( 2) ( ) Hyperbolic Functions 6E. cosh d (cosh sech ) d sinh tanh. cosh. x x x x x x C. x 1 x. 2 a. x x x = + = + cosh dx sinh C 3sinh C.

Size: px
Start display at page:

Download "( 2) ( ) Hyperbolic Functions 6E. cosh d (cosh sech ) d sinh tanh. cosh. x x x x x x C. x 1 x. 2 a. x x x = + = + cosh dx sinh C 3sinh C."

Transcription

1 Hyperolic Functions 6E a (sinh+ cosh ) cosh+ sinh+ + cosh cosh (cosh sech ) sinh tanh sinh sinh sechtanh sech+ cosh cosh cosh c a a sinh cosh+ cosh sinh sinh + + ( ) + + ( ) ( ) ( ) ( ) arcosh + ( ) + + ( ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) arsinh + a sinh cosh (sinh ) cosh sinh + sinh tanh lncosh+ cosh c coshsinh (cosh ) (sinh ) (cosh ) + ( ) (cosh ) + Pearson Eucation Lt 08. opying permitte for purchasing institution only. This material is not copyright free.

2 5 a sinh sinh + cosh + cosh ln( + cosh ) + + tanh ( tanh )sech cosh + + (sech tanh sech ) tanh + tanh + or tanh sech + c 5cosh+ sinh (5 + tanh ) cosh 5+ lncosh+ 6 sinh cosh cosh cosh sinh+ 9 v u Usingu uv with v v u an sinh 7 a e + e e cosh e (e ) + e + + e e e sinh e (e e 5 ) e e You cannot use integration y parts. You coul use integration y parts twice. c e + e e + e coshcosh orwriteas (cosh+ cosh ) (e e e e ) e e + e e + or sinh + sinh Pearson Eucation Lt 08. opying permitte for purchasing institution only. This material is not copyright free.

3 8 sinh+ cosh (e e ) + (e + e ) e So e e 0 sinh+ cosh 0 0 e 9 a c sinh (cosh ) sinh + sinh cosh sinh cosh 5 sinh cosh + sinh + 8 cosh cosh + ( sinh ) cosh (+ sinh + sinh ) cosh (cosh+ sinh cosh+ sinh cosh ) sinh + sinh + sinh Using cosh u + sinh u 0 ln ln + cosh cosh ln [ + sinh] 0 ln+ ln + [ + ln ] 8 ( + ln6) ln ln e e ln ln ln e, e e Pearson Eucation Lt 08. opying permitte for purchasing institution only. This material is not copyright free.

4 a Let cosh u, so sinhuu sinh u u 9 9cosh u 9 sinh u u cosh u sinhu u sinhu u u+ arcosh + You nee 5sinh u, or 5sinh u, then coshuu 5 cosh u u + 5 5sinh u+ 5 5 coshu u 5 sinh u+ coshu u coshu u u+ arsinh a arsinh Using + a arsinh +. a arcosh + Using a arcosh + a a ( ) arcosh + Pearson Eucation Lt 08. opying permitte for purchasing institution only. This material is not copyright free.

5 { ( 9 )} arsinh + ( ) arsinh arsinh ( ) [ arsinh( ) ] arsinh arsinh (s.f.) [ ] 5 Reminer: The logarithmic form of an inverse hyperolic function is in the Eecel formulae ooklet. a 0 arsinh arsinh arsinh0 ( ) ln + { Using arsinh ln + + } 5 arcosh 5 arcosh arcosh ln + ln ln + ln + 6 ln ln ln { Using arcosh ln + } Using lna ln ln a Pearson Eucation Lt 08. opying permitte for purchasing institution only. This material is not copyright free. 5

6 6 With an u u u u sinh an sin cosh, sinh sinh u u + sinh u+ cosh u sinhu sinhucoshuu + coshu sinh u u (coshu )u sinhu u + sinhu coshu arsinh( ) + + arsinh( ) + sinhu an coshu + sinh u 7 With u an u, 9 u u [ arcoshu] arcosh9 arcosh 0.8 (s.f.) 9 8 Using cosh u, sinhuu cosh sinh u u u sinh u u (coshu )u sinhu u + sinhucoshu u+ arcosh + arcosh + + arcosh coshu an sinhu cosh u 9 a e + e e e e + e cosh sinh So cosh sinh e + e e e + Multiplying numerator an enominator y e. Pearson Eucation Lt 08. opying permitte for purchasing institution only. This material is not copyright free. 6

7 9 Using the sustitution u e, u e an e u + u + u artan + e e arctan + 0 With u sinh, u coshorcosh u u sinh u + 9 9( u + ) cosh sinh So 0 u 0 sinh + 9 u + arsinh( u ) a ( ) 6} { sinh arsinh sinh 0.60 ( s.f.) So ( ) 6 Let u ( ), so u. Then u 6 u arcosh + arcosh ( + ) + } { So ( + ) + Let u ( + ), so u. Then u u + arsinh( u) + arsinh( + ) + 0 Pearson Eucation Lt 08. opying permitte for purchasing institution only. This material is not copyright free. 7

8 c ( + ) + Let u ( + ), so u. Then u u + ( ) u arctan ( + ) arctan So ( 9) ( 9 ) Let u, so u. 9 Then u u ( 9 ) 9u arcosh arcosh + 7 a So ( ) ( ) Let u, so u. Then + 0 u + ( ) u arsinh( u ) + arsinh( ) + Pearson Eucation Lt 08. opying permitte for purchasing institution only. This material is not copyright free. 8

9 5 ( ) + + So + 5 ( ) ( ) Let u, so. u Then u + 5 u ( ) u arcosh + 5 arcosh ( + ) + So ( + ) + Let u ( + ), so u. Then u u + u arsinh arsinh arsinh 0.00 ( s.f.) + ( ) + So + ( ) + [ arsinh( ) ] arsinh ln{+ 5} ar sinh ln{ + + } Pearson Eucation Lt 08. opying permitte for purchasing institution only. This material is not copyright free. 9

10 ( ) + So ( ) + Let u ( ), so u. Then u + ( ) ( ) u arsinh u 0 arsinh ln{ } arsinh ln{ } ln{ + } 6 a In orer to fin the intersection point of the two curves, we solve 5cosh 7 sinh 5 ( e + e ) 7 ( e e ) 5 ( e + ) 7e ( e ) e 7e + 0. Set u e in orer to clearly see the quaratic equation u 7u+ 0 with solutions 7± 9 u 6 7± 5 u 6 i.e. u u. This gives us the values for the intersection points as ln ln ln Pearson Eucation Lt 08. opying permitte for purchasing institution only. This material is not copyright free. 0

11 6 We fin the area of the region R y calculating R ( 7 sinh ) ( 5cosh ) Area ( 7 sinh 5cosh) ln [ 7 cosh 5sinh] ( 7ln 5) ( 7ln 5) + 7ln6 0 ln ln 7 π Volume π sinh (cosh ) 0 0 π sinh π sinh π (e e ) 0 hallenge π e e 8 π (e e ). 8e Using the sustitution + sinh θ, coshθ θ + (sinh θ+ sinhθ+ ) (sinhθ + ) + sinh θ+ cosh θ So cosh θ θ cosh θ ( + ) sech θ θ tanhθ+ + + sinhθ coshθ + sinh θ + Pearson Eucation Lt 08. opying permitte for purchasing institution only. This material is not copyright free.

12 hallenge Using the sustitution u, u, a u (cosh u+ ) u So cosh ( ) cosh u u sinh u+ + 8 sinh( ) cosh ( ) So sech ( ) sech u u tanh u+ tanh( ) + Pearson Eucation Lt 08. opying permitte for purchasing institution only. This material is not copyright free.

Hyperbolic Functions 6D

Hyperbolic Functions 6D Hyperbolic Functions 6D a (sinh cosh b (cosh 5 5sinh 5 c (tanh sech (sinh cosh e f (coth cosech (sech sinh (cosh sinh cosh cosh tanh sech g (e sinh e sinh e + cosh e (cosh sinh h ( cosh cosh + sinh sinh

More information

Integration Exercises - Part 3 (Sol'ns) (Hyperbolic Functions) (12 pages; 6/2/18) (The constant of integration has been omitted throughout.

Integration Exercises - Part 3 (Sol'ns) (Hyperbolic Functions) (12 pages; 6/2/18) (The constant of integration has been omitted throughout. Integration Eercises - Part (Sol'ns) (Hyperbolic Functions) ( pages; 6//8) (The constant of integration has been omitted throughout.) () cosech Given that d tanh = sech, we could investigate d coth = d

More information

Differentiation 9I. 1 a. sin x 0 for 0 x π. So f ( x ) is convex on the interval. [0, π]. f ( x) 6x 6 0 for x 1. So f ( x ) is concave for all x

Differentiation 9I. 1 a. sin x 0 for 0 x π. So f ( x ) is convex on the interval. [0, π]. f ( x) 6x 6 0 for x 1. So f ( x ) is concave for all x Differentiation 9I a f ( ) f ( ) 6 6 f ( ) 6 ii f ( ) is concave when f ( ) sin for π So f ( ) is concave on the interval [, π]. i f ( ) is conve when f ( ) 6 6 for So f ( ) is conve for all or on the

More information

Hyperbolic Functions Mixed Exercise 6

Hyperbolic Functions Mixed Exercise 6 Hyprbolic Functions Mid Ercis 6 a b c ln ln sinh(ln ) ln ln + cosh(ln ) + ln tanh ln ln + ( 6 ) ( + ) 6 7 ln ln ln,and ln ln ln,and ln ln 6 artanh artanhy + + y ln ln y + y ln + y + y y ln + y y + y y

More information

2 4 Substituting 2 into gives 2(2) 4. + x + x +...= + + x ! 4! Substituting x= 0 and =1 into (1 + x ) + x = 0, gives 0

2 4 Substituting 2 into gives 2(2) 4. + x + x +...= + + x ! 4! Substituting x= 0 and =1 into (1 + x ) + x = 0, gives 0 Talor Series 6C 1 Differentiating = +, with respect to, gives = 1+ (1) Differentiating (1) gives = () =, = 1 into = +, gives = + (1), so = 1 1 = into (1) gives =1+ = into gives () = () = = Sousing the

More information

FP3 mark schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

FP3 mark schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002) FP mark schemes from old P, P5, P6 and FP, FP, FP papers (back to June ) Please note that the following pages contain mark schemes for questions from past papers. Where a question reference is marked with

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so:

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so: Taylor Series 6B a We can evaluate the it directly since there are no singularities: 7+ 7+ 7 5 5 5 b Again, there are no singularities, so: + + c Here we should divide through by in the numerator and denominator

More information

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I MTH Test Spring 209 Name Calculus I Justify all answers by showing your work or by proviing a coherent eplanation. Please circle your answers.. 4 z z + 6 z 3 ez 2 = 4 z + 2 2 z2 2ez Rewrite as 4 z + 6

More information

6675/01 Edexcel GCE Pure Mathematics P5 Further Mathematics FP2 Advanced/Advanced Subsidiary

6675/01 Edexcel GCE Pure Mathematics P5 Further Mathematics FP2 Advanced/Advanced Subsidiary 6675/1 Edecel GCE Pure Mathematics P5 Further Mathematics FP Advanced/Advanced Subsidiary Monday June 5 Morning Time: 1 hour 3 minutes 1 1. (a) Find d. (1 4 ) (b) Find, to 3 decimal places, the value of.3

More information

Mark Scheme (Results) Summer 2008

Mark Scheme (Results) Summer 2008 (Results) Summer 8 GCE GCE Mathematics (75/) Edecel Limited. Registered in England and Wales No. 975 Registered Office: One9 High Holborn, London WCV 7BH Further Pure Mathematics FP d. ( ln( tanh ) ) sech

More information

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures Hyperbolic Functions Notice: this material must not be use as a substitute for attening the lectures 0. Hyperbolic functions sinh an cosh The hyperbolic functions sinh (pronounce shine ) an cosh are efine

More information

Hyperbolic Functions: Exercises - Sol'ns (9 pages; 13/5/17)

Hyperbolic Functions: Exercises - Sol'ns (9 pages; 13/5/17) Hyperbolic Functions: Exercises - Sol'ns (9 pages; 3/5/7) () (i) Prove, using exponential functions, that (a) cosh x sinh x = (b) sinhx = sinhxcoshx (ii) By differentiating the result from (i)(b), obtain

More information

CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS

CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS SSCE1693 ENGINEERING MATHEMATICS CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS WAN RUKAIDA BT WAN ABDULLAH YUDARIAH BT MOHAMMAD YUSOF SHAZIRAWATI BT MOHD PUZI NUR ARINA BAZILAH BT AZIZ ZUHAILA BT ISMAIL

More information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information Revision Checklist Unit FP3: Further Pure Mathematics 3 Unit description Further matrix algebra; vectors, hyperbolic functions; differentiation; integration, further coordinate systems Assessment information

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit Unit FP3 Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A optional unit FP3.1 Unit description Further matrix algebra; vectors, hyperbolic

More information

The Lorentz Transformation

The Lorentz Transformation The Lorentz Transformation This is a derivation of the Lorentz transformation of Special Relativity. The basic idea is to derive a relationship between the spacetime coordinates, y, z, t as seen by observer

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Pearson Edecel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Mathematical formulae and statistical tables First certification from 08 Advanced Subsidiary GCE in Mathematics

More information

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions Chapter 5 Logarithmic, Exponential, an Other Transcenental Functions 5.1 The Natural Logarithmic Function: Differentiation 5.2 The Natural Logarithmic Function: Integration 5.3 Inverse Functions 5.4 Exponential

More information

Methods in differential equations mixed exercise 7

Methods in differential equations mixed exercise 7 Methos in ifferential equations mie eercise 7 tan lnsec The integrating factor is e = e = sec Multiplying the equation by this factor gives: sec + ysectan= sec ( sec sec y = y sec= sec = tan+ c y= sin+

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities:

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities: 6.4 Integration using tanx/) We will revisit the ouble angle ientities: sin x = sinx/) cosx/) = tanx/) sec x/) = tanx/) + tan x/) cos x = cos x/) sin x/) tan x = = tan x/) sec x/) tanx/) tan x/). = tan

More information

Math 115 (W1) Solutions to Assignment #4

Math 115 (W1) Solutions to Assignment #4 Math 5 (W Solutions to Assignment #. ( marks Fin the erivative of the following. Provie reasonable simplification. a f( 3 + e sec ( ; ( ( b f( log + tan ; ( c f( tanh ; + f( ln(sinh. a f( ( 3 + 3 ln( 3

More information

Trigonometric substitutions (8.3).

Trigonometric substitutions (8.3). Review for Eam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Eam covers: 7.4, 7.6, 7.7, 8-IT, 8., 8.2. Solving differential equations

More information

MTH 133 Solutions to Exam 1 October 10, Without fully opening the exam, check that you have pages 1 through 11.

MTH 133 Solutions to Exam 1 October 10, Without fully opening the exam, check that you have pages 1 through 11. MTH 33 Solutions to Eam October 0, 08 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the eam, check that you have pages through. Show

More information

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists Data provided: Formula sheet MAS53/MAS59 SCHOOL OF MATHEMATICS AND STATISTICS Mathematics (Materials Mathematics For Chemists Spring Semester 203 204 3 hours All questions are compulsory. The marks awarded

More information

Mark Scheme (Results) June GCE Further Pure FP3 (6669) Paper 1

Mark Scheme (Results) June GCE Further Pure FP3 (6669) Paper 1 Mark (Results) June 0 GCE Further Pure FP (6669) Paper Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including

More information

Pure Further Mathematics 3. Revision Notes

Pure Further Mathematics 3. Revision Notes Pure Further Mathematics Revision Notes February 6 FP FEB 6 SDB Hyperbolic functions... Definitions and graphs... Addition formulae, double angle formulae etc.... Osborne s rule... Inverse hyperbolic functions...

More information

APPM 1350 Final Exam Fall 2017

APPM 1350 Final Exam Fall 2017 APPM 350 Final Exam Fall 207. (26 pts) Evaluate the following. (a) Let g(x) cos 3 (π 2x). Find g (π/3). (b) Let y ( x) x. Find y (4). (c) lim r 0 e /r ln(r) + (a) (9 pt) g (x) 3 cos 2 (π 2x)( sin(π 2x))(

More information

Monday 20 June 2005 Morning Time: 1 hour 30 minutes

Monday 20 June 2005 Morning Time: 1 hour 30 minutes Paper Reference(s) 6675/01 Edecel GCE Pure Mathematics P5 Further Mathematics FP Advanced/Advanced Subsidiary Monday 0 June 005 Morning Time: 1 hour 30 minutes Materials required for eamination Mathematical

More information

We define hyperbolic functions cosech, sech and coth in a similar way to the definitions of trigonometric functions cosec, sec and cot respectively:

We define hyperbolic functions cosech, sech and coth in a similar way to the definitions of trigonometric functions cosec, sec and cot respectively: 3 Chapter 5 SECTION F Hyperbolic properties By the end of this section you will be able to: evaluate other hyperbolic functions show hyperbolic identities understand inverse hyperbolic functions F Other

More information

Mark Scheme (Results) Summer GCE Further Pure FP3 (6669) Paper 1

Mark Scheme (Results) Summer GCE Further Pure FP3 (6669) Paper 1 Mark (Results) Summer 1 GCE Further Pure FP3 (6669) Paper 1 Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the world s leading learning company. We provide a wide range

More information

ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT

ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT Course: Math For Engineering Winter 8 Lecture Notes By Dr. Mostafa Elogail Page Lecture [ Functions / Graphs of Rational Functions] Functions

More information

Extra FP3 past paper - A

Extra FP3 past paper - A Mark schemes for these "Extra FP3" papers at https://mathsmartinthomas.files.wordpress.com/04//extra_fp3_markscheme.pdf Extra FP3 past paper - A More FP3 practice papers, with mark schemes, compiled from

More information

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review)

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review) Name Date Miterm Score Overall Grae Math A Miterm 2 Fall 205 Riversie City College (Use this as a Review) Instructions: All work is to be shown, legible, simplifie an answers are to be boxe in the space

More information

Strauss PDEs 2e: Section Exercise 6 Page 1 of 5

Strauss PDEs 2e: Section Exercise 6 Page 1 of 5 Strauss PDEs 2e: Section 4.3 - Exercise 6 Page 1 of 5 Exercise 6 If a 0 = a l = a in the Robin problem, show that: (a) There are no negative eigenvalues if a 0, there is one if 2/l < a < 0, an there are

More information

ENGI 3425 Review of Calculus Page then

ENGI 3425 Review of Calculus Page then ENGI 345 Review of Calculus Page 1.01 1. Review of Calculus We begin this course with a refresher on ifferentiation an integration from MATH 1000 an MATH 1001. 1.1 Reminer of some Derivatives (review from

More information

Chapter two Functions

Chapter two Functions Chaptr two Functions -- Eponntial Logarithm functions Eponntial functions If a is a positiv numbr is an numbr, w dfin th ponntial function as = a with domain - < < ang > Th proprtis of th ponntial functions

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 104 DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) by AJHobson 1041 Products 1042 Quotients 1043 Logarithmic differentiation 1044 Exercises 1045 Answers

More information

Paper Reference. Further Pure Mathematics FP3 Advanced/Advanced Subsidiary. Monday 24 June 2013 Afternoon Time: 1 hour 30 minutes

Paper Reference. Further Pure Mathematics FP3 Advanced/Advanced Subsidiary. Monday 24 June 2013 Afternoon Time: 1 hour 30 minutes Centre No. Candidate No. Surname Signature Paper Reference(s) 6669/01 Edexcel GCE Further Pure Mathematics FP3 Advanced/Advanced Subsidiary Monday 24 June 2013 Afternoon Time: 1 hour 30 minutes This is

More information

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form)

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form) INTRO TO CALCULUS REVIEW FINAL EXAM NAME: DATE: A. Equations of Lines (Review Chapter) y = m + b (Slope-Intercept Form) A + By = C (Stanar Form) y y = m( ) (Point-Slope Form). Fin the equation of a line

More information

Pure Further Mathematics 3. Revision Notes

Pure Further Mathematics 3. Revision Notes Pure Further Mathematics Revision Notes June 6 FP JUNE 6 SDB Hyperbolic functions... Definitions and graphs... Addition formulae, double angle formulae etc.... Osborne s rule... Inverse hyperbolic functions...

More information

Edexcel GCE Further Pure Mathematics FP3 Advanced/Advanced Subsidiary

Edexcel GCE Further Pure Mathematics FP3 Advanced/Advanced Subsidiary PhysicsAndMathsTutor.com Centre No. Candidate No. Surname Signature Paper Reference(s) 6669/01 Edexcel GCE Further Pure Mathematics FP3 Advanced/Advanced Subsidiary Monday 4 June 013 Afternoon Time: 1

More information

STEP Support Programme. Pure STEP 3 Solutions

STEP Support Programme. Pure STEP 3 Solutions STEP Support Programme Pure STEP 3 Solutions S3 Q6 Preparation Completing the square on gives + + y, so the centre is at, and the radius is. First draw a sketch of y 4 3. This has roots at and, and you

More information

Differential Equations DIRECT INTEGRATION. Graham S McDonald

Differential Equations DIRECT INTEGRATION. Graham S McDonald Differential Equations DIRECT INTEGRATION Graham S McDonald A Tutorial Module introducing ordinary differential equations and the method of direct integration Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

MTH 133 Solutions to Exam 1 February 21, Without fully opening the exam, check that you have pages 1 through 11.

MTH 133 Solutions to Exam 1 February 21, Without fully opening the exam, check that you have pages 1 through 11. MTH Solutions to Eam February, 8 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the eam, check that you have pages through. Show all

More information

Hyperbolic functions

Hyperbolic functions Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Derivatives of Hyperbolic functions What you need to know already: Basic rules of differentiation, including

More information

MATH 6102 Spring 2009 A Bestiary of Calculus Special Functions

MATH 6102 Spring 2009 A Bestiary of Calculus Special Functions MATH 6102 Spring 2009 A Bestiary of Calculus Special Functions Transcendental Functions Last time we discussed eponential, logarithmic, and trigonometric functions. Theorem 1: If f : R R is a continuous

More information

Edexcel GCE Further Pure Mathematics FP3 Advanced/Advanced Subsidiary

Edexcel GCE Further Pure Mathematics FP3 Advanced/Advanced Subsidiary Centre No. Candidate No. Surname Signature Paper Reference(s) 6669/01 Edexcel GCE Further Pure Mathematics FP3 Advanced/Advanced Subsidiary Friday 24 June 2011 Afternoon Time: 1 hour 30 minutes Materials

More information

JUST THE MATHS UNIT NUMBER INTEGRATION 1 (Elementary indefinite integrals) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION 1 (Elementary indefinite integrals) A.J.Hobson JUST THE MATHS UNIT NUMBER 2. INTEGRATION (Elementary indefinite integrals) by A.J.Hobson 2.. The definition of an integral 2..2 Elementary techniques of integration 2..3 Exercises 2..4 Answers to exercises

More information

UNIT NUMBER DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

UNIT NUMBER DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS UNIT NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

2 Recollection of elementary functions. II

2 Recollection of elementary functions. II Recollection of elementary functions. II Last updated: October 5, 08. In this section we continue recollection of elementary functions. In particular, we consider exponential, trigonometric and hyperbolic

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Some functions and their derivatives

Some functions and their derivatives Chapter Some functions an their erivatives. Derivative of x n for integer n Recall, from eqn (.6), for y = f (x), Also recall that, for integer n, Hence, if y = x n then y x = lim δx 0 (a + b) n = a n

More information

FP3 past questions - conics

FP3 past questions - conics Hperolic functions cosh sinh = sinh = sinh cosh cosh = cosh + sinh rcosh = ln{ + } ( ) rsinh = ln{ + + } + rtnh = ln ( < ) FP3 pst questions - conics Conics Ellipse Prol Hperol Rectngulr Hperol Stndrd

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.3 DIFFERENTIATION 3 (Elementary techniques of differentiation) by A.J.Hobson 10.3.1 Standard derivatives 10.3.2 Rules of differentiation 10.3.3 Exercises 10.3.4 Answers to

More information

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital.

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital. 7.5. Ineterminate Forms an L Hôpital s Rule L Hôpital s Rule was iscovere by Bernoulli but written for the first time in a text by L Hôpital. Ineterminate Forms 0/0 an / f(x) If f(x 0 ) = g(x 0 ) = 0,

More information

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS Page of 6 FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS 6. HYPERBOLIC FUNCTIONS These functions which are defined in terms of e will be seen later to be related to the trigonometic functions via comple

More information

MATHEMATICS C1-C4 and FP1-FP3

MATHEMATICS C1-C4 and FP1-FP3 MS WELSH JOINT EDUCATION COMMITTEE. CYD-BWYLLGOR ADDYSG CYMRU General Certificate of Eucation Avance Subsiiary/Avance Tystysgrif Aysg Gyffreinol Uwch Gyfrannol/Uwch MARKING SCHEMES SUMMER 6 MATHEMATICS

More information

Physics 220. Exam #2. May 20, 2016

Physics 220. Exam #2. May 20, 2016 Physics 22 Exam #2 May 2, 26 Name Please rea an follow these instructions carefully: Rea all prolems carefully efore attempting to solve them. Your work must e legile, an the organization clear. You must

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

GCE. Mathematics. Mark Scheme for June Advanced GCE Unit 4726: Further Pure Mathematics 2

GCE. Mathematics. Mark Scheme for June Advanced GCE Unit 4726: Further Pure Mathematics 2 GCE Mathematics Advanced GCE Unit 76: Further Pure Mathematics Mark Scheme for June OCR (Oford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs

More information

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following Math 2-08 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = 2 (ex e x ) cosh x = 2 (ex + e x ) tanh x = sinh

More information

Hyperbolic functions

Hyperbolic functions Hyperbolic functions Attila Máté Brooklyn College of the City University of New York January 5, 206 Contents Hyperbolic functions 2 Connection with the unit hyperbola 2 2. Geometric meaning of the parameter...........................

More information

Proof by induction ME 8

Proof by induction ME 8 Proof by induction ME 8 n Let f ( n) 9, where n. f () 9 8, which is divisible by 8. f ( n) is divisible by 8 when n =. Assume that for n =, f ( ) 9 is divisible by 8 for. f ( ) 9 9.9 9(9 ) f ( ) f ( )

More information

Lecture 3. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Exponential and logarithmic functions

Lecture 3. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Exponential and logarithmic functions Lecture 3 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Exponential and logarithmic functions Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 7 Lecture 3 1 Inverse functions

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

ANALLAGMATIC SPIRALS PURSUIT CURVES HYPERBOLIC-TANGENTOID SPIRALS. Part - VII

ANALLAGMATIC SPIRALS PURSUIT CURVES HYPERBOLIC-TANGENTOID SPIRALS. Part - VII ANALLAGMATIC SPIRALS PURSUIT CURVES HYPERBOLIC-TANGENTOID SPIRALS β-curves Part - VII C. Masurel 21/10/2014 Abstract By analogy with sinusoidal spirals and Ribaucour curves defined with trigonometric functions

More information

Teaching Topics: Calculus and Maclaurin Series in FP2

Teaching Topics: Calculus and Maclaurin Series in FP2 the Further Mathematics network www.fmnetwork.org.uk the Further Mathematics network www.fmnetwork.org.uk Teaching Topics: Calculus and Maclaurin Series in FP2 Let Maths take you Further FP2 in General

More information

CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions

CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions CHAPTER 5 Logarithmic, Eponential, and Other Transcendental Functions Section 5. The Natural Logarithmic Function: Differentiation.... 9 Section 5. The Natural Logarithmic Function: Integration...... 98

More information

Review exercise

Review exercise Review eercise y cos sin When : 8 y and 8 gradient of normal is 8 y When : 9 y and 8 Equation of normal is y 8 8 y8 8 8 8y 8 8 8 8y 8 8 8 8y 8 8 8 y e ln( ) e ln e When : y e ln and e Equation of tangent

More information

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

MA 242 Review Exponential and Log Functions Notes for today s class can be found at MA 242 Review Exponential and Log Functions Notes for today s class can be found at www.xecu.net/jacobs/index242.htm Example: If y = x n If y = x 2 then then dy dx = nxn 1 dy dx = 2x1 = 2x Power Function

More information

Calculus II. George Voutsadakis 1. LSSU Math 152. Lake Superior State University. 1 Mathematics and Computer Science

Calculus II. George Voutsadakis 1. LSSU Math 152. Lake Superior State University. 1 Mathematics and Computer Science Calculus II George Voutsadakis Mathematics and Computer Science Lake Superior State University LSSU Math 52 George Voutsadakis (LSSU) Calculus II February 205 / 88 Outline Techniques of Integration Integration

More information

Solution Sheet 1.4 Questions 26-31

Solution Sheet 1.4 Questions 26-31 Solution Sheet 1.4 Questions 26-31 26. Using the Limit Rules evaluate i) ii) iii) 3 2 +4+1 0 2 +4+3, 3 2 +4+1 2 +4+3, 3 2 +4+1 1 2 +4+3. Note When using a Limit Rule you must write down which Rule you

More information

A-LEVEL FURTHER MATHEMATICS

A-LEVEL FURTHER MATHEMATICS A-LEVEL FURTHER MATHEMATICS MFP Further Pure Report on the Examination 6360 June 1 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright 01 AQA and its licensors. All rights

More information

REVISION SHEET FP2 (MEI) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = +

REVISION SHEET FP2 (MEI) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = + the Further Mathematics network www.fmnetwork.org.uk V 07 REVISION SHEET FP (MEI) CALCULUS The main ideas are: Calculus using inverse trig functions & hperbolic trig functions and their inverses. Maclaurin

More information

PMT. Mark Scheme (Results) Summer Pearson Edexcel GCE in Further Pure Mathematics FP3 (6669/01)

PMT. Mark Scheme (Results) Summer Pearson Edexcel GCE in Further Pure Mathematics FP3 (6669/01) Mark Scheme (Results) Summer 4 Pearson Edecel GCE in Further Pure Mathematics FP3 (6669/) Edecel and BTEC Qualifications Edecel and BTEC qualifications are awarded by Pearson, the UK s largest awarding

More information

6.7 Hyperbolic Functions

6.7 Hyperbolic Functions 6.7 6.7 Hyperbolic Functions Even and Odd Parts of an Exponential Function We recall that a function f is called even if f( x) = f(x). f is called odd if f( x) = f(x). The sine function is odd while the

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

June 2011 Further Pure Mathematics FP Mark Scheme

June 2011 Further Pure Mathematics FP Mark Scheme . June 0 Further Pure Mthemtics FP 6669 Mrk dy 6x dx = nd so surfce re = π x ( + (6 x ) dx B 4 = 4 π ( 6 x ) + 6 4 4π D 860.06 = 806 (to sf) 6 Use limits nd 0 to give [ ] B Both bits CAO but condone lck

More information

Advanced Mathematics Support Programme OCR Year 2 Pure Core Suggested Scheme of Work ( )

Advanced Mathematics Support Programme OCR Year 2 Pure Core Suggested Scheme of Work ( ) OCR Year 2 Pure Core Suggested Scheme of Work (2018-2019) This template shows how Integral Resources and FMSP FM videos can be used to support Further Mathematics students and teachers. This template is

More information

Math Spring 2014 Solutions to Assignment # 6 Completion Date: Friday May 23, 2014

Math Spring 2014 Solutions to Assignment # 6 Completion Date: Friday May 23, 2014 Math 11 - Spring 014 Solutions to Assignment # 6 Completion Date: Friday May, 014 Question 1. [p 109, #9] With the aid of expressions 15) 16) in Sec. 4 for sin z cos z, namely, sin z = sin x + sinh y cos

More information

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) =

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) = MATH1003 REVISION 1. Differentiate the following functions, simplifying your answers when appropriate: (i) f(x) = (x 3 2) tan x (ii) y = (3x 5 1) 6 (iii) y 2 = x 2 3 (iv) y = ln(ln(7 + x)) e 5x3 (v) g(t)

More information

Mixed exercise 3. x y. cosh t sinh t 1 Substituting the values for cosh t and sinht in the equation for the hyperbola H. = θ =

Mixed exercise 3. x y. cosh t sinh t 1 Substituting the values for cosh t and sinht in the equation for the hyperbola H. = θ = Mixed exercise x x a Parametric equations: cosθ and sinθ 9 cos θ + sin θ Substituting the values for cos θ and sinθ in the equation for ellipse E gives the Cartesian equation: + 9 b Comparing with the

More information

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule MS2: IT Mathematics Differentiation Rules for Differentiation: Part John Carroll School of Mathematical Sciences Dublin City University Pattern Observe You may have notice the following pattern when we

More information

Review of Differentiation and Integration for Ordinary Differential Equations

Review of Differentiation and Integration for Ordinary Differential Equations Schreyer Fall 208 Review of Differentiation an Integration for Orinary Differential Equations In this course you will be expecte to be able to ifferentiate an integrate quickly an accurately. Many stuents

More information

9 Mixed Exercise. vector equation is. 4 a

9 Mixed Exercise. vector equation is. 4 a 9 Mixed Exercise a AB r i j k j k c OA AB 7 i j 7 k A7,, and B,,8 8 AB 6 A vector equation is 7 r x 7 y z (i j k) j k a x y z a a 7, Pearson Education Ltd 7. Copying permitted for purchasing institution

More information

ADVANCED General Certificate of Education Mathematics Assessment Unit F3. assessing. Module FP3: Further Pure Mathematics 3 [AMF31]

ADVANCED General Certificate of Education Mathematics Assessment Unit F3. assessing. Module FP3: Further Pure Mathematics 3 [AMF31] ADVACED General Certificate of Education 6 Mathematics Assessment Unit F assessing Module F: Further ure Mathematics [AMF] MDAY 6 UE, AFTER MAR SCHEME 987. F GCE ADVACED/ADVACED SUBSIDIARY (AS) MATHEMATICS

More information

CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions

CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions CHAPTER 5 Logarithmic, Eponential, and Other Transcendental Functions Section 5. The Natural Logarithmic Function: Dierentiation.... Section 5. The Natural Logarithmic Function: Integration...... Section

More information

First Order Linear Differential Equations

First Order Linear Differential Equations LECTURE 8 First Orer Linear Differential Equations We now turn our attention to the problem of constructing analytic solutions of ifferential equations; that is to say,solutions that can be epresse in

More information

Chapter 6: Integration: partial fractions and improper integrals

Chapter 6: Integration: partial fractions and improper integrals Chapter 6: Integration: partial fractions an improper integrals Course S3, 006 07 April 5, 007 These are just summaries of the lecture notes, an few etails are inclue. Most of what we inclue here is to

More information

Bethe Ansatz solution of the open XX spin chain with nondiagonal boundary terms

Bethe Ansatz solution of the open XX spin chain with nondiagonal boundary terms UMTG 231 Bethe Ansatz solution of the open XX spin chain with nondiagonal boundary terms arxiv:hep-th/0110081v1 9 Oct 2001 Rafael I. Nepomechie Physics Department, P.O. Box 248046, University of Miami

More information

A-LEVEL Mathematics. Further Pure 2 MFP2 Mark scheme June Version/Stage: 1.0 Final

A-LEVEL Mathematics. Further Pure 2 MFP2 Mark scheme June Version/Stage: 1.0 Final A-LEVEL Mathematics Further Pure MFP Mark scheme 660 June 0 Version/Stage:.0 Final Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel

More information

22.615, MDH Theory of Fusion Systems Prof. Final Exam Solution. ψ ψ. 1a. Solution: 1+κ κ

22.615, MDH Theory of Fusion Systems Prof. Final Exam Solution. ψ ψ. 1a. Solution: 1+κ κ .65, MDH Theor of Fusion Sstems Prof. Finl Em Solution. ψ ψ + +μ R J ψ ( S S: + Solution: ψ A + A + ψ A + R J μ A μ R J + μr J ψ + +.65, MDH Theor of Fusion Sstems Finl Em Solution Prof. Pge of ψ ψ + (

More information

Math F15 Rahman

Math F15 Rahman Math - 9 F5 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = (ex e x ) cosh x = (ex + e x ) tanh x = sinh

More information

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = =

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = = Review Eercise a Use m m a a, so a a a Use c c 6 5 ( a ) 5 a First find Use a 5 m n m n m a m ( a ) or ( a) 5 5 65 m n m a n m a m a a n m or m n (Use a a a ) cancelling y 6 ecause n n ( 5) ( 5)( 5) (

More information