Integration Exercises - Part 3 (Sol'ns) (Hyperbolic Functions) (12 pages; 6/2/18) (The constant of integration has been omitted throughout.

Size: px
Start display at page:

Download "Integration Exercises - Part 3 (Sol'ns) (Hyperbolic Functions) (12 pages; 6/2/18) (The constant of integration has been omitted throughout."

Transcription

1 Integration Eercises - Part (Sol'ns) (Hyperbolic Functions) ( pages; 6//8) (The constant of integration has been omitted throughout.) () cosech Given that d tanh = sech, we could investigate d coth = d cosh = sinh.sinh cosh.cosh sinh sinh so that cosech = coth + c = sinh = cosech () tanh (from st principles) tanh = sinh cosh As sinh = cosh, let u = cosh Then du = sinh, and sinh = du = ln u + c cosh u = ln(cosh) + c [No moduli signs are needed, as cosh > 0 for all ] () sechtanh sechtanh = sinh cosh As sinh = cosh, let u = cosh Then du = sinh, and sinh cosh = u du = u + c

2 = sech + c (4) tanh tanh = sech = tanh + c (from differentiation table) (5) sech tanh As sech = tanh, let u = tanh, so that du = sech, and sech tanh = u du = u + c = tanh + c (6) sech tanh As we have a power of sech, consider d sech = sechtanh, from (i). Then let u = sech, so that du = sechtanh and sech tanh = u du = = u + c = sech + c

3 (7) cosh cosh sinh = & cosh + sinh = cosh, so that cosh = ( + cosh), and cosh = + cosh = + sinh + c 4 (8) cosh cosh = cosh( sinh ) Let u = sinh, so that du = cosh, and cosh( sinh ) = u du = u u + c = sinh sinh + c (9) sech Method sech = cosh = cosh cosh +sinh Let u = sinh, so that du = cosh Then cosh = du +sinh +u = arctan(sinh) + c Method sech = (e +e ) = Let u = e, so that du = e e e +

4 and e = du e + u + = arctan(e ) + c To show that arctan(sinh) + c = arctan(e ) + c : Let θ = arctan (sinh) and φ = arctan (e ) We need to show that θ & φ differ by a constant. tanθ = sinh & tan ( φ ) = e Let t = tan ( φ ) Then sinh = (e e ) = (t t ) = t [We can now use the standard right-angled triangle with sides t, t & + t : tanφ = t t & the hypotenuse follows from Pythagoras.] So sinh = tan ( π φ ) = tan (φ π ) Thus tan ( φ π ) = tanθ, and so φ π & φ differ by a multiple of π; ie θ & φ differ by a constant, as required. t (0) 4 9 = 4 9 ( ) = arcosh ( ( )) + C = arcosh ( ) + C 4

5 () (a) cosh (b) sinh (c) tanh (a) By Parts, cosh = cosh = cosh = cosh ( ) ( ) = cosh (b) By Parts, sinh = sinh = sinh + = sinh ( ) + ( ) = sinh + + (c) By Parts, tanh = tanh = tanh + = tanh + ln ( ) () ( 9) Let = coshu, so that = sinhu du Then I = sinhu 7sinh u du = 9 cosech u du 5

6 As d du tanhu = sech u, we can investigate d coshu du sinhu = sinhusinhu coshucoshu sinh u d du cothu: = sinh u = cosech u coshu Thus I = cothu = = 9 9 cosh u 9 9 = 9 9 Alternative method Let = secu, so that = secutanu Then I = secutanu 7tan u = 9 du = /cosu du = cosu du 9 ( sinu cosu ) 9 sin u ( ) = = = sinu 9 cos u 9 (/) 9 9 () 4 + Let = sinhu, so that = coshu du and I = + sinh u (coshu)du = 4 cosh u du = + cosh(u) du = (u + sinh(u)) = sinh ( ) + sinhucoshu = sinh ( ) + ( ) + = sinh ( ) + ( ) + = sinh ( )

7 [Note: The alternative substitution = tanu, leads to a much more complicated epression.] (4) + Let = sinh u, so that = sinhucoshu du and I = sinhu coshu ( sinhucoshu) du = sinh u du = (cosh(u) ) du = sinh(u) u = sinhu coshu u = ( + ) sinh ( ) (5) 4 Let = coshu, so that = sinhu du and I = sinhu. sinhu du = cosh(u) du 4 = sinh(u) u = sinhucoshu cosh () = 4 4 cosh () (6) + Let = sinhu, so that = coshu du and I = sinh u coshu coshu du 7

8 = sinh u(sinh u + )du [A reduction formula could be found for sinh 4 u du at this point, as an alternative to the following.] = [cosh(u) ] { [cosh(u) ] + } du = 4 [cosh(u) ][cosh(u) + ]du = 4 cosh (u) du = [(cosh(4u) + ] du 4 = sinh(4u) u 8 = 6 sinh(u) cosh(u) u 8 = 8 sinhucoshu(cosh u + sinh u) u 8 = 8 + ( + ) 8 sinh (7) (+) ( + ) = + = ( + ) 4 So I = (+ ) 4 = cosh ( + ) = cosh ( + ) 8

9 (8) 6 Noting that =, and that 6 = ( ), let u =, so that du = and I = u du = cosh ( ) (9) 4+ I = [arsinh ( )] = [ +9 ] + arsinh( 4 ) ( ) 0 = 4(5 ) + ln ( 4 + ( 4 ) + ) = 8 + ln ( (4 + 5)) = 8 + ln (0) Let 4 = sinhu, so that 4 = coshu du I = coshu. coshu du 0 4 = 9 ( + coshu)du 4 0 [since cosh u sinh u = & cosh u + sinh u = coshu] 9

10 = 9 8 [u + sinhu] 0 = 9 8 ( + 4 (e e )) = (e e ) () + Let = sinh y [so that + = cosh y] Then = sinhycoshy dy and I = coshy sinhy = cosh y dy = + coshy dy = y + sinhy. sinhycoshy dy = arsinh( ) + sinhycoshy = arsinh( ) + ( + ) () Method ( +) Let = sinh y, so that 4 = 6sinhycoshy dy Then I = (sinh y+) 6sinhycoshy dy 4 0

11 = sinhycoshy cosh ysinhy dy = sech y dy = tanhy = tanhy As = sinh y, cosh y = +, so that sech y = + = + and tanh y = sech y [applying Osborn's rule] so that tanhy = + = + = + Method Let = tan θ, so that 4 = 6tanθsec θ dθ Then I = (tan θ+) 6tanθsec θ 4 dθ = sec θ tanθsec θ tanθ dθ = cosθ dθ = sinθ As = tan θ, sec θ = +,

12 so that cos θ = + = + and sinθ = + = + = + () cosech()coth() Note that d (cosec) = cosec cot So suppose that the solution is of the form Acosech(). Then d (Acosech()) = A d ((sinh()) ) = A( )(sinh()) (cosh()) = Acoth()cosech() So we require A = and I = cosech()

( 2) ( ) Hyperbolic Functions 6E. cosh d (cosh sech ) d sinh tanh. cosh. x x x x x x C. x 1 x. 2 a. x x x = + = + cosh dx sinh C 3sinh C.

( 2) ( ) Hyperbolic Functions 6E. cosh d (cosh sech ) d sinh tanh. cosh. x x x x x x C. x 1 x. 2 a. x x x = + = + cosh dx sinh C 3sinh C. Hyperolic Functions 6E a (sinh+ cosh ) cosh+ sinh+ + cosh cosh (cosh sech ) sinh tanh sinh sinh sechtanh sech+ cosh cosh cosh c a a sinh cosh+ cosh sinh sinh + + ( ) + + ( ) ( ) ( ) ( ) arcosh + ( ) +

More information

Hyperbolic Functions: Exercises - Sol'ns (9 pages; 13/5/17)

Hyperbolic Functions: Exercises - Sol'ns (9 pages; 13/5/17) Hyperbolic Functions: Exercises - Sol'ns (9 pages; 3/5/7) () (i) Prove, using exponential functions, that (a) cosh x sinh x = (b) sinhx = sinhxcoshx (ii) By differentiating the result from (i)(b), obtain

More information

Hyperbolic Functions 6D

Hyperbolic Functions 6D Hyperbolic Functions 6D a (sinh cosh b (cosh 5 5sinh 5 c (tanh sech (sinh cosh e f (coth cosech (sech sinh (cosh sinh cosh cosh tanh sech g (e sinh e sinh e + cosh e (cosh sinh h ( cosh cosh + sinh sinh

More information

We define hyperbolic functions cosech, sech and coth in a similar way to the definitions of trigonometric functions cosec, sec and cot respectively:

We define hyperbolic functions cosech, sech and coth in a similar way to the definitions of trigonometric functions cosec, sec and cot respectively: 3 Chapter 5 SECTION F Hyperbolic properties By the end of this section you will be able to: evaluate other hyperbolic functions show hyperbolic identities understand inverse hyperbolic functions F Other

More information

Hyperbolics. Scott Morgan. Further Mathematics Support Programme - WJEC A-Level Further Mathematics 31st March scott3142.

Hyperbolics. Scott Morgan. Further Mathematics Support Programme - WJEC A-Level Further Mathematics 31st March scott3142. Hyperbolics Scott Morgan Further Mathematics Support Programme - WJEC A-Level Further Mathematics 3st March 208 scott342.com @Scott342 Topics Hyperbolic Identities Calculus with Hyperbolics - Differentiation

More information

Mark Scheme (Results) Summer 2008

Mark Scheme (Results) Summer 2008 (Results) Summer 8 GCE GCE Mathematics (75/) Edecel Limited. Registered in England and Wales No. 975 Registered Office: One9 High Holborn, London WCV 7BH Further Pure Mathematics FP d. ( ln( tanh ) ) sech

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.3 DIFFERENTIATION 3 (Elementary techniques of differentiation) by A.J.Hobson 10.3.1 Standard derivatives 10.3.2 Rules of differentiation 10.3.3 Exercises 10.3.4 Answers to

More information

Trigonometric substitutions (8.3).

Trigonometric substitutions (8.3). Review for Eam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Eam covers: 7.4, 7.6, 7.7, 8-IT, 8., 8.2. Solving differential equations

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

1. Evaluate the integrals. a. (9 pts) x e x/2 dx. Solution: Using integration by parts, let u = x du = dx and dv = e x/2 dx v = 2e x/2.

1. Evaluate the integrals. a. (9 pts) x e x/2 dx. Solution: Using integration by parts, let u = x du = dx and dv = e x/2 dx v = 2e x/2. MATH 8 Test -SOLUTIONS Spring 4. Evaluate the integrals. a. (9 pts) e / Solution: Using integration y parts, let u = du = and dv = e / v = e /. Then e / = e / e / e / = e / + e / = e / 4e / + c MATH 8

More information

Math Calculus II Homework # Due Date Solutions

Math Calculus II Homework # Due Date Solutions Math 35 - Calculus II Homework # - 007.08.3 Due Date - 007.09.07 Solutions Part : Problems from sections 7.3 and 7.4. Section 7.3: 9. + d We will use the substitution cot(θ, d csc (θ. This gives + + cot

More information

FP3 mark schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

FP3 mark schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002) FP mark schemes from old P, P5, P6 and FP, FP, FP papers (back to June ) Please note that the following pages contain mark schemes for questions from past papers. Where a question reference is marked with

More information

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4.

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4. CHAPTER. DIFFERENTIATION 8 and similarly for x, As x +, fx), As x, fx). At last! We are now in a position to sketch the curve; see Figure.4. Figure.4: A sketch of the function y = fx) =/x ). Observe the

More information

Differential Equations DIRECT INTEGRATION. Graham S McDonald

Differential Equations DIRECT INTEGRATION. Graham S McDonald Differential Equations DIRECT INTEGRATION Graham S McDonald A Tutorial Module introducing ordinary differential equations and the method of direct integration Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

More information

1 Functions and Inverses

1 Functions and Inverses October, 08 MAT86 Week Justin Ko Functions and Inverses Definition. A function f : D R is a rule that assigns each element in a set D to eactly one element f() in R. The set D is called the domain of f.

More information

Odd Answers: Chapter Eight Contemporary Calculus 1 { ( 3+2 } = lim { 1. { 2. arctan(a) 2. arctan(3) } = 2( π 2 ) 2. arctan(3)

Odd Answers: Chapter Eight Contemporary Calculus 1 { ( 3+2 } = lim { 1. { 2. arctan(a) 2. arctan(3) } = 2( π 2 ) 2. arctan(3) Odd Answers: Chapter Eight Contemporary Calculus PROBLEM ANSWERS Chapter Eight Section 8.. lim { A 0 } lim { ( A ) ( 00 ) } lim { 00 A } 00.. lim {. arctan() A } lim {. arctan(a). arctan() } ( π ). arctan()

More information

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear. Precalculus Review Functions to KNOW! 1. Polynomial Functions Types: General form Generic Graph and unique properties Constants Linear Quadratic Cubic Generalizations for Polynomial Functions - The domain

More information

2 Recollection of elementary functions. II

2 Recollection of elementary functions. II Recollection of elementary functions. II Last updated: October 5, 08. In this section we continue recollection of elementary functions. In particular, we consider exponential, trigonometric and hyperbolic

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

JUST THE MATHS UNIT NUMBER INTEGRATION 1 (Elementary indefinite integrals) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION 1 (Elementary indefinite integrals) A.J.Hobson JUST THE MATHS UNIT NUMBER 2. INTEGRATION (Elementary indefinite integrals) by A.J.Hobson 2.. The definition of an integral 2..2 Elementary techniques of integration 2..3 Exercises 2..4 Answers to exercises

More information

6675/01 Edexcel GCE Pure Mathematics P5 Further Mathematics FP2 Advanced/Advanced Subsidiary

6675/01 Edexcel GCE Pure Mathematics P5 Further Mathematics FP2 Advanced/Advanced Subsidiary 6675/1 Edecel GCE Pure Mathematics P5 Further Mathematics FP Advanced/Advanced Subsidiary Monday June 5 Morning Time: 1 hour 3 minutes 1 1. (a) Find d. (1 4 ) (b) Find, to 3 decimal places, the value of.3

More information

Hyperbolic Functions Mixed Exercise 6

Hyperbolic Functions Mixed Exercise 6 Hyprbolic Functions Mid Ercis 6 a b c ln ln sinh(ln ) ln ln + cosh(ln ) + ln tanh ln ln + ( 6 ) ( + ) 6 7 ln ln ln,and ln ln ln,and ln ln 6 artanh artanhy + + y ln ln y + y ln + y + y y ln + y y + y y

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 104 DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) by AJHobson 1041 Products 1042 Quotients 1043 Logarithmic differentiation 1044 Exercises 1045 Answers

More information

THE COMPOUND ANGLE IDENTITIES

THE COMPOUND ANGLE IDENTITIES TRIGONOMETRY THE COMPOUND ANGLE IDENTITIES Question 1 Prove the validity of each of the following trigonometric identities. a) sin x + cos x 4 4 b) cos x + + 3 sin x + 2cos x 3 3 c) cos 2x + + cos 2x cos

More information

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS Page of 6 FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS 6. HYPERBOLIC FUNCTIONS These functions which are defined in terms of e will be seen later to be related to the trigonometic functions via comple

More information

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so:

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so: Taylor Series 6B a We can evaluate the it directly since there are no singularities: 7+ 7+ 7 5 5 5 b Again, there are no singularities, so: + + c Here we should divide through by in the numerator and denominator

More information

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters α( alpha), β ( beta), θ ( theta) as well as upper case letters A,B,

More information

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209 PRELIM 2 REVIEW QUESTIONS Math 9 Section 25/29 () Calculate the following integrals. (a) (b) x 2 dx SOLUTION: This is just the area under a semicircle of radius, so π/2. sin 2 (x) cos (x) dx SOLUTION:

More information

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2 6 FAMAT Convention Mu Integration. A. 3 3 7 6 6 3 ] 3 6 6 3. B. For quadratic functions, Simpson s Rule is eact. Thus, 3. D.. B. lim 5 3 + ) 3 + ] 5 8 8 cot θ) dθ csc θ ) dθ cot θ θ + C n k n + k n lim

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities:

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities: 6.4 Integration using tanx/) We will revisit the ouble angle ientities: sin x = sinx/) cosx/) = tanx/) sec x/) = tanx/) + tan x/) cos x = cos x/) sin x/) tan x = = tan x/) sec x/) tanx/) tan x/). = tan

More information

6.7 Hyperbolic Functions

6.7 Hyperbolic Functions 6.7 6.7 Hyperbolic Functions Even and Odd Parts of an Exponential Function We recall that a function f is called even if f( x) = f(x). f is called odd if f( x) = f(x). The sine function is odd while the

More information

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes Differentiating ProductsandQuotients 11.4 Introduction We have seen, in the first three Sections, how standard functions like n, e a, sin a, cos a, ln a may be differentiated. In this Section we see how

More information

Pure Further Mathematics 3. Revision Notes

Pure Further Mathematics 3. Revision Notes Pure Further Mathematics Revision Notes June 6 FP JUNE 6 SDB Hyperbolic functions... Definitions and graphs... Addition formulae, double angle formulae etc.... Osborne s rule... Inverse hyperbolic functions...

More information

Extra FP3 past paper - A

Extra FP3 past paper - A Mark schemes for these "Extra FP3" papers at https://mathsmartinthomas.files.wordpress.com/04//extra_fp3_markscheme.pdf Extra FP3 past paper - A More FP3 practice papers, with mark schemes, compiled from

More information

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I MTH Test Spring 209 Name Calculus I Justify all answers by showing your work or by proviing a coherent eplanation. Please circle your answers.. 4 z z + 6 z 3 ez 2 = 4 z + 2 2 z2 2ez Rewrite as 4 z + 6

More information

Pure Further Mathematics 3. Revision Notes

Pure Further Mathematics 3. Revision Notes Pure Further Mathematics Revision Notes February 6 FP FEB 6 SDB Hyperbolic functions... Definitions and graphs... Addition formulae, double angle formulae etc.... Osborne s rule... Inverse hyperbolic functions...

More information

Some functions and their derivatives

Some functions and their derivatives Chapter Some functions an their erivatives. Derivative of x n for integer n Recall, from eqn (.6), for y = f (x), Also recall that, for integer n, Hence, if y = x n then y x = lim δx 0 (a + b) n = a n

More information

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics

Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Pearson Edecel Level 3 Advanced Subsidiary and Advanced GCE Mathematics and Further Mathematics Mathematical formulae and statistical tables First certification from 08 Advanced Subsidiary GCE in Mathematics

More information

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x) APPM 5 Final Eam (5 pts) Fall. The following problems are not related: (a) (5 pts, 5 pts ea.) Find the following limits or show that they do not eist: (i) lim e (ii) lim arcsin() (b) (5 pts) Find and classify

More information

Math Analysis Chapter 5 Notes: Analytic Trigonometric

Math Analysis Chapter 5 Notes: Analytic Trigonometric Math Analysis Chapter 5 Notes: Analytic Trigonometric Day 9: Section 5.1-Verifying Trigonometric Identities Fundamental Trig Identities Reciprocal Identities: 1 1 1 sin u = cos u = tan u = cscu secu cot

More information

Chapter 9: Complex Numbers

Chapter 9: Complex Numbers Chapter 9: Comple Numbers 9.1 Imaginary Number 9. Comple Number - definition - argand diagram - equality of comple number 9.3 Algebraic operations on comple number - addition and subtraction - multiplication

More information

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions Chapter 5 Logarithmic, Exponential, an Other Transcenental Functions 5.1 The Natural Logarithmic Function: Differentiation 5.2 The Natural Logarithmic Function: Integration 5.3 Inverse Functions 5.4 Exponential

More information

Analytic Trigonometry

Analytic Trigonometry Chapter 5 Analytic Trigonometry Course Number Section 5.1 Using Fundamental Identities Objective: In this lesson you learned how to use fundamental trigonometric identities to evaluate trigonometric functions

More information

Today: 5.6 Hyperbolic functions

Today: 5.6 Hyperbolic functions Toay: 5.6 Hyerbolic functions Warm u: Let f() = (e ) an g() = (e + ) Verify the following ientities: () f 0 () =g() () g 0 () =f() (3) f() is an o function (i.e. f(-) = -f()) (4) g() is an even function

More information

Differential and Integral Calculus

Differential and Integral Calculus School of science an engineering El Akhawayn University Monay, March 31 st, 2008 Outline 1 Definition of hyperbolic functions: The hyperbolic cosine an the hyperbolic sine of the real number x are enote

More information

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes The Hyperbolic Functions 6. Introduction The hyperbolic functions cosh x, sinh x, tanh x etc are certain combinations of the exponential functions e x and e x. The notation implies a close relationship

More information

REVISION SHEET FP2 (MEI) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = +

REVISION SHEET FP2 (MEI) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = + the Further Mathematics network www.fmnetwork.org.uk V 07 REVISION SHEET FP (MEI) CALCULUS The main ideas are: Calculus using inverse trig functions & hperbolic trig functions and their inverses. Maclaurin

More information

C3 Exam Workshop 2. Workbook. 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2

C3 Exam Workshop 2. Workbook. 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2 C3 Exam Workshop 2 Workbook 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2 π. Give the value of α to 3 decimal places. (b) Hence write down the minimum value of 7 cos

More information

Solution Sheet 1.4 Questions 26-31

Solution Sheet 1.4 Questions 26-31 Solution Sheet 1.4 Questions 26-31 26. Using the Limit Rules evaluate i) ii) iii) 3 2 +4+1 0 2 +4+3, 3 2 +4+1 2 +4+3, 3 2 +4+1 1 2 +4+3. Note When using a Limit Rule you must write down which Rule you

More information

2 nd ORDER O.D.E.s SUBSTITUTIONS

2 nd ORDER O.D.E.s SUBSTITUTIONS nd ORDER O.D.E.s SUBSTITUTIONS Question 1 (***+) d y y 8y + 16y = d d d, y 0, Find the general solution of the above differential equation by using the transformation equation t = y. Give the answer in

More information

Throughout this module we use x to denote the positive square root of x; for example, 4 = 2.

Throughout this module we use x to denote the positive square root of x; for example, 4 = 2. Throughout this module we use x to denote the positive square root of x; for example, 4 = 2. You may often see (although not in FLAP) the notation sin 1 used in place of arcsin. sinh and cosh are pronounced

More information

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant NOTES 8: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 8.1 TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sinθ 1 cscθ cosθ 1 secθ tanθ 1

More information

Differentials and Integrals

Differentials and Integrals Differentials and Integrals UBC Math 3 Lecture Notes by Yue-Xian Li (Feb, ). Differentials Definition: The differential, df, of any differentiable function F is an infinitely small increment or change

More information

A1. Let r > 0 be constant. In this problem you will evaluate the following integral in two different ways: r r 2 x 2 dx

A1. Let r > 0 be constant. In this problem you will evaluate the following integral in two different ways: r r 2 x 2 dx Math 6 Summer 05 Homework 5 Solutions Drew Armstrong Book Problems: Chap.5 Eercises, 8, Chap 5. Eercises 6, 0, 56 Chap 5. Eercises,, 6 Chap 5.6 Eercises 8, 6 Chap 6. Eercises,, 30 Additional Problems:

More information

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures Hyperbolic Functions Notice: this material must not be use as a substitute for attening the lectures 0. Hyperbolic functions sinh an cosh The hyperbolic functions sinh (pronounce shine ) an cosh are efine

More information

D sin x. (By Product Rule of Diff n.) ( ) D 2x ( ) 2. 10x4, or 24x 2 4x 7 ( ) ln x. ln x. , or. ( by Gen.

D sin x. (By Product Rule of Diff n.) ( ) D 2x ( ) 2. 10x4, or 24x 2 4x 7 ( ) ln x. ln x. , or. ( by Gen. SOLUTIONS TO THE FINAL - PART MATH 50 SPRING 07 KUNIYUKI PART : 35 POINTS, PART : 5 POINTS, TOTAL: 50 POINTS No notes, books, or calculators allowed. 35 points: 45 problems, 3 pts. each. You do not have

More information

4.1 Exponential and Logarithmic Functions

4.1 Exponential and Logarithmic Functions . Exponential and Logarithmic Functions Joseph Heavner Honors Complex Analysis Continued) Chapter July, 05 3.) Find the derivative of f ) e i e i. d d e i e i) d d ei ) d d e i ) e i d d i) e i d d i)

More information

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx.

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx. Math 8, Eam 2, Fall 24 Problem Solution. Integrals, Part I (Trigonometric integrals: 6 points). Evaluate the integral: sin 3 () cos() d. Solution: We begin by rewriting sin 3 () as Then, after using the

More information

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists Data provided: Formula sheet MAS53/MAS59 SCHOOL OF MATHEMATICS AND STATISTICS Mathematics (Materials Mathematics For Chemists Spring Semester 203 204 3 hours All questions are compulsory. The marks awarded

More information

THE INVERSE TRIGONOMETRIC FUNCTIONS

THE INVERSE TRIGONOMETRIC FUNCTIONS THE INVERSE TRIGONOMETRIC FUNCTIONS Question 1 (**+) Solve the following trigonometric equation ( x ) π + 3arccos + 1 = 0. 1 x = Question (***) It is given that arcsin x = arccos y. Show, by a clear method,

More information

Chapter two Functions

Chapter two Functions Chaptr two Functions -- Eponntial Logarithm functions Eponntial functions If a is a positiv numbr is an numbr, w dfin th ponntial function as = a with domain - < < ang > Th proprtis of th ponntial functions

More information

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS EXAM Practice for Second Eam Math 135-006, Fall 003 Nov 4, 003 ANSWERS i Problem 1. In each part, find the integral. A. d (4 ) 3/ Make the substitution sin(θ). d cos(θ) dθ. We also have Then, we have d/dθ

More information

FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed.

FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed. Math 150 Name: FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed. 135 points: 45 problems, 3 pts. each. You

More information

Calculus II. George Voutsadakis 1. LSSU Math 152. Lake Superior State University. 1 Mathematics and Computer Science

Calculus II. George Voutsadakis 1. LSSU Math 152. Lake Superior State University. 1 Mathematics and Computer Science Calculus II George Voutsadakis Mathematics and Computer Science Lake Superior State University LSSU Math 52 George Voutsadakis (LSSU) Calculus II February 205 / 88 Outline Techniques of Integration Integration

More information

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu Math Spring 8: Solutions: HW #3 Instructor: Fei Xu. section 7., #8 Evaluate + 3 d. + We ll solve using partial fractions. If we assume 3 A + B + C, clearing denominators gives us A A + B B + C +. Then

More information

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

MA 242 Review Exponential and Log Functions Notes for today s class can be found at MA 242 Review Exponential and Log Functions Notes for today s class can be found at www.xecu.net/jacobs/index242.htm Example: If y = x n If y = x 2 then then dy dx = nxn 1 dy dx = 2x1 = 2x Power Function

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

UNIVERSITI TEKNOLOGI MALAYSIA FACULTY OF SCIENCE... FINAL EXAMINATION SEMESTER I SESSION 2015/2016 COURSE NAME : ENGINEERING MATHEMATICS I

UNIVERSITI TEKNOLOGI MALAYSIA FACULTY OF SCIENCE... FINAL EXAMINATION SEMESTER I SESSION 2015/2016 COURSE NAME : ENGINEERING MATHEMATICS I UNIVERSITI TEKNOLOGI MALAYSIA FACULTY OF SCIENCE... FINAL EXAMINATION SEMESTER I SESSION 05/06 COURSE CODE : SSCE 693 COURSE NAME : ENGINEERING MATHEMATICS I PROGRAMME : SKAW/SKEE/SKEL/SKEM/SKMM/SKMV/

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS

CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS SSCE1693 ENGINEERING MATHEMATICS CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS WAN RUKAIDA BT WAN ABDULLAH YUDARIAH BT MOHAMMAD YUSOF SHAZIRAWATI BT MOHD PUZI NUR ARINA BAZILAH BT AZIZ ZUHAILA BT ISMAIL

More information

School of Distance Education UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. B Sc Mathematics. (2011 Admission Onwards) IV Semester.

School of Distance Education UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. B Sc Mathematics. (2011 Admission Onwards) IV Semester. School of Dtance Education UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc Mathematics 0 Admsion Onwards IV Semester Core Course CALCULUS AND ANALYTIC GEOMETRY QUESTION BANK The natural logarithm

More information

Chapter 5 Notes. 5.1 Using Fundamental Identities

Chapter 5 Notes. 5.1 Using Fundamental Identities Chapter 5 Notes 5.1 Using Fundamental Identities 1. Simplify each expression to its lowest terms. Write the answer to part as the product of factors. (a) sin x csc x cot x ( 1+ sinσ + cosσ ) (c) 1 tanx

More information

Hyperbolic Discrete Ricci Curvature Flows

Hyperbolic Discrete Ricci Curvature Flows Hyperbolic Discrete Ricci Curvature Flows 1 1 Mathematics Science Center Tsinghua University Tsinghua University 010 Unified Framework of Discrete Curvature Flow Unified framework for both Discrete Ricci

More information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information

Revision Checklist. Unit FP3: Further Pure Mathematics 3. Assessment information Revision Checklist Unit FP3: Further Pure Mathematics 3 Unit description Further matrix algebra; vectors, hyperbolic functions; differentiation; integration, further coordinate systems Assessment information

More information

Math F15 Rahman

Math F15 Rahman Math - 9 F5 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = (ex e x ) cosh x = (ex + e x ) tanh x = sinh

More information

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit

Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A2 optional unit Unit FP3 Further Pure Mathematics 3 GCE Further Mathematics GCE Pure Mathematics and Further Mathematics (Additional) A optional unit FP3.1 Unit description Further matrix algebra; vectors, hyperbolic

More information

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Chapter 5 Analytic Trigonometry Section 1 Section 2 Section 3 Section 4 Section 5 Using Fundamental Identities Verifying Trigonometric Identities Solving Trigonometric Equations Sum and Difference Formulas

More information

Solutions to Math 152 Review Problems for Exam 1

Solutions to Math 152 Review Problems for Exam 1 Soltions to Math 5 Review Problems for Eam () If A() is the area of the rectangle formed when the solid is sliced at perpendiclar to the -ais, then A() = ( ), becase the height of the rectangle is and

More information

Crash Course in Trigonometry

Crash Course in Trigonometry Crash Course in Trigonometry Dr. Don Spickler September 5, 003 Contents 1 Trigonometric Functions 1 1.1 Introduction.................................... 1 1. Right Triangle Trigonometry...........................

More information

9.1. Click here for answers. Click here for solutions. PARAMETRIC CURVES

9.1. Click here for answers. Click here for solutions. PARAMETRIC CURVES SECTION 9. PARAMETRIC CURVES 9. PARAMETRIC CURVES A Click here for answers. S Click here for solutions. 5 (a) Sketch the curve b using the parametric equations to plot points. Indicate with an arrow the

More information

2 Trigonometric functions

2 Trigonometric functions Theodore Voronov. Mathematics 1G1. Autumn 014 Trigonometric functions Trigonometry provides methods to relate angles and lengths but the functions we define have many other applications in mathematics..1

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

8. Hyperbolic triangles

8. Hyperbolic triangles 8. Hyperbolic triangles Note: This year, I m not doing this material, apart from Pythagoras theorem, in the lectures (and, as such, the remainder isn t examinable). I ve left the material as Lecture 8

More information

First Midterm Examination

First Midterm Examination Çankaya University Department of Mathematics 016-017 Fall Semester MATH 155 - Calculus for Engineering I First Midterm Eamination 1) Find the domain and range of the following functions. Eplain your solution.

More information

MATH Section 210

MATH Section 210 MATH 101 - Section 10 Instructor: Avner Segal (avners@math.ubc.ca) January 31 st 017 Common course page: http://www.math.ubc.ca/~gerg/teaching/101-winter017/ Individual section page: http://www.math.ubc.ca/~avners/courses/math101-017.html

More information

Section 6.2 Trigonometric Functions: Unit Circle Approach

Section 6.2 Trigonometric Functions: Unit Circle Approach Section. Trigonometric Functions: Unit Circle Approach The unit circle is a circle of radius centered at the origin. If we have an angle in standard position superimposed on the unit circle, the terminal

More information

AMB121F Trigonometry Notes

AMB121F Trigonometry Notes AMB11F Trigonometry Notes Trigonometry is a study of measurements of sides of triangles linked to the angles, and the application of this theory. Let ABC be right-angled so that angles A and B are acute

More information

MATH 162. Midterm Exam 1 - Solutions February 22, 2007

MATH 162. Midterm Exam 1 - Solutions February 22, 2007 MATH 62 Midterm Exam - Solutions February 22, 27. (8 points) Evaluate the following integrals: (a) x sin(x 4 + 7) dx Solution: Let u = x 4 + 7, then du = 4x dx and x sin(x 4 + 7) dx = 4 sin(u) du = 4 [

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED GCE UNIT / MATHEMATICS (MEI Further Methods for Advanced Mathematics (FP THURSDAY JUNE Additional materials: Answer booklet (8 pages Graph paper MEI Eamination Formulae and Tables (MF Morning

More information

APPROVAL CRITERIA FOR GCE AS AND A LEVEL FURTHER MATHEMATICS

APPROVAL CRITERIA FOR GCE AS AND A LEVEL FURTHER MATHEMATICS APPROVAL CRITERIA FOR GCE AS AND A LEVEL FURTHER MATHEMATICS JULY 2016 Contents Page number Introduction 1 Subject aims and objectives 2 Overarching themes 2 Subject content 4 Assessment objectives 5 Scheme

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

MATH 162. FINAL EXAM ANSWERS December 17, 2006

MATH 162. FINAL EXAM ANSWERS December 17, 2006 MATH 6 FINAL EXAM ANSWERS December 7, 6 Part A. ( points) Find the volume of the solid obtained by rotating about the y-axis the region under the curve y x, for / x. Using the shell method, the radius

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital.

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital. 7.5. Ineterminate Forms an L Hôpital s Rule L Hôpital s Rule was iscovere by Bernoulli but written for the first time in a text by L Hôpital. Ineterminate Forms 0/0 an / f(x) If f(x 0 ) = g(x 0 ) = 0,

More information

Department of Mathematical Sciences. Math 226 Calculus Spring 2016 Exam 2V2 DO NOT TURN OVER THIS PAGE UNTIL INSTRUCTED TO DO SO

Department of Mathematical Sciences. Math 226 Calculus Spring 2016 Exam 2V2 DO NOT TURN OVER THIS PAGE UNTIL INSTRUCTED TO DO SO Department of Mathematical Sciences Math 6 Calculus Spring 6 Eam V DO NOT TURN OVER THIS PAGE UNTIL INSTRUCTED TO DO SO NAME (Printed): INSTRUCTOR: SECTION NO.: When instructed, turn over this cover page

More information

MATH QUIZ 3 1/2. sin 1 xdx. π/2. cos 2 (x)dx. x 3 4x 10 x 2 x 6 dx.

MATH QUIZ 3 1/2. sin 1 xdx. π/2. cos 2 (x)dx. x 3 4x 10 x 2 x 6 dx. NAME: I.D.: MATH 56 - QUIZ 3 Instruction: Each problem is worth of point in this take home project. Circle your answers and show all your work CLEARLY. Use additional paper if needed. Solutions with answer

More information

Hyperbolic functions

Hyperbolic functions Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Derivatives of Hyperbolic functions What you need to know already: Basic rules of differentiation, including

More information

Math Section 4.3 Unit Circle Trigonometry

Math Section 4.3 Unit Circle Trigonometry Math 10 - Section 4. Unit Circle Trigonometry An angle is in standard position if its vertex is at the origin and its initial side is along the positive x axis. Positive angles are measured counterclockwise

More information

Mathematical Techniques: Revision Notes

Mathematical Techniques: Revision Notes Differentiation Dr A. J. Bevan October 20, 200 Mathematical Techniques: Revision Notes Dr A. J. Bevan, These notes contain the core of the information conveed in the lectures. The are not a substitute

More information