Radiation Environment. Efforts at JPL. Dr. Henry Garrett. Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena, CA 91109

Size: px
Start display at page:

Download "Radiation Environment. Efforts at JPL. Dr. Henry Garrett. Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena, CA 91109"

Transcription

1 Space Modeling Space Radiation Radiation Environment Environment Modeling Efforts Efforts at JPL JPL Dr. Henry Garrett Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena, CA Spacecraft Environmental Interactions, Envts (Garrett).ppt 2-1

2 SPACE RADIATION RADIATION ENVIRONMENTS ENVIRONMENTS SUN SEP Models EARTH POES SAA Models Geosynchronous Plasma PLANETS Jupiter Saturn MAN-MADE RPG/RHU 2-2

3 SOLAR PROTON EVENTS-SPACE RAIN 2-3

4 FREQUENCY OF MAJOR SOLAR PROTON EVENTS 2-4

5 JPL SPE Model Updates Purpose of new model is to develop statistical distributions of 3 quantities: -Event fluences: Log-normal distribution -Event durations: Poisson Distribution -Time Intervals between events: Poisson Distribution Event Fluence Can generate a virtual data set based on these three distributions. Spacecraft Environmental Interactions, Time interval between events Duration of events 2-year at 1 AU Envts (Garrett).ppt 2-5

6 JPL SPE Model Updates SPE Model Composition Fraction of missions with fluences > F. This particular example was obtained for a 60-day solar probe mission trajectory with a 1/r2 scaling factor. 2-6

7 JPL SPE Model Updates Publications: - Feynman, J, G. Spitale, J. Wang and S. Gabriel, Interplanetary proton fluence model : JPL 1991, J. Geophys. Res., 98, 13281, Ruzmaikin, A., G. Li, G. Zank, J. Feynman, and I. Jun, The radial dependence of solar energetic particle fluxes, 11th Solar Wind/ SOHO 16: Connecting Sun and Heliosphere, June 11-17, Swimm, R. T., I. Jun, A. Ruzmaikin, J. Feynman, A. J. Tylka, and W. F. Dietrich, Statistics of solar energetic particle events: fluences, durations, and time interval, 36th COSPAR Scientific Assembly, Beijing, China, July 16-23,

8 EARTH TRAPPED RADIATION MODELS Contour plots of > 1MeV electron and >10 MeV proton integral fluxes at Earth. Coordinate system used is geographic at the 0 meridian. Based on AP8 and AE8 solar maximum models. 2-8

9 Why is there a South Atlantic Anomaly? 2-9

10 Long-Term Observations of Trapped High-Energy Protons (L<4) by NOAA Polar Orbiting Environmental Satellites (POES) D. Evans (NOAA), H. Garrett (JPL), I. Jun (JPL), R. Evans (Gibbel Corp.), and J. Chow (Raytheon Corp. SPACECRAFT: ORBIT: PERIOD: NOAA-15, -16, -17 ~840 Km altitude, 98 Incl June 1, 1998 June 30, 2005 ~15 satellite-years INSTRUMENT: Space Environment Monitor (SEM)-2 Omni-directional H+ detectors ENERGY RANGE: >16 MeV, >36 MeV, >70 MeV, >140 MeV COVERAGE: 8-s intervals on 1 lat x 2 long grid N-72.5 S; E 2-10 SEM-2 Omni-Directional Detectors

11 POES Observations of the South Atlantic Anomaly (SAA) P6: >16 MeV 50% P9: >140 MeV Contour Plots of Trapped Protons 95% High radiation region at high latitude, likely due to E>3MeV electrons 50% 95% 2-11

12 POES Observations of the SAA and Nearby Regions (L<4) Low L Region Normalized statistical (percentile) distribution of the particle fluxes at a given energy and at a specified B and L for P6. High L Region POES Model of the SAA and Nearby Regions (L<4) 2-12

13 Summary of POES Long-term Statistics for Low-Altitude, High-Energy Trapped H+ Environment SUMMARY: - Energetic H+ fluxes vary by only ~2 between 10% and 99% levels in SAA. - Little or no association between H+ intensities and SEP events in SAA. - Proton intensities at POES altitudes in SAA primarily governed by local pitch-angle extent over which trapped protons access satellite. - Highly variable secondary region of enhanced P6 responses at L>3.0 -~1000's between10%-99%. Sensor responses at 90% and above believed to be dominated by episodes of high intensity, >3 MeV electrons ( ). - Data set forms extensive source of information for studying long-term near-earth trapped proton environment as a function of solar cycle and magnetic activity and for evaluating role of SEP events. 2-13

14 JPL Geosynchronous Plasma Models 2-14

15 Two Maxwellian Plasma Model Approach 2-15

16 THE GEOSYNCHRONOUS PLASMA ENVIRONMENT MODEL STATISTICAL DISTRIBUTIONS OF KEY GEOSYNCHRONOUS PARAMETERS LOCAL TIME/Kp VARIATIONS FOR KEY GEOYSNCHRONOUS PLASMA PARAMETERS 2-16

17 Jupiter 2-17

18 Jupiter 2-18

19 Jupiter s Magnetic Field X 104 = 2-19

20 JUPITER S LOW ENERGY PLASMA ENVIRONMENT 2-20

21 DIVINE/GIRE JOVIAN TRAPPED RADIATION MODELS Contour plots of >1 MeV electron and >10 MeV proton integral fluxes at Jupiter. Coordinate system used is jovi-centric. Models are based on Divine/GIRE models. Meridian is for System III 110 W. 2-21

22 DIVINE HIGH ENERGY ELECTRON MODEL 2-22

23 COMPARISONS BETWEEN JOVIAN AND TERRESTRIAL RADIATION SPECTRA 2-23 COURTESY A. JOHNSTON

24 Saturn 2-24

25 Saturn 2-25

26 HIGH ENERGY ELECTRON AND PROTON FLUXES AT SATURN (DIVINE/SATRAD) 2-26

27 DIVINE/SATRAD SATURN TRAPPED RADIATION MODELS o West Longitude = R s Contour plots of >1 MeV electron and >10 MeV proton integral fluxes at Saturn. Coordinate system used is Saturn-centric. Models are based on Divine/SATRAD models. Meridian is for 0 W. 2-27

28 Earth TRAPPED RADIATION BELTS Jupiter o West Longitude = 0 Saturn R s

29 MAN-MADE ENVIRONMENTS 2-29

30 GALILEO RADIOISOTOPE SOURCES General Purpose Heat Source Radioisotope Thermoelectric Generator Lightweight Radioisotope Heater Unit 2-30

31 GALILEO RTG NORMALIZED AND NEUTRON FLUXES 2-31

32 GALILEO RTG AND NEUTRON FLUXES VS DISTANCES 2-32

33 GALILEO RADIOISOTOPE THERMOELECTRIC GENERATOR ISODOSE-ISOFLUX CONTOURS 2-33

A New JPL Interplanetary Solar HighEnergy Particle Environment Model

A New JPL Interplanetary Solar HighEnergy Particle Environment Model A New JPL Interplanetary Solar HighEnergy Particle Environment Model Insoo Jun (JPL), Randall Swimm (JPL), Joan Feynman (JPL), Alexander Ruzmaikin (JPL), Allan Tylka (NRL), and William Dietrich (NRL/Consultant)

More information

Jovian Radiation Environment Models at JPL

Jovian Radiation Environment Models at JPL Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. Jovian Radiation Environment Models at JPL By Insoo Jun and the JPL Natural Space Environments Group Jet Propulsion

More information

DIN EN : (E)

DIN EN : (E) DIN EN 16603-10-04:2015-05 (E) Space engineering - Space environment; English version EN 16603-10-04:2015 Foreword... 12 Introduction... 13 1 Scope... 14 2 Normative references... 15 3 Terms, definitions

More information

Radiation Effects in MMIC Devices

Radiation Effects in MMIC Devices Chapter. Radiation Effects in MMIC Devices C. Barnes and L. Selva I. Introduction The use of microelectronic devices in both civilian and military spacecraft requires that these devices preserve their

More information

SPENVIS Tutorial: Radiation models in SPENVIS and their accuracy

SPENVIS Tutorial: Radiation models in SPENVIS and their accuracy SPENVIS Tutorial: Radiation models in SPENVIS and their accuracy D. Heynderickx DH Consultancy, Leuven, Belgium Outline Radiation environments Sources of model uncertainties Running radiation models in

More information

Jovian radiation models for JUICE mission

Jovian radiation models for JUICE mission Jovian radiation models for JUICE mission Hugh Evans and David Rodgers 19/09/2016 ESA UNCLASSIFIED - For Official Use Hugh Evans ESTEC 19/09/2016 Slide 1 ESA UNCLASSIFIED - For Official Use The Jovian

More information

Comparison bet ween the observation of the particle detector inside ZY21 Satellite and the model of the radiation belt

Comparison bet ween the observation of the particle detector inside ZY21 Satellite and the model of the radiation belt 50 3 2007 5 CHINESE JOURNAL OF GEOPHYSICS Vol. 50, No. 3 May, 2007,,, 2007, 50 (3) :678 683 Zou H, Chen H F, Zou J Q, et al. Comparison between the observation of the particle detector inside ZY21 Satellite

More information

SOUTH ATLANTIC ANOMALY AND CUBESAT DESIGN CONSIDERATIONS

SOUTH ATLANTIC ANOMALY AND CUBESAT DESIGN CONSIDERATIONS SOUTH ATLANTIC ANOMALY AND CUBESAT DESIGN CONSIDERATIONS 09 AUG 2015 Integrity Service Excellence Presenter Judy A. Fennelly, DR-III, RVB Air Force Research Laboratory Space Vehicles Directorate 1 South

More information

Operational Impacts of Space Weather

Operational Impacts of Space Weather Operational Impacts of Space Weather R. Lambour, A. J. Coster, R. Clouser, L. E. Thornton, J. Sharma, and A. Cott 2001 Space Control Conference 3 April 2001 2001 Space Control Conf. -1 Outline Introduction

More information

Data and Processing Requirements for Solar Proton Events Statistical Modelling

Data and Processing Requirements for Solar Proton Events Statistical Modelling Data and Processing Requirements for Solar Proton Events Statistical Modelling A. Hilgers, L. Rosenqvist, A. Glover, H. Evans European Space Agency S. Bourdarie ONERA Examples of Effects of Solar Proton

More information

SREM: 8 years experience of radiation monitoring with a standard instrument

SREM: 8 years experience of radiation monitoring with a standard instrument SREM: 8 years experience of radiation monitoring with a standard instrument H.D.R. Evans 1, E.J. Daly 1, P. Nieminen 1, W. Hajdas 2, A. Mohammadzadeh 1, D. Rodgers 1 1 ESA/ESTEC, The Netherlands, 2 PSI,

More information

Modeling the electron and proton radiation belts of Saturn

Modeling the electron and proton radiation belts of Saturn GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 20, 2059, doi:10.1029/2003gl017972, 2003 Modeling the electron and proton radiation belts of Saturn D. Santos-Costa, 1 M. Blanc, 1 S. Maurice, 2 and S. J. Bolton

More information

Solar Energetic Particles measured by AMS-02

Solar Energetic Particles measured by AMS-02 Solar Energetic Particles measured by AMS-02 Physics and Astronomy Department, University of Hawaii at Manoa, 96822, HI, US E-mail: bindi@hawaii.edu AMS-02 collaboration The Alpha Magnetic Spectrometer

More information

Engineering Models for Galactic Cosmic Rays and Solar Protons: Current Status

Engineering Models for Galactic Cosmic Rays and Solar Protons: Current Status Engineering Models for Galactic Cosmic Rays and Solar Protons: Current Status Stephen Gabriel Professor of Aeronautics and Astronautics School of Engineering Sciences University of Southampton England

More information

Internal Charging Hazards in Near-Earth Space during Solar Cycle 24 Maximum: Van Allen Probes Measurements

Internal Charging Hazards in Near-Earth Space during Solar Cycle 24 Maximum: Van Allen Probes Measurements Internal Charging Hazards in Near-Earth Space during Solar Cycle 24 Maximum: Van Allen Probes Measurements T. Mulligan Skov, J.F. Fennell, J.L. Roeder, J.B. Blake, and S.G. Claudepierre The Aerospace Corporation,

More information

Van Allen Probes Mission and Applications

Van Allen Probes Mission and Applications Van Allen Probes Mission and Applications J. Mazur and P. O Brien The Aerospace Corporation 5 September 2017 2017 The Aerospace Corporation Topics Van Allen Probes Mission Observables from the mission

More information

Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields

Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields Test Particle Simulations of Solar Energetic Particles using Parker Spiral and ENLIL Fields Dr. Simon R. Thomas & Prof. Silvia Dalla University of Central Lancashire Thanks to: Markus Battarbee, Timo Laitinen,

More information

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems Survey of the Solar System The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems The Sun Mass, M ~ 2 x 10 30 kg Radius, R ~ 7 x 10 8 m Surface Temperature ~ 5800 K Density ~ 1.4

More information

Intercomparisons of the proton models

Intercomparisons of the proton models Chapter 7 Intercomparisons of the proton models In this Chapter, we intercompare the flux maps obtained from the AZUR, SAMPEX and UARS data. The AP-8 directional fluxes are added to the comparisons to

More information

Theory and Modeling (High Performance Simulation)

Theory and Modeling (High Performance Simulation) Theory and Modeling (High Performance Simulation) Mater. Res. Soc. Symp. Proc. Vol. 929 2006 Materials Research Society 0929-1101-01 Radiation Shielding Analysis for Various Materials in the Extreme Jovian

More information

Estimation of solar energetic proton mission integrated fluences and peak intensities for missions traveling close to the Sun

Estimation of solar energetic proton mission integrated fluences and peak intensities for missions traveling close to the Sun SPACE WEATHER, VOL. 9,, doi:10.1029/2011sw000708, 2011 Estimation of solar energetic proton mission integrated fluences and peak intensities for missions traveling close to the Sun D. Lario 1 and R. B.

More information

Space Weather at 75 AU

Space Weather at 75 AU Space Weather at 75 AU R. A. Mewaldt California Institute of Technology, Pasadena, CA 91125, USA Abstract. Recent outer-heliosphere observations are reviewed from a space weather point of view by comparing

More information

Air Force Research Laboratory

Air Force Research Laboratory Air Force Research Laboratory Comparisons of AE9 and AP9 With Legacy Trapped Radiation Models IEEE Nuclear and Space Radiation Effects Conference 9 July 2013 S. L. Huston 1, G. P. Ginet 2, W. R. Johnston

More information

The AE9/AP9 Radiation and Plasma Environment Models

The AE9/AP9 Radiation and Plasma Environment Models Air Force Research Laboratory The AE9/AP9 Radiation and Plasma Environment Models 4 May 2017 Integrity Service Excellence Bob Johnston Air Force Research Laboratory Space Vehicles Directorate, Kirtland

More information

NOAA Space Weather Prediction Center Data and Services. Terry Onsager and Howard Singer NOAA Space Weather Prediction Center

NOAA Space Weather Prediction Center Data and Services. Terry Onsager and Howard Singer NOAA Space Weather Prediction Center NOAA Space Weather Prediction Center Data and Services Terry Onsager and Howard Singer NOAA Space Weather Prediction Center Terry.Onsager@noaa.gov Customer Subscriptions to Space Weather Services Frequent

More information

NASA Use and Needs for Radiation and Spacecraft Charging Models

NASA Use and Needs for Radiation and Spacecraft Charging Models NASA Use and Needs for Radiation and Spacecraft Charging Models Joseph I. Minow NASA, Marshall Space Flight Center, Huntsville, AL Linda Neergaard Parker University Space Research Association, Huntsville,

More information

Simulation of the charging process of the LISA test masses due to solar particles.

Simulation of the charging process of the LISA test masses due to solar particles. Simulation of the charging process of the LISA test masses due to solar particles. 5 th International Lisa Symposium 14 July 2004 Helios Vocca INFN Pg Solar Energetic Particles (SEPs( SEPs) SEPs are particles

More information

Radiation Belt Analyses: needs, data and analysis

Radiation Belt Analyses: needs, data and analysis Radiation Belt Analyses: needs, data and analysis Hugh Evans 03/09/2017 ESA UNCLASSIFIED - For Official Use Effects Requirements What are we looking for? Dose (TID/TNID) Solar cell degradation: Internal

More information

Solar Particle Events in Aviation and Space. Günther Reitz Insitute of Aerospace Medicine German Aerospace Center, DLR, Cologne, Germany

Solar Particle Events in Aviation and Space. Günther Reitz Insitute of Aerospace Medicine German Aerospace Center, DLR, Cologne, Germany Solar Particle Events in Aviation and Space Günther Reitz Insitute of Aerospace Medicine German Aerospace Center, DLR, Cologne, Germany Radiation Field in the Heliosphere LEO orbit Fluxes of primary space

More information

U.S. Radiation Dose Limits for Astronauts

U.S. Radiation Dose Limits for Astronauts U.S. Radiation Dose Limits for Astronauts Link to Abstract Link to Menu Health Physics Society 56 th Annual Meeting, West Palm Beach, Florida In lieu of TAM-E.6, Tuesday, June 28, 2011 Daniel J. Strom,

More information

Myagkova I.N., Panasyuk M.I., Kalegaev V.V. Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow

Myagkova I.N., Panasyuk M.I., Kalegaev V.V. Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow Myagkova I.N., Panasyuk M.I., Kalegaev V.V. Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow Complex ORbital Observations in Near-Earth Space of the Activity of the Sun The third

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

H. Koshiishi, H. Matsumoto, A. Chishiki, T. Goka, and T. Omodaka. Japan Aerospace Exploration Agency

H. Koshiishi, H. Matsumoto, A. Chishiki, T. Goka, and T. Omodaka. Japan Aerospace Exploration Agency 9 th Workshop on Radiation Monitoring for the International Space Station Evaluation of Neutron Radiation Environment inside the International Space Station based on the Bonner Ball Neutron Detector Experiment

More information

Galileo Interim Radiation Electron Model Update 2012

Galileo Interim Radiation Electron Model Update 2012 JPL Publication 12-9 Galileo Interim Radiation Electron Model Update 2012 H. B. Garrett, M. Kokorowski, and I. Jun Jet Propulsion Laboratory, California Institute of Technology Pasadena, California R.

More information

INTERPLANETARY ASPECTS OF SPACE WEATHER

INTERPLANETARY ASPECTS OF SPACE WEATHER INTERPLANETARY ASPECTS OF SPACE WEATHER Richard G. Marsden Research & Scientific Support Dept. of ESA, ESTEC, P.O. Box 299, 2200 AG Noordwijk, NL, Email: Richard.Marsden@esa.int ABSTRACT/RESUME Interplanetary

More information

OSTST, October 2014

OSTST, October 2014 OSTST, 19-23 October 2014 Update of the South-Atlantic Anomaly corrective model for JASON-1 DORIS data using the maps of energetic particles from the CARMEN dosimeter onboard JASON-2 H. Capdeville (1),

More information

Evaluation of the New Trapped Proton Model (AP9) at ISS Attitudes. Francis F. Badavi. (NASA Langley Radiation Team)

Evaluation of the New Trapped Proton Model (AP9) at ISS Attitudes. Francis F. Badavi. (NASA Langley Radiation Team) Evaluation of the New Trapped Proton Model () at ISS Attitudes Francis F. Badavi (NASA Langley Radiation Team) Old Dominion University, Norfolk, VA 359, USA WRMISS8, 3-5 September 3, Budapest, Hungary

More information

Jet Propulsion Laboratory California Institute of Technology. Juno Update

Jet Propulsion Laboratory California Institute of Technology. Juno Update Juno Update Juno Status Launched August 2011 Earth flyby October 2013 Jupiter arrival July 4, 2016 Spacecraft is healthy and all instruments are working. Juno s Science Objectives Origin Determine O/H

More information

POES SEM-2 Observations of Radiation Belt Dynamics and Energetic Electron Precipitation in to the Atmosphere

POES SEM-2 Observations of Radiation Belt Dynamics and Energetic Electron Precipitation in to the Atmosphere POES SEM-2 Observations of Radiation Belt Dynamics and Energetic Electron Precipitation in to the Atmosphere Craig J. Rodger 1, Mark A. Clilverd 2, Janet C. Green 3, and Mai M. Lam 2 1. Physics Department,

More information

Juno Status and Earth Flyby Plans. C. J. Hansen

Juno Status and Earth Flyby Plans. C. J. Hansen Juno Status and Earth Flyby Plans C. J. Hansen July 2013 Juno will improve our understanding of the history of the solar system by investigating the origin and evolution of Jupiter. To accomplish this

More information

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013 BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission with Novel Plasma Propulsion Technology Sara Spangelo, NASA JPL, Caltech Benjamin Longmier, University of Michigan Interplanetary Small

More information

Radiation Transport Tools for Space Applications: A Review

Radiation Transport Tools for Space Applications: A Review Radiation Transport Tools for Space Applications: A Review Insoo Jun, Shawn Kang, Robin Evans, Michael Cherng, and Randall Swimm Mission Environments Group, February 16, 2008 5 th Geant4 Space Users Workshop

More information

THE OUTER HELIOSPHERE: SOLAR WIND, COSMIC RAY AND VLF RADIO EMISSION VARIATIONS

THE OUTER HELIOSPHERE: SOLAR WIND, COSMIC RAY AND VLF RADIO EMISSION VARIATIONS THE OUTER HELIOSPHERE: SOLAR WIND, COSMIC RAY AND VLF RADIO EMISSION VARIATIONS Ralph L. McNutt, Jr. The Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723 USA Launched in August and

More information

Sun Earth Connection Missions

Sun Earth Connection Missions Sun Earth Connection Missions ACE Advanced Composition Explorer The Earth is constantly bombarded with a stream of accelerated particles arriving not only from the Sun, but also from interstellar and galactic

More information

USING SPACE WEATHER VARIABILITY IN EVALUATING THE RADIATION ENVIRONMENT DESIGN SPECIFICATIONS FOR NASA'S CONSTELLATION PROGRAM

USING SPACE WEATHER VARIABILITY IN EVALUATING THE RADIATION ENVIRONMENT DESIGN SPECIFICATIONS FOR NASA'S CONSTELLATION PROGRAM USING SPACE WEATHER VARIABILITY IN EVALUATING THE RADIATION ENVIRONMENT DESIGN SPECIFICATIONS FOR NASA'S CONSTELLATION PROGRAM Victoria N Coffey 1, Joseph I Minow 1, William C Blackwell, Jr 2, Margaret

More information

Electron Polar Cap and the Boundary oœ Open Geomagnetic Field Lines

Electron Polar Cap and the Boundary oœ Open Geomagnetic Field Lines VOL. 77, NO. 28 JOURNAL OF GEOPHYSICAL RESEARCH OCTOBER 1, 1972 Electron Polar Cap and the Boundary oœ Open Geomagnetic Field Lines L. C. EVANS 1 AND E. C. STONE 2 California Institute o[ Technology, Pasadena,

More information

Shields-1, A SmallSat Radiation Shielding Technology Demonstration

Shields-1, A SmallSat Radiation Shielding Technology Demonstration Shields-1, A SmallSat Radiation Shielding Technology Demonstration D. Laurence Thomsen III NASA Langley Research Center, Advanced Materials and Processing Branch, 6A West Taylor Street, Hampton, VA 23681;

More information

This project has received funding from the European Union s Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant

This project has received funding from the European Union s Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant This project has received funding from the European Union s Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant agreement number 721624. Space weather and the variable

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Homework Ch 7, 8, 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Our most detailed knowledge of Uranus and Neptune comes from 1) A) the

More information

Study of the radiation fields in LEO with the Timepix detector

Study of the radiation fields in LEO with the Timepix detector Study of the radiation fields in LEO with the Timepix detector 1 1, Czech Technical University in Prague 16th Baksan Cosmology School 1/24 Timepix in space 2/24 Proba-V Altitude = 820 km Inclination =

More information

Science in the news Voyager s 11 billion mile journey

Science in the news Voyager s 11 billion mile journey Name:... Date:... Read the article from The Week magazine Voyager s 11 billion mile journey. The Voyager 1 spacecraft was launched on the 5 th September 1977. Together with Voyager 2, which was launched

More information

S5p INTENTIONALLY BLANK

S5p INTENTIONALLY BLANK Page 2 of 22 INTENTIONALLY BLANK Page 3 of 22 TABLE OF CONTENT 1. SCOPE...5 2. APPLICABLE AND REFERENCE DOCUMENTS...5 2.1 APPLICABLE DOCUMENTS...5 2.2 REFERENCE DOCUMENTS...5 3. ABBREVIATIONS...6 4. MISSION

More information

AE9/AP9-IRENE space radiation climatology model

AE9/AP9-IRENE space radiation climatology model AE9/AP9-IRENE space radiation climatology model N O V E M B E R 7, 2 0 1 8 T. P. O B R I E N 1, W. R. J O H N S T O N 2, S. H U S T O N 3, T. G U I L D 1, Y. - J. S U 2, C. R O T H 3, R. Q U I N N 3 1

More information

S E C T I O N 7 P R O B E S C I E N C E R E S U L T S

S E C T I O N 7 P R O B E S C I E N C E R E S U L T S S E C T I O N 7 P R O B E S C I E N C E R E S U L T S Under surveillance by telescopes here on Earth as well as the Hubble Space Telescope, observations of Jupiter show that the probe apparently entered

More information

The Los Alamos Laboratory: Space Weather Research and Data

The Los Alamos Laboratory: Space Weather Research and Data The Los Alamos Laboratory: Space Weather Research and Data R. Friedel, - Center for Earth and Space Science M. G. Henderson, S. K. Morley, V. K. Jordanova, G. S. Cunningham, J. R. Woodroffe, T. Brito,

More information

Space Environments and Effects Section. Pioneer. Voyager. New Horizons. D.J. Rodgers ESA-ESTEC, The Netherlands

Space Environments and Effects Section. Pioneer. Voyager. New Horizons. D.J. Rodgers ESA-ESTEC, The Netherlands Pioneer Voyager New Horizons D.J. Rodgers ESA-ESTEC, The Netherlands 20 January EJSM/Laplace instruments workshop 1 Possible launch 2020 Spacecraft Jupiter Europa Orbiter Jupiter Ganymede Orbiter Ganymede

More information

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry

Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Effect of CME Events of Geomagnetic Field at Indian Station Alibag and Pondicherry Babita Chandel Sri Sai University Palampur, Himachal Pradesh, India Abstract: Space weather activity CMEs, and solar energetic

More information

Lecture #27: Saturn. The Main Point. The Jovian Planets. Basic Properties of Saturn. Saturn:

Lecture #27: Saturn. The Main Point. The Jovian Planets. Basic Properties of Saturn. Saturn: Lecture #27: Saturn Saturn: General properties. Atmosphere. Interior. Origin and evolution. Reading: Chapters 7.1 (Saturn) and 11.1. The Main Point Saturn is a large Jovian-class planet with a composition

More information

Multi Spacecraft Observation of Compressional Mode ULF Waves Excitation and Relativistic Electron Acceleration

Multi Spacecraft Observation of Compressional Mode ULF Waves Excitation and Relativistic Electron Acceleration Multi Spacecraft Observation of Compressional Mode ULF Waves Excitation and Relativistic Electron Acceleration X. Shao 1, L. C. Tan 1, A. S. Sharma 1, S. F. Fung 2, Mattias Tornquist 3,Dimitris Vassiliadis

More information

Chapter 8 Geospace 1

Chapter 8 Geospace 1 Chapter 8 Geospace 1 Previously Sources of the Earth's magnetic field. 2 Content Basic concepts The Sun and solar wind Near-Earth space About other planets 3 Basic concepts 4 Plasma The molecules of an

More information

Jupiter and Saturn: Lords of the Planets

Jupiter and Saturn: Lords of the Planets 11/5/14 Jupiter and Saturn: Lords of the Planets Guiding Questions 1. Why is the best month to see Jupiter different from one year to the next? 2. Why are there important differences between the atmospheres

More information

Slot Region Radiation Environment Models

Slot Region Radiation Environment Models Slot Region Radiation Environment Models I. Sandberg, I.A. Daglis (IAASARS/NOA, Phys/UoA) D. Heynderickx (DHConsultancy) H. Evans, P. Nieminen (ESA/ESTEC) ESTEC/CONTRACT No.4000104839 (ESTEC/ITT AO/1 6700/11/NL/AT)

More information

Examination of the Last Large Solar Energetic Particle Events of Solar Cycle 23

Examination of the Last Large Solar Energetic Particle Events of Solar Cycle 23 Examination of the Last Large Solar Energetic Particle Events of Solar Cycle 23 C. M. S Cohen', G. M. Mason^ R. A. Mewaldt', A. C. Cummings', A. W. Labrador", R. A. Leske", E. C. Stone", M. E. Wiedenbeck",

More information

Solar Wind Variation Throughout the Heliosphere

Solar Wind Variation Throughout the Heliosphere Solar Wind Variation Throughout the Heliosphere Goals: In this lab you use simulation results to explore the structure of the solar wind. When you are finished with this lab you will have reviewed: the

More information

Spacecraft Environment! Launch Phases and Loading Issues-1

Spacecraft Environment! Launch Phases and Loading Issues-1 Spacecraft Environment! Space System Design, MAE 342, Princeton University! Robert Stengel! Atmospheric characteristics! Loads on spacecraft! Near-earth and space environment! Spacecraft charging! Orbits

More information

November 2013 analysis of high energy electrons on the Japan Experimental Module (JEM: Kibo)

November 2013 analysis of high energy electrons on the Japan Experimental Module (JEM: Kibo) November 2013 analysis of high energy on the Japan Experimental Module (JEM: Kibo) Francis F. Badavi (ODU) Haruhisa Matsumoto, Kiyokazu Koga (JAXA) Christopher J. Mertens, Tony C. Slaba, John W. Norbury

More information

CHAPTER 6. The Solar System

CHAPTER 6. The Solar System CHAPTER 6 The Solar System 6.1 An Inventory of the Solar System The Greeks knew about 5 planets other than Earth They also knew about two other objects that were not planets or stars: meteors and comets

More information

Space Weather Service for Chinese Space Science Satellites

Space Weather Service for Chinese Space Science Satellites 0254-6124/2018/38(5)-781 07 Chin. J. Space Sci. Ξ ΛΠΠ LIU Siqing, ZHONG Qiuzhen, GONG Jiancun, SHI Liqin, CHEN Dong, MIAO Juan, CAI Yanxia, BAI Meng, MA Wenzhen, LI Zhitao, LIU Fanghua, CHEN Yanhong. Space

More information

Analysis distribution of galactic cosmic rays particle energy with polar orbit satellite for Geant4 application

Analysis distribution of galactic cosmic rays particle energy with polar orbit satellite for Geant4 application Journal of Physics: Conference Series OPEN ACCESS Analysis distribution of galactic cosmic rays particle energy with polar orbit satellite for Geant4 application To cite this article: W Suparta and W S

More information

Rationale for a European Space Weather Programme

Rationale for a European Space Weather Programme Rationale for a European Space Weather Programme Hannu Koskinen Finnish Meteorological Institute ESWS Final Presentation ESTEC, 6 December, 2001 Scope WP 300 of ESWS: Establishment of detailed rationale

More information

12a. Jupiter. Jupiter Data (Table 12-1) Jupiter Data: Numbers

12a. Jupiter. Jupiter Data (Table 12-1) Jupiter Data: Numbers 12a. Jupiter Jupiter & Saturn data Jupiter & Saturn seen from the Earth Jupiter & Saturn rotation & structure Jupiter & Saturn clouds Jupiter & Saturn atmospheric motions Jupiter & Saturn rocky cores Jupiter

More information

High Dose Rates by Relativistic Electrons: Observations on Foton M2/M3 satellites and on International Space Station

High Dose Rates by Relativistic Electrons: Observations on Foton M2/M3 satellites and on International Space Station High Dose Rates by Relativistic Electrons: Observations on Foton M2/M3 satellites and on International Space Station Ts. Dachev 1, B. Tomov 1, Yu.. Matviichuk 1 1, Pl.. Dimitrov 1 1 N. Bankov 2 1 Solar-Terrestrial

More information

SIMULATION OF SPACE RADIATION FOR NANOSATELLITES IN EARTH ORBIT *

SIMULATION OF SPACE RADIATION FOR NANOSATELLITES IN EARTH ORBIT * Romanian Reports in Physics, Vol. 64, No. 1, P. 302 307, 2012 SIMULATION OF SPACE RADIATION FOR NANOSATELLITES IN EARTH ORBIT * M.F. TRUȘCULESCU 1,2, O. SIMA 1 1 University of Bucharest, Physics Department,

More information

Radiation: Lessons Learned

Radiation: Lessons Learned Radiation: Lessons Learned Scott Bolton Southwest Research Institute Insoo Jun Jet Propulsion Laboratory This document has been reviewed for export control and it does NOT contain controlled technical

More information

LEO radiation environment: impacts on PROBA. Erwin De Donder BIRA-IASB Space Weather Section

LEO radiation environment: impacts on PROBA. Erwin De Donder BIRA-IASB Space Weather Section LEO radiation environment: impacts on PROBA Erwin De Donder BIRA-IASB Space Weather Section Brussels, 2014 March 31 STCE Workshop: PROBA science operations 1 Introduction BIRA-IASB Space Weather Section:

More information

Time variations of proton flux in the Earth inner radiation belt for years based on the PAMELA and the ARINA data

Time variations of proton flux in the Earth inner radiation belt for years based on the PAMELA and the ARINA data Time variations of proton flux in the Earth inner radiation belt for 2006-2015 years based on the PAMELA and the ARINA data 1, S.Yu. Aleksandrin, S.V. Koldashov, A.G. Mayorov, M.A. Mayorova on behalf of

More information

Space Weather and Satellite System Interaction

Space Weather and Satellite System Interaction Space Engineering International Course, Kyutech, 4 th Quarter Semester 2017 Space Weather and Satellite System Interaction Lecture 2: Space Weather Concept, Reporting and Forecasting Assoc. Prof. Ir. Dr.

More information

APPLICATION OF POLYMERIC NANO COMPOSITES AT LOW EARTH ORBIT AND GEOSYNCHRONOUS EARTH ORBIT

APPLICATION OF POLYMERIC NANO COMPOSITES AT LOW EARTH ORBIT AND GEOSYNCHRONOUS EARTH ORBIT APPLICATION OF POLYMERIC NANO COMPOSITES AT LOW EARTH ORBIT AND GEOSYNCHRONOUS EARTH ORBIT S. Bhowmik, R. Benedictus, H. M. S. Iqbal and M. I. Faraz Faculty of Aerospace Engineering, Delft University of

More information

Solar Orbiter Environmental Specification

Solar Orbiter Environmental Specification Solar Orbiter Environmental Specification prepared by J. Sørensen Space Environment and Effects Analysis Section ESA/ESTEC/TEC-EES reference TEC-EES-03-034/JS issue 3.0 revision 0 date of issue 9 june

More information

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded Code No: R05322106 Set No. 1 1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded rocket nozzles. (b) While on its way into orbit a space shuttle with an initial mass

More information

The Effects of Atmospheric Variations on the High Energy Radiation Environment at the Surface of Mars

The Effects of Atmospheric Variations on the High Energy Radiation Environment at the Surface of Mars The Effects of Atmospheric Variations on the High Energy Radiation Environment at the Surface of Mars A. Keating, Laboratório de Instrumentação e Física Experimental de Partículas, Lisbon, Portugal (keating@lip.pt)

More information

The Radiation Environment for the Next Generation Space Telescope

The Radiation Environment for the Next Generation Space Telescope G S F C The Radiation Environment for the Next Generation Space Telescope Janet L. Barth NASA/Goddard Space Flight Center Greenbelt, Maryland John C. Isaacs Space Telescope Science

More information

The Pioneer Anomaly: Effect, New Data and New Investigation

The Pioneer Anomaly: Effect, New Data and New Investigation The Pioneer Anomaly: Effect, New Data and New Investigation Slava G. Turyshev Jet Propulsion Laboratory, California Institute of Technology Seminar at the Sternberg Astronomical Institute Moscow State

More information

On the possibility to forecast severe radiation storms by data from surface and space-born facilities

On the possibility to forecast severe radiation storms by data from surface and space-born facilities On the possibility to forecast severe radiation storms by data from surface and space-born facilities Ashot Chilingarian Cosmic Ray Division, Yerevan Physics Institute, Armenia Aragats Space-Environmental

More information

LEEM: A new empirical model of radiation-belt electrons in the low-earth-orbit region

LEEM: A new empirical model of radiation-belt electrons in the low-earth-orbit region JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012ja017941, 2012 LEEM: A new empirical model of radiation-belt electrons in the low-earth-orbit region Yue Chen, 1 Geoffrey Reeves, 1 Reiner H.

More information

Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars

Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars centre for fusion, space and astrophysics Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars Presented by: On behalf of: Jennifer Harris Claire Foullon, E. Verwichte, V. Nakariakov

More information

Reduction of Trapped Energetic Particle Fluxes in Earth and Jupiter Radiation Belts

Reduction of Trapped Energetic Particle Fluxes in Earth and Jupiter Radiation Belts Reduction of Trapped Energetic Particle Fluxes in Earth and Jupiter Radiation Belts Robert Hoyt, Michelle Cash Tethers Unlimited, Inc. 11711 N. Creek Pkwy S., Suite D-113, Bothell, WA 98011 (425) 486-0100

More information

Estimation of the solar flare neutron worst-case fluxes and fluences for missions traveling close to the Sun

Estimation of the solar flare neutron worst-case fluxes and fluences for missions traveling close to the Sun SPACE WEATHER, VOL. 10,, doi:10.1029/2011sw000732, 2012 Estimation of the solar flare neutron worst-case fluxes and fluences for missions traveling close to the Sun D. Lario 1 Received 7 September 2011;

More information

RELATIVISTIC ELECTRONS AND ULF-ACTIVITY DYNAMICS DURING CIR- AND CME-STORMS IN MAY 2005

RELATIVISTIC ELECTRONS AND ULF-ACTIVITY DYNAMICS DURING CIR- AND CME-STORMS IN MAY 2005 RELATIVISTIC ELECTRONS AND ULF-ACTIVITY DYNAMICS DURING CIR- AND CME-STORMS IN MAY 2005 Myagkova I.N. 1, Kozyreva O.V. 2, 3 1 Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow; 2

More information

Using Solar Neutrons to Understand Solar Acceleration Processes

Using Solar Neutrons to Understand Solar Acceleration Processes Using Solar Neutrons to Understand Solar Acceleration Processes David J. Lawrence 1, William C. Feldman 2, Dennis Haggerty 1, George Ho 1, Ralph McNutt 1, James Miller 3, Richard Miller 3, Patrick Peplowski

More information

COSMIC RAYS AND SOLAR PROTONS IN THE NEAR-EARTH ENVIRONMENT AND THEIR ENTRY INTO THE MAGNETOSPHERE. S. B. Gabriel

COSMIC RAYS AND SOLAR PROTONS IN THE NEAR-EARTH ENVIRONMENT AND THEIR ENTRY INTO THE MAGNETOSPHERE. S. B. Gabriel COSMIC RAYS AND SOLAR PROTONS IN THE NEAR-EARTH ENVIRONMENT AND THEIR ENTRY INTO THE MAGNETOSPHERE S. B. Gabriel Department of Aeronautics and Astronautics, University of Southampton, England ABSTRACT

More information

STEREO Beacon. O. C. St. Cyr. The Catholic University of America NASA-Goddard Space Flight Center (301)

STEREO Beacon. O. C. St. Cyr. The Catholic University of America NASA-Goddard Space Flight Center (301) STEREO Beacon O. C. St. Cyr The Catholic University of America NASA-Goddard Space Flight Center (301) 286-2575 cstcyr@grace.nascom.nasa.gov J. M. Davila NASA-Goddard Space Flight Center (301) 286-8366

More information

Mission to Understand Electron Pitch Angle Diffusion and Characterize Precipitation Bands and Spikes. J. F. Fennell 1 and P. T.

Mission to Understand Electron Pitch Angle Diffusion and Characterize Precipitation Bands and Spikes. J. F. Fennell 1 and P. T. Mission to Understand Electron Pitch Angle Diffusion and Characterize Precipitation Bands and Spikes J. F. Fennell 1 and P. T. O Brien 2 1 The Aerospace Corporation, MS:M2-260, P.O.Box 92957, Los Angeles,

More information

Science Overview. Vassilis Angelopoulos, ELFIN PI

Science Overview. Vassilis Angelopoulos, ELFIN PI Science Overview Vassilis Angelopoulos, ELFIN PI Science Overview-1 MPDR, 2/12/2015 RADIATION BELTS: DISCOVERED IN 1958, STILL MYSTERIOUS Explorer 1, 1958 Time Magazine, May 4, 1959 Science Overview-2

More information

Solar Energetic Particles in the Inner Heliosphere

Solar Energetic Particles in the Inner Heliosphere Author: Mariona Adillón Corbera Advisor: Neus Agueda Costafreda Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Abstract: The upcoming missions Solar Orbiter (SolO)

More information

Discovery and Surprise from Entry Probes to Giant Planets

Discovery and Surprise from Entry Probes to Giant Planets Discovery and Surprise from Entry Probes to Giant Planets Thomas R. Spilker 2014 June 14 11th International Planetary Probes Workshop Short Course Pasadena, CA, USA TRS-1 TRS-2 Planet Characteristic Mass

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

The Structure of the Magnetosphere

The Structure of the Magnetosphere The Structure of the Magnetosphere The earth s magnetic field would resemble a simple magnetic dipole, much like a big bar magnet, except that the solar wind distorts its shape. As illustrated below, the

More information

The latitude dependence of dielectric breakdown on the Moon

The latitude dependence of dielectric breakdown on the Moon The latitude dependence of dielectric breakdown on the Moon Andrew Jordan1,2, T. J. Stubbs3,2, J. K. Wilson1,2, P. O. Hayne4, N. A. Schwadron1,2, H. E. Spence1,2 and N. R. Izenberg5 EOS Space Science Center,

More information

Geomagnetic Disturbances (GMDs) History and Prediction

Geomagnetic Disturbances (GMDs) History and Prediction Geomagnetic Disturbances (GMDs) History and Prediction J. Patrick Donohoe, Ph.D., P.E. Dept. of Electrical and Computer Engineering Mississippi State University Box 9571 Miss. State, MS 39762 donohoe@ece.msstate.edu

More information