Evaluation of the New Trapped Proton Model (AP9) at ISS Attitudes. Francis F. Badavi. (NASA Langley Radiation Team)

Size: px
Start display at page:

Download "Evaluation of the New Trapped Proton Model (AP9) at ISS Attitudes. Francis F. Badavi. (NASA Langley Radiation Team)"

Transcription

1 Evaluation of the New Trapped Proton Model () at ISS Attitudes Francis F. Badavi (NASA Langley Radiation Team) Old Dominion University, Norfolk, VA 359, USA WRMISS8, 3-5 September 3, Budapest, Hungary

2 Background I Traditionally, trapped exposure estimates for the tissue/ssd based components are computed using NASA trapped models /AE8. These trapped models were developed in the 97s and 98s. II /AE8 are static models. Don t provide probability distribution or error bars. Don t include broad energy range (i.e., hot plasma / energetic protons) and don t include complete spatial coverage for LEO, MEO, GEO, GTO and HEO missions. III Aerospace Corporation, Los Alamos National Laboratory (LANL), National Reconnaissance Office (NRO) and Air Force Research Laboratory (AFRL), embarked on producing /AE9. IV /AE9 offer improvements in spectral and spatial coverage definition, epoch correlated probability distribution, statistical accuracy and uncertainty quantification.

3 Outline I Solar indices and the particular epoch I chose for analysis. II Show the deficiencies of and the improvements that offers. III Talk about the specific Liulin data and / proton boundary conditions that I am using. IV For one day ISS orbit (44 minutes), I will shows dosemetric correlation among, environments and Liulin data for 6 SAA passes. V Summary and future work. *** No further discussion of AE9***

4 ISS South Atlantic Anomaly (SAA) Pass

5 Solar Indices 7/7/ 6// SSN F.7 phi OuluNM year 6 9

6 SSN Solar Index 7/7/ 6// 8 6 SSN SSN year

7 min-max vs. min max 7/7/ 6// SSN SSN year

8 Modulation of the Trapped Protons in LEO 3 75 F.7 solar radio flux ( - W-m - -Hz - ) Epoch (year) Neutron counts (DRNM, normalized Oulu and projection) f p (r,θ,φ,e,t) = f p,min (r,θ,φ,e) exp{-α p [NM F.7 - NM F.7 MIN ]} α p = {log [f p,min (r,θ,φ,e) / f p,max (r,θ,φ,e) ]/[NM F.7 Max - NM F.7 MIN ] Badavi (6)

9 Errors in /AE8 Courtesy /AE9 documents

10 /AE9 Data Sets Temporal Coverage Combined Release and Radiation Effects Satellite (CRRES) Surface Charging at high altitudes (SCATHA) Courtesy /AE9 documents

11 Liulin -4 Data Sets (7/7/) 5x6x4=36 transport runs Liulin data courtesy of T. Dachev

12 / Comparison (Ascending Nodes, 7/7/) max max max Pass Pass Pass3 3

13 / Comparison (Descending Nodes, 7/7/) max max max Pass4 Pass5 Pass6

14 / Dosemetric Comparison (Ascending Node, Pass).5 MDU.5 MDU MDU3.5 MDU Liulin data courtesy of T. Dachev

15 / Dosemetric Comparison (Ascending Node, Pass).5 MDU.5 MDU MDU3.5 MDU Liulin data courtesy of T. Dachev

16 / Dosemetric Comparison (Ascending Node, Pass) MDU MDU MDU MDU Liulin data courtesy of T. Dachev

17 / Dosemetric Comparison (Ascending Node, Pass) MDU MDU MDU MDU Liulin data courtesy of T. Dachev

18 / Dosemetric Comparison (Ascending Node, Pass3).8 MDU.8 MDU MDU MDU Liulin data courtesy of T. Dachev

19 / Dosemetric Comparison (Ascending Node, Pass3).8 MDU.8 MDU MDU MDU Liulin data courtesy of T. Dachev

20 / Dosemetric Comparison (Descending Node, Pass4).8 MDU.8 MDU MDU MDU Liulin data courtesy of T. Dachev

21 / Dosemetric Comparison (Descending Node, Pass4).8 MDU.8 MDU MDU MDU Liulin data courtesy of T. Dachev

22 / Dosemetric Comparison (Descending Node, Pass5) 3.5 MDU MDU MDU MDU Liulin data courtesy of T. Dachev

23 / Dosemetric Comparison (Descending Node, Pass5) 3.5 MDU MDU MDU MDU Liulin data courtesy of T. Dachev

24 / Dosemetric Comparison (Descending Node, Pass6).5 MDU.5 MDU MDU MDU Liulin data courtesy of T. Dachev

25 / Dosemetric Comparison (Descending Node, Pass6).5 MDU.5 MDU MDU MDU Liulin data courtesy of T. Dachev

26 Summary and Future Work I Deficiencies and limitations of was discussed and capabilities was introduced. II The differences in proton boundary conditions for 6 SAA was discussed. III Validations results among, and Liulin data was discussed. In /4 validation cases, correlated fairly well with measurement. In /4 cases, validation was marginal. IV So far, the validation process is strictly manual. Work is underway to automate the validation process. V Next step is to perform validation for the ISS ULF7 configuration. This will depend on the availability of CAD/mass model of ISS for this epoch. (ULF7 3R in 4) VI Limited 3D measurements are currently available. It is very desirable to validate 3D data (TRITEL, etc ) with simulation.

27 Backups

28

29 SAA Ascending Descending Nodes Differences flux > MeV (cm - s - ) at 4 km max Badavi (6)

30 SAA Ascending Descending Nodes Differences flux > MeV (cm - s - ) at 4 km max Badavi (6)

31 SAA Ascending Descending Nodes Differences 5.6 max min Badavi (6)

32 /AE9 Data Sets Spectral (Energy) Coverage Combined Release and Radiation Effects Satellite (CRRES) Surface Charging at high altitudes (SCATHA) Courtesy /AE9 documents

33 Errors in /AE8 Courtesy /AE9 documents

34 ISS-6A Liulin / TEPC Dosimeter Data Format Liulin dosimeters at 4 different locations in lab. module. Present data analysis includes all 4 datasets (MDU - MDU4). Liulin (MDU- MDU4) data were recorded at 3-s. intervals. Data for each of 4 instruments consisted of 66XX records (~4 hrs.) with no gaps. TEPC dosimeter at one location in service module. TEPC data were recorded at 6-s. intervals. Data for TEPC consisted of 833 records (38.5 hr) with 65 min. of gaps. Liulin / TEPC data included orbital parameters as well as dose rates. Measurements were for July 7-3, (near solarmax, GCR???).

35 II ISS-6A Liulin Dosimeter Data Format Dose = N ( n ) Cn Flux =.3 C N n MDU: 6633 records t =-.5 min. MDU: 6686 records t =-. min. MDU3: 665 records t =-.5 min. MDU4: 663 records t =-.5 min. Time sync: 99.8E, correspond to 6 Jul :6: Z (GMT)

36 Description of Liulin Locations -3/5/ mix 3/5/- 6/6/ mix 7-4/6/ XPOP 5-5/6/ mix 6/6/- 5/7/ +XVV 6-3/7/ +XVV 4-5/7/ +XVV MDU# MDU# MDU#3 MDU#4 Dloc Dloc 3 Dloc 4 Dloc 7 Dloc 5 Dloc 6 Dloc 9 Dloc Dloc 3 Dloc 4 Dloc 8 Dloc 9 Dloc 5 Dloc 6 Dloc Dloc Dloc Dloc 3 Dloc 4 Dloc Dloc 3 Dloc 4 Dloc 7 Dloc 8 Dloc Dloc Dloc 3 Dloc 4 X-Axis Perpendicular to Orbit Plane (XPOP) X-Axis along Velocity Vector (XVV)

37 ISS 6A-Configuration with Liulin Dosimeters (6-3 July )

38 IV CDF for MDU - MDU4 and TEPC (6-3 July )

39 Solar Indices SSN F.7 phi OuluNM year 6 9

40 III ISS-6A Flight Trajectory Data (six DOF) Ref. Borislav T. Tomov (STIL)

41 II ISS 6A Liulin MDU-MDU4 Location/Orientation (6-3 July ) Liulin detector CAD model (MDU MDU4)

42 III Basic Proton Field Distributions (with drifting latitude and longitude) 5 Solid: MIN 965 map Dashed: MAX 97 map Longitude, W Time, yr. 35 Latitude, S Time, yr.

43 Liulin -4 Data Sets (7/7/) x5=9 transport runs MDU MDU MDU3 MDU Liulin data courtesy of T. Dachev

A Predictive Code for ISS Radiation Mission Planning

A Predictive Code for ISS Radiation Mission Planning A Predictive Code for ISS Radiation Mission Planning S. El-Jaby, B.J. Lewis Royal Military College of Canada L. Tomi Canadian Space Agency N. Zapp, K. Lee Space Radiation Analysis Group (NASA) 15 th WRMISS

More information

Space radiation results obtained with R3D-B2 instrument on Foton M2 satellite in June 2005

Space radiation results obtained with R3D-B2 instrument on Foton M2 satellite in June 2005 Space radiation results obtained with R3D-B2 instrument on Foton M2 satellite in June 2005 Tsvetan DACHEV 1, Borislav TOMOV 1, Plamen DIMITROV 1, Yury MATVIICHUK 1 1 Solar-Terrestrial Influences Laboratory,

More information

High Dose Rates by Relativistic Electrons: Observations on Foton M2/M3 satellites and on International Space Station

High Dose Rates by Relativistic Electrons: Observations on Foton M2/M3 satellites and on International Space Station High Dose Rates by Relativistic Electrons: Observations on Foton M2/M3 satellites and on International Space Station Ts. Dachev 1, B. Tomov 1, Yu.. Matviichuk 1 1, Pl.. Dimitrov 1 1 N. Bankov 2 1 Solar-Terrestrial

More information

Simultaneous Investigation of Galactic Cosmic Rays on Aircrafts and on International Space Station

Simultaneous Investigation of Galactic Cosmic Rays on Aircrafts and on International Space Station Simultaneous Investigation of Galactic Cosmic Rays on Aircrafts and on International Space Station T. Dachev(1), F. Spurny(2), G. Reitz(3), B.T. Tomov(1), P.G. Dimitrov(1), itrov(1), Y.N. Matviichuk(1)

More information

Analysis of the EVA Doses Observed by Liulin-Type Instruments on ISS

Analysis of the EVA Doses Observed by Liulin-Type Instruments on ISS Analysis of the EVA Doses Observed by Liulin-Type Instruments on ISS Ts.P. Dachev 1, B.T. Tomov 1, Pl.G. Dimitrov 1, Yu.N. Matviichuk 1, N.G. Bankov 1, O. Ploc 2, J. Kubancak 2 Space and Solar-Terrestrial

More information

Space Radiation Dosimetry - Recent Measurements and Future Tasks

Space Radiation Dosimetry - Recent Measurements and Future Tasks Space Radiation Dosimetry - Recent Measurements and Future Tasks G.Reitz, R.Beaujean, Ts. Dachev, S. Deme, W.Heinrich, J. Kopp, M. Luszik-Bhadra and K. Strauch Workshop on Radiation Monitoring for the

More information

New Results for the Earth Radiation Environment

New Results for the Earth Radiation Environment New Results for the Earth Radiation Environment Tsvetan DACHEV 1, Borislav TOMOV 1, Plamen DIMITROV 1 Yury MATVIICHUK 1, Frantisek SPURNY 2 1 Solar-Terrestrial Influences Laboratory, Bulgarian Academy

More information

SOUTH ATLANTIC ANOMALY AND CUBESAT DESIGN CONSIDERATIONS

SOUTH ATLANTIC ANOMALY AND CUBESAT DESIGN CONSIDERATIONS SOUTH ATLANTIC ANOMALY AND CUBESAT DESIGN CONSIDERATIONS 09 AUG 2015 Integrity Service Excellence Presenter Judy A. Fennelly, DR-III, RVB Air Force Research Laboratory Space Vehicles Directorate 1 South

More information

ISSCREM: International Space Station Cosmic Radiation Exposure Model

ISSCREM: International Space Station Cosmic Radiation Exposure Model 17 th WRMISS Conference Austin, USA September 4-6, 2012 ISSCREM: International Space Station Cosmic Radiation Exposure Model S. El-Jaby, B. Lewis Royal Military College of Canada L. Tomi Canadian Space

More information

18-th Workshop on Radiation Monitoring for the International Space Station. 3-5 September 2013, Budapest, Hungary

18-th Workshop on Radiation Monitoring for the International Space Station. 3-5 September 2013, Budapest, Hungary 18-th Workshop on Radiation Monitoring for the International Space Station. 3-5 September 2013, Budapest, Hungary RESULTS OF THE RADIATION MONITORING SYSTEM MEASUREMENTS ON SERVICE MODULE OF ISS DURING

More information

Overview of the ISS radiation environment observed during EXPOSE- R2 mission in

Overview of the ISS radiation environment observed during EXPOSE- R2 mission in Overview of the ISS radiation environment observed during EXPOSE- R2 mission in 2014-2016 T.P. Dachev a, N.G. Bankov a, B. T. Tomov a, Yu. N. Matviichuk a, Pl. G. Dimitrov a, D.-P. Häder b, G. Horneck

More information

Air Force Research Laboratory

Air Force Research Laboratory Air Force Research Laboratory Comparisons of AE9 and AP9 With Legacy Trapped Radiation Models IEEE Nuclear and Space Radiation Effects Conference 9 July 2013 S. L. Huston 1, G. P. Ginet 2, W. R. Johnston

More information

H. Koshiishi, H. Matsumoto, A. Chishiki, T. Goka, and T. Omodaka. Japan Aerospace Exploration Agency

H. Koshiishi, H. Matsumoto, A. Chishiki, T. Goka, and T. Omodaka. Japan Aerospace Exploration Agency 9 th Workshop on Radiation Monitoring for the International Space Station Evaluation of Neutron Radiation Environment inside the International Space Station based on the Bonner Ball Neutron Detector Experiment

More information

Evaluation of Galactic Cosmic Rays Models Using AMS2 Data. Francis F. Badavi 1. Christopher J. Mertens 2 Tony C. Slaba 2

Evaluation of Galactic Cosmic Rays Models Using AMS2 Data. Francis F. Badavi 1. Christopher J. Mertens 2 Tony C. Slaba 2 Evaluation of Galactic Cosmic Rays Models Using AMS2 Data Francis F. Badavi 1 Christopher J. Mertens 2 Tony C. Slaba 2 1 Old Dominion University, Norfolk, VA, USA 2 NASA Langley Research Center, Hampton,

More information

November 2013 analysis of high energy electrons on the Japan Experimental Module (JEM: Kibo)

November 2013 analysis of high energy electrons on the Japan Experimental Module (JEM: Kibo) November 2013 analysis of high energy on the Japan Experimental Module (JEM: Kibo) Francis F. Badavi (ODU) Haruhisa Matsumoto, Kiyokazu Koga (JAXA) Christopher J. Mertens, Tony C. Slaba, John W. Norbury

More information

Radiation Environment and Radiation Dosimetry in the Upper Atmosphere

Radiation Environment and Radiation Dosimetry in the Upper Atmosphere Radiation Environment and Radiation Dosimetry in the Upper Atmosphere Dr. Brad Buddy Gersey Lead Research Scientist NASA Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie

More information

The AE9/AP9 Radiation Specification Development

The AE9/AP9 Radiation Specification Development AEROSPACE REPORT NO. TOR-2009(3905)-8 The AE9/AP9 Radiation Specification Development 15 September 2009 Paul O Brien 1 Tim Guild 1 Greg Ginet 2 and Stu Huston 3 1 Space Science Applications Laboratory

More information

The AE9/AP9 Radiation and Plasma Environment Models

The AE9/AP9 Radiation and Plasma Environment Models Air Force Research Laboratory The AE9/AP9 Radiation and Plasma Environment Models 4 May 2017 Integrity Service Excellence Bob Johnston Air Force Research Laboratory Space Vehicles Directorate, Kirtland

More information

AE9/AP9-IRENE space radiation climatology model

AE9/AP9-IRENE space radiation climatology model AE9/AP9-IRENE space radiation climatology model N O V E M B E R 7, 2 0 1 8 T. P. O B R I E N 1, W. R. J O H N S T O N 2, S. H U S T O N 3, T. G U I L D 1, Y. - J. S U 2, C. R O T H 3, R. Q U I N N 3 1

More information

Radiation Environment. Efforts at JPL. Dr. Henry Garrett. Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena, CA 91109

Radiation Environment. Efforts at JPL. Dr. Henry Garrett. Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena, CA 91109 Space Modeling Space Radiation Radiation Environment Environment Modeling Efforts Efforts at JPL JPL Dr. Henry Garrett Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena, CA 91109 Spacecraft Environmental

More information

Intercomparisons of the proton models

Intercomparisons of the proton models Chapter 7 Intercomparisons of the proton models In this Chapter, we intercompare the flux maps obtained from the AZUR, SAMPEX and UARS data. The AP-8 directional fluxes are added to the comparisons to

More information

Solar Particle Events in Aviation and Space. Günther Reitz Insitute of Aerospace Medicine German Aerospace Center, DLR, Cologne, Germany

Solar Particle Events in Aviation and Space. Günther Reitz Insitute of Aerospace Medicine German Aerospace Center, DLR, Cologne, Germany Solar Particle Events in Aviation and Space Günther Reitz Insitute of Aerospace Medicine German Aerospace Center, DLR, Cologne, Germany Radiation Field in the Heliosphere LEO orbit Fluxes of primary space

More information

DIN EN : (E)

DIN EN : (E) DIN EN 16603-10-04:2015-05 (E) Space engineering - Space environment; English version EN 16603-10-04:2015 Foreword... 12 Introduction... 13 1 Scope... 14 2 Normative references... 15 3 Terms, definitions

More information

Portable, Low-cost Proportional Counters for Space, Atmospheric and Ground based Applications

Portable, Low-cost Proportional Counters for Space, Atmospheric and Ground based Applications Portable, Low-cost Proportional Counters for Space, Atmospheric and Ground based Applications E. R. Benton 1, A. C. Lucas 1, O. I. Causey 1, S. Kodaira 2 and H. Kitamura 2 1 E. V. Benton Radiation Physics

More information

Earth and Moon Radiation Environment Results Obtained by RADOM Instrument on Indian Chandrayyan-1 1 Satellite. Comparison with Model

Earth and Moon Radiation Environment Results Obtained by RADOM Instrument on Indian Chandrayyan-1 1 Satellite. Comparison with Model Earth and Moon Radiation Environment Results Obtained by RADOM Instrument on Indian Chandrayyan-1 1 Satellite. Comparison with Model Ts.P. Dachev 1, G. De Angelis 2, B.T. Tomov 1, Yu.N.. Matviichuk 1 Pl.G..

More information

Solar Cell Radiation Environment Analysis Models (SCREAM)

Solar Cell Radiation Environment Analysis Models (SCREAM) Solar Cell Radiation Environment Analysis Models (SCREAM) 2017 Space Environment Engineering & Science Applications Workshop (SEESAW) Scott R. Messenger, Ph.D. Principal Space Survivability Physicist Scott.messenger@ngc.com

More information

Model and Data Deficiencies

Model and Data Deficiencies Air Force Research Laboratory Model and Data Deficiencies Space Environment Engineering and Science Applications Workshop 5 8 September 2017 Boulder, CO Stuart Huston Integrity Service Excellence Confluence

More information

FIRST RESULTS OF THE TRITEL SPACE DOSIMETRY TELESCOPE FROM THE MISSION ON BOARD THE BEXUS-12 STRATOSPHERIC BALLOON

FIRST RESULTS OF THE TRITEL SPACE DOSIMETRY TELESCOPE FROM THE MISSION ON BOARD THE BEXUS-12 STRATOSPHERIC BALLOON Hungarian Academy of Sciences Centre for Energy Research FIRST RESULTS OF THE TRITEL SPACE DOSIMETRY TELESCOPE FROM THE MISSION ON BOARD THE BEXUS-12 STRATOSPHERIC BALLOON B. Zábori 1,2, A. Hirn 1, I.

More information

Van Allen Probes Mission and Applications

Van Allen Probes Mission and Applications Van Allen Probes Mission and Applications J. Mazur and P. O Brien The Aerospace Corporation 5 September 2017 2017 The Aerospace Corporation Topics Van Allen Probes Mission Observables from the mission

More information

The Los Alamos Laboratory: Space Weather Research and Data

The Los Alamos Laboratory: Space Weather Research and Data The Los Alamos Laboratory: Space Weather Research and Data R. Friedel, - Center for Earth and Space Science M. G. Henderson, S. K. Morley, V. K. Jordanova, G. S. Cunningham, J. R. Woodroffe, T. Brito,

More information

NASA Use and Needs for Radiation and Spacecraft Charging Models

NASA Use and Needs for Radiation and Spacecraft Charging Models NASA Use and Needs for Radiation and Spacecraft Charging Models Joseph I. Minow NASA, Marshall Space Flight Center, Huntsville, AL Linda Neergaard Parker University Space Research Association, Huntsville,

More information

The Launch of Gorizont 45 on the First Proton K /Breeze M

The Launch of Gorizont 45 on the First Proton K /Breeze M The Launch of Gorizont 45 on the First Proton K / Fred D. Rosenberg, Ph.D. Space Control Conference 3 April 2001 FDR -01 1 This work is sponsored by the Air Force under Air Force Contract F19628-00-C-0002

More information

Solar Energetic Particles measured by AMS-02

Solar Energetic Particles measured by AMS-02 Solar Energetic Particles measured by AMS-02 Physics and Astronomy Department, University of Hawaii at Manoa, 96822, HI, US E-mail: bindi@hawaii.edu AMS-02 collaboration The Alpha Magnetic Spectrometer

More information

Low energy electrons at MEO during observed surface charging events

Low energy electrons at MEO during observed surface charging events Low energy electrons at MEO during observed surface charging events N. Ganushkina (1, 2), I. Sillanpää (1), Jean-Charles Matéo-Vélez (3), S. Dubyagin (1), Angélica Sicard-Piet (3), S. Claudepierre (4),

More information

Study of the radiation fields in LEO with the Timepix detector

Study of the radiation fields in LEO with the Timepix detector Study of the radiation fields in LEO with the Timepix detector 1 1, Czech Technical University in Prague 16th Baksan Cosmology School 1/24 Timepix in space 2/24 Proba-V Altitude = 820 km Inclination =

More information

OSTST, October 2014

OSTST, October 2014 OSTST, 19-23 October 2014 Update of the South-Atlantic Anomaly corrective model for JASON-1 DORIS data using the maps of energetic particles from the CARMEN dosimeter onboard JASON-2 H. Capdeville (1),

More information

SPENVIS Tutorial: Radiation models in SPENVIS and their accuracy

SPENVIS Tutorial: Radiation models in SPENVIS and their accuracy SPENVIS Tutorial: Radiation models in SPENVIS and their accuracy D. Heynderickx DH Consultancy, Leuven, Belgium Outline Radiation environments Sources of model uncertainties Running radiation models in

More information

Recent Radiation Monitoring Results: Expedition 10, 11 and STS-114

Recent Radiation Monitoring Results: Expedition 10, 11 and STS-114 Recent Radiation Monitoring Results: Expedition 10, 11 and STS-114 E. Semones, M. Weyland; B. Rutledge, T. Shelfer; R. Gaza; D. Zhou; A. Johnson; and N. Zapp WRMISS 10 Chiba, Japan Lyndon B. Johnson Space

More information

AE9/AP9/SPM: NEW MODELS FOR RADIATION BELT AND SPACE PLASMA SPECIFICATION

AE9/AP9/SPM: NEW MODELS FOR RADIATION BELT AND SPACE PLASMA SPECIFICATION AFRL-RV-PS- TP-2016-0003 AFRL-RV-PS- TP-2016-0003 AE9/AP9/SPM: NEW MODELS FOR RADIATION BELT AND SPACE PLASMA SPECIFICATION W. Robert Johnston, et al. 05 May 2014 Briefing Charts APPROVED FOR PUBLIC RELEASE;

More information

Lecture 1d: Satellite Orbits

Lecture 1d: Satellite Orbits Lecture 1d: Satellite Orbits Outline 1. Newton s Laws of Motion 2. Newton s Law of Universal Gravitation 3. Kepler s Laws 4. Putting Newton and Kepler s Laws together and applying them to the Earth-satellite

More information

Science Overview. Vassilis Angelopoulos, ELFIN PI

Science Overview. Vassilis Angelopoulos, ELFIN PI Science Overview Vassilis Angelopoulos, ELFIN PI Science Overview-1 MPDR, 2/12/2015 RADIATION BELTS: DISCOVERED IN 1958, STILL MYSTERIOUS Explorer 1, 1958 Time Magazine, May 4, 1959 Science Overview-2

More information

Charged Particle Measurements in Mars Orbit from 2002 to 2006

Charged Particle Measurements in Mars Orbit from 2002 to 2006 Charged Particle Measurements in Mars Orbit from 2002 to 2006 Cary Zeitlin, Lawrence Berkeley National Laboratory Kerry T. Lee, Lockheed Martin Aerospace Co. MARIE & MRME MRME The Mars Radiation Monitoring

More information

Monthly Proton Flux. Solar modulation with AMS. Veronica Bindi, AMS Collaboration

Monthly Proton Flux. Solar modulation with AMS. Veronica Bindi, AMS Collaboration Solar modulation with AMS Monthly Proton Flux Veronica Bindi, AMS Collaboration Physics and Astronomy Department University of Hawaii at Manoa Honolulu, Hawaii, US 1 AMS on the ISS May 19, 2011 and for

More information

Bubble-Detector Measurements for Matroshka-R and Radi-N2: ISS-51/52 and ISS-53/54

Bubble-Detector Measurements for Matroshka-R and Radi-N2: ISS-51/52 and ISS-53/54 Bubble-Detector Measurements for Matroshka-R and Radi-N2: ISS-51/52 and ISS-53/54 22 nd WRMISS, September 5 th 7 th 2017 Martin Smith, Bubble Technology Industries 23 rd WRMISS, University of Fukui, Tsuruga,

More information

Slot Region Radiation Environment Models

Slot Region Radiation Environment Models Slot Region Radiation Environment Models I. Sandberg, I.A. Daglis (IAASARS/NOA, Phys/UoA) D. Heynderickx (DHConsultancy) H. Evans, P. Nieminen (ESA/ESTEC) ESTEC/CONTRACT No.4000104839 (ESTEC/ITT AO/1 6700/11/NL/AT)

More information

Air Force Research Laboratory

Air Force Research Laboratory Air Force Research Laboratory AE9, AP9, and SPM: New Features and Future Version Plans 30 June 2013 W. R. Johnston 1, T. P. O Brien 2, G. P. Ginet 3, C. J. Roth 4, R. A. Quinn 4, P. Whelan 4, S. L. Huston

More information

This project has received funding from the European Union s Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant

This project has received funding from the European Union s Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant This project has received funding from the European Union s Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant agreement number 721624. Space weather and the variable

More information

Mission to Understand Electron Pitch Angle Diffusion and Characterize Precipitation Bands and Spikes. J. F. Fennell 1 and P. T.

Mission to Understand Electron Pitch Angle Diffusion and Characterize Precipitation Bands and Spikes. J. F. Fennell 1 and P. T. Mission to Understand Electron Pitch Angle Diffusion and Characterize Precipitation Bands and Spikes J. F. Fennell 1 and P. T. O Brien 2 1 The Aerospace Corporation, MS:M2-260, P.O.Box 92957, Los Angeles,

More information

subject Dan Burbank), two JAXA astronauts (including the very first subject Soichi Noguchi in 2010) and ESA astronaut Paolo Nespoli in 2011. In terms of basic research, the prolonged weightlessness on

More information

Data and Models for Internal Charging Analysis

Data and Models for Internal Charging Analysis Data and Models for Internal Charging Analysis Alex Hands University of Surrey, UK 5 th September 2017 SEESAW Conference Boulder CO Outline Background Internal Charging Data Focus on SURF instrument Environment

More information

D E S I R E Dose Estimation by Simulation of the ISS Radiation Environment

D E S I R E Dose Estimation by Simulation of the ISS Radiation Environment D E S I R E Dose Estimation by Simulation of the ISS Radiation Environment http://www.particle.kth.se/desire/ Status of the DESIRE project: Geant4 Physics Validation Studies and Columbus/ISS Radiation

More information

Operational Impacts of Space Weather

Operational Impacts of Space Weather Operational Impacts of Space Weather R. Lambour, A. J. Coster, R. Clouser, L. E. Thornton, J. Sharma, and A. Cott 2001 Space Control Conference 3 April 2001 2001 Space Control Conf. -1 Outline Introduction

More information

D E S I R E Dose Estimation by Simulation of the ISS Radiation Environment

D E S I R E Dose Estimation by Simulation of the ISS Radiation Environment D E S I R E Dose Estimation by Simulation of the ISS Radiation Environment http://www.particle.kth.se/desire/ The DESIRE project: Studies of the Columbus/ISS radiation environment using Geant4 T. Ersmark

More information

Internal Charging Hazards in Near-Earth Space during Solar Cycle 24 Maximum: Van Allen Probes Measurements

Internal Charging Hazards in Near-Earth Space during Solar Cycle 24 Maximum: Van Allen Probes Measurements Internal Charging Hazards in Near-Earth Space during Solar Cycle 24 Maximum: Van Allen Probes Measurements T. Mulligan Skov, J.F. Fennell, J.L. Roeder, J.B. Blake, and S.G. Claudepierre The Aerospace Corporation,

More information

SPACE DOSIMETRY WITH A 3D SILICON DETECTOR TELESCOPE

SPACE DOSIMETRY WITH A 3D SILICON DETECTOR TELESCOPE SPACE DOSIMETRY WITH A 3D SILICON DETECTOR TELESCOPE THE ISS VERSIONS OF TRITEL Attila Hirn, Tamás Pázmándi, Sándor Deme, István Apáthy, Antal Csőke, László Bodnár* Hungarian Academy of Sciences KFKI Atomic

More information

Proton Launch System Mission Planner s Guide APPENDIX F. Proton Launch System Options and Enhancements

Proton Launch System Mission Planner s Guide APPENDIX F. Proton Launch System Options and Enhancements Proton Launch System Mission Planner s Guide APPENDIX F Proton Launch System Options and Enhancements F. PROTON LAUNCH SYSTEM OPTIONS AND ENHANCEMENTS The missions presented in the previous sections represent

More information

LEO radiation environment: impacts on PROBA. Erwin De Donder BIRA-IASB Space Weather Section

LEO radiation environment: impacts on PROBA. Erwin De Donder BIRA-IASB Space Weather Section LEO radiation environment: impacts on PROBA Erwin De Donder BIRA-IASB Space Weather Section Brussels, 2014 March 31 STCE Workshop: PROBA science operations 1 Introduction BIRA-IASB Space Weather Section:

More information

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Aman Saluja #1, Manish Bansal #2, M Raja #3, Mohd Maaz #4 #Aerospace Department, University of Petroleum and Energy

More information

Calculation of Bubble Detector Response Using Data from the Matroshka-R Study

Calculation of Bubble Detector Response Using Data from the Matroshka-R Study Calculation of Bubble Detector Response Using Data from the Matroshka-R Study B. J. Lewis 1, T. Matthews 2, S. El-Jaby 1, L. Tomi 2, M. Smith 3, H. Ing 3, H.R. Andrews 3, V. Shurshakov 4, I. Tchernykh

More information

Tritel: 3D Silicon Detector Telescope used for Space Dosimetry. Tamás Pázmándi, Attila Hirn, Sándor Deme, István Apáthy, Antal Csőke, *László Bodnár

Tritel: 3D Silicon Detector Telescope used for Space Dosimetry. Tamás Pázmándi, Attila Hirn, Sándor Deme, István Apáthy, Antal Csőke, *László Bodnár Tritel: 3D Silicon Detector Telescope used for Space Dosimetry Tamás Pázmándi, Attila Hirn, Sándor Deme, István Apáthy, Antal Csőke, *László Bodnár KFKI Atomic Energy Research Institute, H-1525 Budapest,

More information

U.S. Radiation Dose Limits for Astronauts

U.S. Radiation Dose Limits for Astronauts U.S. Radiation Dose Limits for Astronauts Link to Abstract Link to Menu Health Physics Society 56 th Annual Meeting, West Palm Beach, Florida In lieu of TAM-E.6, Tuesday, June 28, 2011 Daniel J. Strom,

More information

Arctic Weather Every 10 Minutes: Design & Operation of ABI for PCW

Arctic Weather Every 10 Minutes: Design & Operation of ABI for PCW Arctic Weather Every 10 Minutes: Design and Operation of ABI for PCW Dr. Paul C. Griffith and Sue Wirth 31st Space Symposium, Technical Track, Colorado Springs, Colorado This document is not subject to

More information

The Los Alamos Dynamic Radiation Environment Assimilation Model (DREAM) for Space Weather Specification and Forecasting

The Los Alamos Dynamic Radiation Environment Assimilation Model (DREAM) for Space Weather Specification and Forecasting The Los Alamos Dynamic Radiation Environment Assimilation Model (DREAM) for Space Weather Specification and Forecasting Geoffrey D. Reeves, Reiner H. W. Friedel, Yue Chen, Josef Koller, and Michael G.

More information

Air Force Research Laboratory

Air Force Research Laboratory Air Force Research Laboratory The AE9/AP9 Next Generation Radiation Specification Models Challenges 3 August 2014 T. P. O Brien 1,S. L. Huston 2, W. R. Johnston 3, G. P. Ginet 4, and T. B. Guild 1 1 Aerospace

More information

A survey of Radiation Hazards & Shields for Space Craft & Habitats

A survey of Radiation Hazards & Shields for Space Craft & Habitats A survey of Radiation Hazards & Shields for Space Craft & Habitats By Philip Erner pe4828@albany.edu Presented at Institute for Nuclear Theory s Summer School on Nuclear & Particle Astrophysics, University

More information

Exploring the ionosphere of Mars

Exploring the ionosphere of Mars Exploring the ionosphere of Mars This hazy region contains the atmosphere and ionosphere of Mars Paul Withers Boston University (withers@bu.edu) Department of Physics and Astronomy, University of Iowa,

More information

Charged Particle Measurements during Cruise and on Mars with the Radiation Assessment Detector (MSL/RAD)

Charged Particle Measurements during Cruise and on Mars with the Radiation Assessment Detector (MSL/RAD) Charged Particle Measurements during Cruise and on Mars with the Radiation Assessment Detector (MSL/RAD) Bent Ehresmann Southwest Research Institute, Boulder, Colorado, USA C. Zeitlin, D.M. Hassler, S.

More information

Natural and Induced Environment in Low Earth Orbit

Natural and Induced Environment in Low Earth Orbit NASA/TM-2002-211668 Natural and Induced Environment in Low Earth Orbit John W. Wilson Langley Research Center, Hampton, Virginia Francis F. Badavi Christopher Newport University, Newport News, Virginia

More information

Jovian Radiation Environment Models at JPL

Jovian Radiation Environment Models at JPL Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. Jovian Radiation Environment Models at JPL By Insoo Jun and the JPL Natural Space Environments Group Jet Propulsion

More information

The occurrence climatology equatorial F-region irregularities in the COSMIC RO data

The occurrence climatology equatorial F-region irregularities in the COSMIC RO data The occurrence climatology equatorial F-region irregularities in the COSMIC RO data B. A. Carter 1, K. Zhang 1, R. Norman 1, V. V. Kumar 2, S. Kumar 3 and N. L. Yen 4 1 RMIT University, Australia, www.rmit.edu.au/space

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

Symbiosis: Industrial and Scientific Space Technology Ecosystems

Symbiosis: Industrial and Scientific Space Technology Ecosystems Symbiosis: Industrial and Scientific Space Technology Ecosystems The Significance of the AE9/AP9 Next-Generation Radiation Specification Models 20 August 2012 Clark M. Groves, PhD Colonel, United States

More information

NOAA Space Weather Prediction Center Data and Services. Terry Onsager and Howard Singer NOAA Space Weather Prediction Center

NOAA Space Weather Prediction Center Data and Services. Terry Onsager and Howard Singer NOAA Space Weather Prediction Center NOAA Space Weather Prediction Center Data and Services Terry Onsager and Howard Singer NOAA Space Weather Prediction Center Terry.Onsager@noaa.gov Customer Subscriptions to Space Weather Services Frequent

More information

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013 BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission with Novel Plasma Propulsion Technology Sara Spangelo, NASA JPL, Caltech Benjamin Longmier, University of Michigan Interplanetary Small

More information

Solar Particle Effects in Aircrew Dosimetry

Solar Particle Effects in Aircrew Dosimetry Solar Particle Effects in Aircrew Dosimetry Graeme Taylor Neutron Measurement Workshop 26 th October 2006 1 Presentation Overview Overview of aircrew exposure to cosmic radiation NPL s involvement in aircrew

More information

Radiation Effects in MMIC Devices

Radiation Effects in MMIC Devices Chapter. Radiation Effects in MMIC Devices C. Barnes and L. Selva I. Introduction The use of microelectronic devices in both civilian and military spacecraft requires that these devices preserve their

More information

GCR Methods in Radiation Transport. F.A. Cucinotta And M.Y. Kim NASA Johnson Space Center

GCR Methods in Radiation Transport. F.A. Cucinotta And M.Y. Kim NASA Johnson Space Center GCR Methods in Radiation Transport F.A. Cucinotta And M.Y. Kim NASA Johnson Space Center Overview CRÈME used in HZETRN and other codes 1986-1992 Badhwar and O Neill Model developed for HZETRN applications

More information

The Effect of Galactic Cosmic Rays on the Middle Atmosphere: a study using the Canadian Middle Atmosphere Model

The Effect of Galactic Cosmic Rays on the Middle Atmosphere: a study using the Canadian Middle Atmosphere Model The Effect of Galactic Cosmic Rays on the Middle Atmosphere: a study using the Canadian Middle Atmosphere Model A web of theory has been spun around the Sun's climate influence BBC News, Nov 14, 2007 Robert

More information

Simulation of the charging process of the LISA test masses due to solar particles.

Simulation of the charging process of the LISA test masses due to solar particles. Simulation of the charging process of the LISA test masses due to solar particles. 5 th International Lisa Symposium 14 July 2004 Helios Vocca INFN Pg Solar Energetic Particles (SEPs( SEPs) SEPs are particles

More information

IAC-08-A MONTE CARLO SIMULATIONS OF ENERGY LOSSES BY SPACE PROTONS IN THE CRATER DETECTOR

IAC-08-A MONTE CARLO SIMULATIONS OF ENERGY LOSSES BY SPACE PROTONS IN THE CRATER DETECTOR IAC-08-A1.4.06 MONTE CARLO SIMULATIONS OF ENERGY LOSSES BY SPACE PROTONS IN THE CRATER DETECTOR Lawrence W. Townsend The University of Tennessee, Knoxville, Tennessee, United States of America ltownsen@tennessee.edu

More information

Monitoring solar energetic particles with ESA SREM units

Monitoring solar energetic particles with ESA SREM units Monitoring solar energetic particles with ESA SREM units I. Sandberg Institute for Space Applications and Remote Sensing National Observatory of Athens, Greece The 10th Hellenic Astronomical Conference

More information

On-Orbit Detection of Spacecraft Charging Effects

On-Orbit Detection of Spacecraft Charging Effects On-Orbit Detection of Spacecraft Charging Effects Joseph I. Minow NASA, Marshall Space Flight Center In-Space Inspection Workshop 2017 NASA JSC, Houston, Texas 30 January 2 February 2017 ISS image: 7 March

More information

Radiation Environments, Effects and Needs for ESA Missions

Radiation Environments, Effects and Needs for ESA Missions Radiation Environments, Effects and Needs for ESA Missions Eamonn Daly European Space Agency ESTEC, Noordwijk, The Netherlands Space Environment Engineering and Science Applications Workshop 5 September

More information

A r Ω = Solid Angle, A = Area, r = distance

A r Ω = Solid Angle, A = Area, r = distance QUANTIFICATION OF PHENOMENA OBSERVED DURING A SINGLE EVENT UPSET TEST ON A RECOVERABLE FLIGHT CONTROL COMPUTER Matthew A. Ferguson, Undergraduate Student, Old Dominion University, Norfolk, VA Advisor:

More information

Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques

Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques Orbital Debris Observation via Laser Illuminated Optical Measurement Techniques Makoto TAGAWA Kyushu University Toshiya HANADA Kyushu University Kozue HASHIMOTO, Yukihito KITAZAWA, Aritsune KAWABE IHI

More information

Specification of electron radiation environment at GEO and MEO for surface charging estimates

Specification of electron radiation environment at GEO and MEO for surface charging estimates Specification of electron radiation environment at GEO and MEO for surface charging estimates N. Ganushkina (1, 2), S. Dubyagin (1), J.-C. Matéo Vélez (3), A. Sicard (3), D. Payan (4), M. Liemohn (2) (1)

More information

Results from the PAMELA Space Experiment

Results from the PAMELA Space Experiment Results from the PAMELA Space Experiment Emiliano Mocchiutti INFN Trieste, Italy On behalf of the PAMELA collaboration VULCANO Workshop 2014 Frontier Objects in Astrophysics and Particle Physics 18th -

More information

Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS)

Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS) Update on Calibration Studies of the Canadian High-Energy Neutron Spectrometry System (CHENSS) K. Garrow 1, B.J. Lewis 2, L.G.I. Bennett 2, M.B. Smith, 1 H. Ing, 1 R. Nolte, 3 S. Röttger, R 3 R. Smit 4

More information

Low energy electrons in the inner Earth s magnetosphere

Low energy electrons in the inner Earth s magnetosphere Low energy electrons in the inner Earth s magnetosphere Natalia Ganushkina (1, 2) (1) University of Michigan, Ann Arbor MI, USA (2) Finnish Meteorological Institute, Helsinki, Finland The research leading

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Presentation Outline Mission Overview Mission Relevance

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Mission Overview Mission Relevance ConOps INCA Payload

More information

The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) Investigation for the Lunar Reconnaissance Orbiter

The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) Investigation for the Lunar Reconnaissance Orbiter The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) Investigation for the Lunar Reconnaissance Orbiter J. E. Mazur 1, H. E. Spence 2, J. B. Blake 1, E. L. Kepko 2, J. Kasper 2,3, L. Townsend

More information

SREM: 8 years experience of radiation monitoring with a standard instrument

SREM: 8 years experience of radiation monitoring with a standard instrument SREM: 8 years experience of radiation monitoring with a standard instrument H.D.R. Evans 1, E.J. Daly 1, P. Nieminen 1, W. Hajdas 2, A. Mohammadzadeh 1, D. Rodgers 1 1 ESA/ESTEC, The Netherlands, 2 PSI,

More information

RADIATION OPTIMUM SOLAR-ELECTRIC-PROPULSION TRANSFER FROM GTO TO GEO

RADIATION OPTIMUM SOLAR-ELECTRIC-PROPULSION TRANSFER FROM GTO TO GEO RADIATION OPTIMUM SOLAR-ELECTRIC-PROPULSION TRANSFER FROM GTO TO GEO R. Jehn European Space Operations Centre, ESA/ESOC, Robert-Bosch-Str. 5, 64289Darmstadt, Germany, +49 6151 902714, ruediger.jehn@esa.int

More information

The Search for >35 MeV Neutrons from the June 3, 2012 Impulsive Flare

The Search for >35 MeV Neutrons from the June 3, 2012 Impulsive Flare The Search for >35 MeV Neutrons from the June 3, 2012 Impulsive Flare K. Koga 1), S. Masuda 2), H. Matsumoto 1), Y. Muraki 2), T. Obara 3) O. Okudaira 1), S. Shibata 4), T. Yamamoto 5)*), and T. Goka 1)

More information

ICARE instruments and data sets

ICARE instruments and data sets ICARE instruments and data sets Robert ECOFFET, CNES They made it possible Michel LABRUNEE, Sébastien BARDE, Françoise BEZERRA, Guy ROLLAND, Eric LORFEVRE, CNES Daniel BOSCHER, Sébastien BOURDARIE, ONERA

More information

The South Atlantic Anomaly drift on the proton flux data of satellite experiments

The South Atlantic Anomaly drift on the proton flux data of satellite experiments The South Atlantic Anomaly drift on the proton flux data of satellite experiments Author affiliation E-mail: SYAleksandrin@mephi.ru Galper A.M. E-mail: AMGalper@mephi.ru Koldashov S.V. E-mail: SVKoldashov@mephi.ru

More information

Creating Satellite Orbits

Creating Satellite Orbits Exercises using Satellite ToolKit (STK) vivarad@ait.ac.th Creating Satellite Orbits 1. What You Will Do Create a low-earth orbit (LEO) satellite Create a medium-earth orbit (MEO) satellite Create a highly

More information

Air Force Research Laboratory

Air Force Research Laboratory Air Force Research Laboratory Intercalibration 10 October 2012 Integrity Service Excellence Wm. Robert (Bob) Johnston Research Physicist Air Force Research Laboratory Space Vehicles Directorate Kirtland

More information

Chart 1 Changing the Perspective: Atmospheric Research on the ISS Prof. Dr. Hansjörg Dittus German Aerospace Center (DLR)

Chart 1 Changing the Perspective: Atmospheric Research on the ISS Prof. Dr. Hansjörg Dittus German Aerospace Center (DLR) www.dlr.de Chart 1 Changing the Perspective: Atmospheric Research on the ISS Prof. Dr. Hansjörg Dittus German Aerospace Center (DLR) www.dlr.de Chart 2 DLR German Aerospace Center Research Institution

More information