal solitary waves in shallow water by using a strongly

More information

On the local existence for an active scalar equation in critical regularity setting

On the local existence for an active scalar equation in critical regularity setting On the local existence for an active scalar equation in critical regularity setting Walter Rusin Department of Mathematics, Oklahoma State University, Stillwater, OK 7478 Fei Wang Department of Mathematics,

More information

Solvability of the Incompressible Navier-Stokes Equations on a Moving Domain with Surface Tension. 1. Introduction

Solvability of the Incompressible Navier-Stokes Equations on a Moving Domain with Surface Tension. 1. Introduction Solvability of the Incompressible Navier-Stokes Equations on a Moving Domain with Surface Tension Hantaek Bae Courant Institute of Mathematical Sciences, New York University 251 Mercer Street, New York,

More information

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS CHARALAMBOS MAKRIDAKIS AND RICARDO H. NOCHETTO Abstract. It is known that the energy technique for a posteriori error analysis

More information

A scaling limit from Euler to Navier-Stokes equations with random perturbation

A scaling limit from Euler to Navier-Stokes equations with random perturbation A scaling limit from Euler to Navier-Stokes equations with random perturbation Franco Flandoli, Scuola Normale Superiore of Pisa Newton Institute, October 208 Newton Institute, October 208 / Subject of

More information

A PHYSICAL SPACE PROOF OF THE BILINEAR STRICHARTZ AND LOCAL SMOOTHING ESTIMATES FOR THE SCHRÖDINGER EQUATION

A PHYSICAL SPACE PROOF OF THE BILINEAR STRICHARTZ AND LOCAL SMOOTHING ESTIMATES FOR THE SCHRÖDINGER EQUATION A PHYSICAL SPACE PROOF OF THE BILINEAR STRICHARTZ AND LOCAL SMOOTHING ESTIMATES FOR THE SCHRÖDINGER EQUATION TERENCE TAO Abstract. Let d 1, and let u, v : R R d C be Schwartz space solutions to the Schrödinger

More information

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Jinkai Li Department of Mathematics The Chinese University of Hong Kong Dynamics of Small Scales in Fluids ICERM, Feb

More information

Viscous non-linear theory of Richtmyer-Meshkov Instability. Abstract

Viscous non-linear theory of Richtmyer-Meshkov Instability. Abstract Viscous non-linear theory of Richtmyer-Meshkov Instability Pierre Carles and Stéphane Popinet Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie, Case 162, 4 place Jussieu, 75252

More information

Prototype Instabilities

Prototype Instabilities Prototype Instabilities David Randall Introduction Broadly speaking, a growing atmospheric disturbance can draw its kinetic energy from two possible sources: the kinetic and available potential energies

More information

TRAVELING WAVES IN 2D REACTIVE BOUSSINESQ SYSTEMS WITH NO-SLIP BOUNDARY CONDITIONS

TRAVELING WAVES IN 2D REACTIVE BOUSSINESQ SYSTEMS WITH NO-SLIP BOUNDARY CONDITIONS TRAVELING WAVES IN 2D REACTIVE BOUSSINESQ SYSTEMS WITH NO-SLIP BOUNDARY CONDITIONS PETER CONSTANTIN, MARTA LEWICKA AND LENYA RYZHIK Abstract. We consider systems of reactive Boussinesq equations in two

More information

Singularity Formation in a Cylindrical and a Spherical Vortex Sheet

Singularity Formation in a Cylindrical and a Spherical Vortex Sheet Journal of Computational Physics 173, 28 23 (21) doi:1.16/jcph.21.6872, available online at http://www.idealibrary.com on Singularity Formation in a Cylindrical and a Spherical Vortex Sheet Monika Nitsche

More information

Numerical Studies of Backscattering from Time Evolving Sea Surfaces: Comparison of Hydrodynamic Models

Numerical Studies of Backscattering from Time Evolving Sea Surfaces: Comparison of Hydrodynamic Models Numerical Studies of Backscattering from Time Evolving Sea Surfaces: Comparison of Hydrodynamic Models J. T. Johnson and G. R. Baker Dept. of Electrical Engineering/ Mathematics The Ohio State University

More information

Stabilization of a Boussinesq system of KdV KdV type

Stabilization of a Boussinesq system of KdV KdV type Systems & Control Letters 57 (8) 595 61 www.elsevier.com/locate/sysconle Stabilization of a Boussinesq system of KdV KdV type Ademir F. Pazoto a, Lionel Rosier b,c, a Instituto de Matemática, Universidade

More information

Eddy viscosity of cellular flows by upscaling

Eddy viscosity of cellular flows by upscaling Eddy viscosity of cellular flows by upscaling Alexei Novikov a a California Institute of Technology, Applied & Computational Mathematics 200 E. California Boulevard, MC 27-50, Pasadena, CA 925, USA E-mail:

More information

A Product Property of Sobolev Spaces with Application to Elliptic Estimates

A Product Property of Sobolev Spaces with Application to Elliptic Estimates Rend. Sem. Mat. Univ. Padova Manoscritto in corso di stampa pervenuto il 23 luglio 2012 accettato l 1 ottobre 2012 A Product Property of Sobolev Spaces with Application to Elliptic Estimates by Henry C.

More information

Sharp Well-posedness Results for the BBM Equation

Sharp Well-posedness Results for the BBM Equation Sharp Well-posedness Results for the BBM Equation J.L. Bona and N. zvetkov Abstract he regularized long-wave or BBM equation u t + u x + uu x u xxt = was derived as a model for the unidirectional propagation

More information

Steady Water Waves. Walter Strauss. Laboratoire Jacques-Louis Lions 7 November 2014

Steady Water Waves. Walter Strauss. Laboratoire Jacques-Louis Lions 7 November 2014 Steady Water Waves Walter Strauss Laboratoire Jacques-Louis Lions 7 November 2014 Joint work with: Adrian Constantin Joy Ko Miles Wheeler Joint work with: Adrian Constantin Joy Ko Miles Wheeler We consider

More information

GRAVITY PERTURBED CRAPPER WAVES

GRAVITY PERTURBED CRAPPER WAVES GRAVITY PERTURBED CRAPPER WAVES BENJAMIN F. AKERS, DAVID M. AMBROSE & J. DOUGLAS WRIGHT Abstract. Crapper waves are a family of exact periodic traveling wave solutions of the freesurface irrotational incompressible

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Quasi Newton Methods Barnabás Póczos & Ryan Tibshirani Quasi Newton Methods 2 Outline Modified Newton Method Rank one correction of the inverse Rank two correction of the

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Steady Rotational Water Waves

Steady Rotational Water Waves Steady Rotational Water Waves Walter Strauss in memory of Saul Abarbanel ICERM Aug. 21, 2018 History: Euler( 1750) Laplace (1776), Lagrange(1788), Gerstner(1802), Cauchy (1815), Poisson, Airy, Stokes

More information

Turbulent spectra generated by singularities

Turbulent spectra generated by singularities Turbulent spectra generated by singularities p. Turbulent spectra generated by singularities E.A. Kuznetsov Landau Institute for Theoretical Physics, Moscow Russia In collaboration with: V. Naulin A.H.

More information

Mechanisms of Interaction between Ultrasound and Sound in Liquids with Bubbles: Singular Focusing

Mechanisms of Interaction between Ultrasound and Sound in Liquids with Bubbles: Singular Focusing Acoustical Physics, Vol. 47, No., 1, pp. 14 144. Translated from Akusticheskiœ Zhurnal, Vol. 47, No., 1, pp. 178 18. Original Russian Text Copyright 1 by Akhatov, Khismatullin. REVIEWS Mechanisms of Interaction

More information

Striated Regularity of Velocity for the Euler Equations

Striated Regularity of Velocity for the Euler Equations Striated Regularity of Velocity for the Euler Equations JIM KELLIHER 1 with HANTAEK BAE 2 1 University of California Riverside 2 Ulsan National Institute of Science and Technology, Korea 2015 SIAM Conference

More information

arxiv: v1 [math.ap] 5 Nov 2018

arxiv: v1 [math.ap] 5 Nov 2018 STRONG CONTINUITY FOR THE 2D EULER EQUATIONS GIANLUCA CRIPPA, ELIZAVETA SEMENOVA, AND STEFANO SPIRITO arxiv:1811.01553v1 [math.ap] 5 Nov 2018 Abstract. We prove two results of strong continuity with respect

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Modified Equation of a Difference Scheme What is a Modified Equation of a Difference

More information

Modified Serre Green Naghdi equations with improved or without dispersion

Modified Serre Green Naghdi equations with improved or without dispersion Modified Serre Green Naghdi equations with improved or without dispersion DIDIER CLAMOND Université Côte d Azur Laboratoire J. A. Dieudonné Parc Valrose, 06108 Nice cedex 2, France didier.clamond@gmail.com

More information

Key words. water waves, Boussinesq system, spectral stability, transverse perturbation, solitary waves, cnoidal waves

Key words. water waves, Boussinesq system, spectral stability, transverse perturbation, solitary waves, cnoidal waves SPECTRAL STABILITY OF STATIONARY SOLUTIONS OF A BOUSSINESQ SYSTEM DESCRIBING LONG WAVES IN DISPERSIVE MEDIA MIN CHEN, CHRISTOPHER W. CURTIS, BERNARD DECONINCK, CRYSTAL W. LEE AND NGHIEM NGUYEN Key words.

More information

The Nonlinear Schrodinger Equation

The Nonlinear Schrodinger Equation Catherine Sulem Pierre-Louis Sulem The Nonlinear Schrodinger Equation Self-Focusing and Wave Collapse Springer Preface v I Basic Framework 1 1 The Physical Context 3 1.1 Weakly Nonlinear Dispersive Waves

More information

Numerical study of Hele-Shaw flow with suction

Numerical study of Hele-Shaw flow with suction PHYSICS OF FLUIDS VOLUME 11, NUMBER 9 SEPTEMBER 1999 Numerical study of Hele-Shaw flow with suction Hector D. Ceniceros, Thomas Y. Hou, and Helen Si Applied Mathematics, California Institute of Technology,

More information

Strongly nonlinear long gravity waves in uniform shear flows

Strongly nonlinear long gravity waves in uniform shear flows Strongly nonlinear long gravity waves in uniform shear flows Wooyoung Choi Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA Received 14 January

More information

arxiv: v1 [math.ap] 11 Jan 2014

arxiv: v1 [math.ap] 11 Jan 2014 THE UNIFIED TRANSFORM FOR THE MODIFIED HELMHOLTZ EQUATION IN THE EXTERIOR OF A SQUARE A. S. FOKAS AND J. LENELLS arxiv:4.252v [math.ap] Jan 24 Abstract. The Unified Transform provides a novel method for

More information

On the well-posedness of the Prandtl boundary layer equation

On the well-posedness of the Prandtl boundary layer equation On the well-posedness of the Prandtl boundary layer equation Vlad Vicol Department of Mathematics, The University of Chicago Incompressible Fluids, Turbulence and Mixing In honor of Peter Constantin s

More information

Chapter 9. Barotropic Instability. 9.1 Linearized governing equations

Chapter 9. Barotropic Instability. 9.1 Linearized governing equations Chapter 9 Barotropic Instability The ossby wave is the building block of low ossby number geophysical fluid dynamics. In this chapter we learn how ossby waves can interact with each other to produce a

More information

New tests for a singularity of ideal MHD

New tests for a singularity of ideal MHD New tests for a singularity of ideal MHD Robert M. Kerr 1 and Axel Brandenburg 2 1 NCAR, Boulder, CO 80307-3000; 2 Mathematics, University of Newcastle, NE1 7RU, UK Analysis using new calculations with

More information

WELL-POSEDNESS OF THE TWO-DIMENSIONAL GENERALIZED BENJAMIN-BONA-MAHONY EQUATION ON THE UPPER HALF PLANE

WELL-POSEDNESS OF THE TWO-DIMENSIONAL GENERALIZED BENJAMIN-BONA-MAHONY EQUATION ON THE UPPER HALF PLANE WELL-POSEDNESS OF THE TWO-DIMENSIONAL GENERALIZED BENJAMIN-BONA-MAHONY EQUATION ON THE UPPER HALF PLANE YING-CHIEH LIN, C. H. ARTHUR CHENG, JOHN M. HONG, JIAHONG WU, AND JUAN-MING YUAN Abstract. This paper

More information

Floquet Theory for Internal Gravity Waves in a Density-Stratified Fluid. Yuanxun Bill Bao Senior Supervisor: Professor David J. Muraki August 3, 2012

Floquet Theory for Internal Gravity Waves in a Density-Stratified Fluid. Yuanxun Bill Bao Senior Supervisor: Professor David J. Muraki August 3, 2012 Floquet Theory for Internal Gravity Waves in a Density-Stratified Fluid Yuanxun Bill Bao Senior Supervisor: Professor David J. Muraki August 3, 212 Density-Stratified Fluid Dynamics Density-Stratified

More information

On the stability of filament flows and Schrödinger maps

On the stability of filament flows and Schrödinger maps On the stability of filament flows and Schrödinger maps Robert L. Jerrard 1 Didier Smets 2 1 Department of Mathematics University of Toronto 2 Laboratoire Jacques-Louis Lions Université Pierre et Marie

More information

From Isometric Embeddings to Turbulence

From Isometric Embeddings to Turbulence From Isometric Embeddings to Turbulence László Székelyhidi Jr. (Bonn) Programme for the Cours Poupaud 15-17 March 2010, Nice Monday Morning Lecture 1. The Nash-Kuiper Theorem In 1954 J.Nash shocked the

More information

Numerical simulation of dispersive waves

Numerical simulation of dispersive waves Numerical simulation of dispersive waves DENYS DUTYKH 1 Chargé de Recherche CNRS 1 LAMA, Université de Savoie 73376 Le Bourget-du-Lac, France Colloque EDP-Normandie DENYS DUTYKH (CNRS LAMA) Dispersive

More information

The Whitham Equation. John D. Carter April 2, Based upon work supported by the NSF under grant DMS

The Whitham Equation. John D. Carter April 2, Based upon work supported by the NSF under grant DMS April 2, 2015 Based upon work supported by the NSF under grant DMS-1107476. Collaborators Harvey Segur, University of Colorado at Boulder Diane Henderson, Penn State University David George, USGS Vancouver

More information

Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations

Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations H. A. Erbay Department of Natural and Mathematical Sciences, Faculty of Engineering, Ozyegin University, Cekmekoy 34794,

More information

Vortex Filament Dynamics

Vortex Filament Dynamics Vortex Filament Dynamics Jim Thomas August 16, 2015 1 Introduction Formation of large coherent vortices is a recurring theme in two-dimensional turbulence investigations [1]. DNS simulations and lab experiments

More information

ERROR ANALYSIS OF STABILIZED SEMI-IMPLICIT METHOD OF ALLEN-CAHN EQUATION. Xiaofeng Yang. (Communicated by Jie Shen)

ERROR ANALYSIS OF STABILIZED SEMI-IMPLICIT METHOD OF ALLEN-CAHN EQUATION. Xiaofeng Yang. (Communicated by Jie Shen) DISCRETE AND CONTINUOUS doi:1.3934/dcdsb.29.11.157 DYNAMICAL SYSTEMS SERIES B Volume 11, Number 4, June 29 pp. 157 17 ERROR ANALYSIS OF STABILIZED SEMI-IMPLICIT METHOD OF ALLEN-CAHN EQUATION Xiaofeng Yang

More information

1. Introduction and results 1.1. The general Boussinesq abcd model. In this work, we are concerned with the Boussinesq

1. Introduction and results 1.1. The general Boussinesq abcd model. In this work, we are concerned with the Boussinesq SPECTRAL STABILITY FOR SUBSONIC TRAVELING PULSES OF THE BOUSSINESQ ABC SYSTEM SEVDZHAN HAKKAEV, MILENA STANISLAVOVA, AND ATANAS STEFANOV Abstract. We consider the spectral stability of certain traveling

More information

Nonlinear Evolution of a Vortex Ring

Nonlinear Evolution of a Vortex Ring Nonlinear Evolution of a Vortex Ring Yuji Hattori Kyushu Institute of Technology, JAPAN Yasuhide Fukumoto Kyushu University, JAPAN EUROMECH Colloquium 491 Vortex dynamics from quantum to geophysical scales

More information

Recent progress on the vanishing viscosity limit in the presence of a boundary

Recent progress on the vanishing viscosity limit in the presence of a boundary Recent progress on the vanishing viscosity limit in the presence of a boundary JIM KELLIHER 1 1 University of California Riverside The 7th Pacific RIM Conference on Mathematics Seoul, South Korea 1 July

More information

NON-EXISTENCE OF SMALL-AMPLITUDE DOUBLY PERIODIC WAVES FOR DISPERSIVE EQUATIONS

NON-EXISTENCE OF SMALL-AMPLITUDE DOUBLY PERIODIC WAVES FOR DISPERSIVE EQUATIONS NON-EXISTENCE OF SMALL-AMPLITUDE DOUBLY PERIODIC WAVES FOR DISPERSIVE EQUATIONS DAVID M. AMBROSE AND J. DOUGLAS WRIGHT Abstract. We formulate the question of existence of spatially periodic, time-periodic

More information

arxiv: v2 [math.ap] 3 Oct 2011

arxiv: v2 [math.ap] 3 Oct 2011 Splash singularity for water waves arxiv:1106.2120v2 [math.ap] 3 Oct 2011 Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo and Javier Gómez-Serrano Abstract We exhibit smooth initial data

More information