Math F15 Rahman

Size: px
Start display at page:

Download "Math F15 Rahman"

Transcription

1 Math - 9 F5 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = (ex e x ) cosh x = (ex + e x ) tanh x = sinh x cosh x cschx = / sinh x sechx = / cosh x coth x = / tanh x It s also useful to know what they look like To remember what they look like, just use the definitions and recall what the exponential functions look like and take the average. If you re confused as to what I m talking about make sure to ask me to explain it. They are subject to the following identities: sinh( x) = sinh x cosh( x) = cosh x cosh x sinh x = tanh x = sech x sinh(x + y) = sinh x cosh y + cosh x sinh y cosh(x + y) = cosh x cosh y + sinh x sinh y We can prove some of these things, so we may get a better understanding of the identities. Proofs are important, even for engineers!

2 Theorem. cosh x sinh x =. Proof. We go straight to the definition, cosh x sinh x = [ ] [ ] (ex + e x ) (ex e x ) = 4 (ex + + e x ) 4 (ex + e x ) = Theorem. tanh x = sech x Proof. Here we simply divide the entire equation by cosh x, [ cosh x sinh x = ] cosh x tanh x = sech x. The other identities are proved similar to this one. If you have time, you should try to prove the other identities by yourselves. Even though they wont appear on exams they will help you get a better understanding of the concepts. Here is a nice proof of one of the most important trigonometric identities, and all other identities can be very easily derived through these identities in a similar fashion to the above theorem. Theorem 3. sin θ + cos θ =. Proof. Consider a right triangle and one non-right angle θ. Let the side opposite to θ be of length x, the side adjacent to θ be of length y, and the hypotenuse z. Then, sin θ = x/z and cos θ = y/z, and by the Pythagorean theorem x + y = z, then sin θ + cos θ = x z + y z = x + y z = z z =. It is important to know the derivatives of hyperbolic functions as well, (sinh x) = cosh x (cosh x) = sinh x (tanh x) = sech x (cschx) = cschx coth x (sechx) = sechx tanh x (coth x) = csch x These can all be derived very easily from the definitions. Ex: (cosh x) = x (sinh( x)).

3 8. Integration Review Here we do some standard book problems from the section. 4 I = π/3 π/4 dx/(cos x tan x). Solution: I = π/3 π/4 dx/ cos x = π/3 π/4 sec xdx = ln sec x+tan x π/3 ln + 3 ln +. 8 I = e y dy/ y Solution: Let u = y, then I = u du = u / ln = y / ln. 4 I = xdx/( + x 3 ). Solution: Let u = x 3/ du = 3 xdx/, then I = 3 du/( + u ) = 3 tan u = 3 tan (x 3/ ) + C. π/4 = 8. Integration by parts The modern notion of integration by parts comes from a beautiful theory of integrals by Riemann and Stieltjes in 894, soon after which Stieltjes passed away. The idea is we can integrate over certain functions instead of just over x. We can think of it as a generalization of u-sub. To derive it, consider the product rule, d dx [f(x)g(x)] = f(x)g (x) + g(x)f (x) d[f(x)g(x)] = f(x)g (x)dx + g(x)f (x)dx d[f(x)g(x)] = f(x)g(x) = f(x)g (x)dx + g(x)f (x)dx f(x)g (x)dx = f(x)g(x) g(x)f (x)dx. This can be written in the form, which we will use from now on () udv = uv vdu. () I = x sin xdx. Solution: Let u = x du = dx and dv = sin x v = cos x. Then, I = x cos x + cos xdx = x cos x + sin x + C.

4 We see here that we generally choose the easiest thing to integrate as dv. We can use ILATE: InverseLogsAlgebraicTrigonometricExponential, to help determine which is easier to integrate. Things get easier to integrate as we go to the right, for example, Exponentials are easier to integrate than Trigonometric functions. But this doesn t always work! So, only use it as a guide, not a rule of thumb. () I = ln xdx. Solution: Let u = ln x du = xdx and dv = dx v = x. Then, I = x ln x x dx = x ln x x + C. x (3) I = t e t dt. Solution: Let u = t du = tdt and dv = e t dt v = e t. Then, I = t e t te t dt. Notice, we need to integrate by parts again for the second integral I = te t dt. Let u = t du = dt and dv = e t dt v = e t. Then I = te t e t dt = te t e t. Plugging this back into I gives, I = t e t te t + e t + C. It may be appealing to do this sort of problem using tabular integration, however you should avoid using this method. If you make a mistake using this method, you will lose a majority of the points. You are better off doing integration by parts twice. (4) I = e x sin xdx. Solution: Let u = e x dx du = e t dt and dv = sin x v = cos x. Then, I = e x cos x + e x cos xdx. We must do another integration by parts on the second integral. Let u = e x du = e x dx and dv = cos x v = sin x. Then, I = e x sin x e x sin xdx. Plugging this into I gives, I = e x sin x e x cos x e x sin xdx. Now, we add both sides by e x sin xdx, to get e x sin xdx = e x sin x e x cos x e x sin xdx = (ex sin x e x cos x)+c.

5 Notice, for this problem it didn t matter if you chose e x or sin x and cos x as your u or dv. Try this problem the other way around to convince yourself that it works both ways. And as usual, if you re confused about what I m talking about, please make sure to ask me. It s better to get questions answered early on before you re bombarded with new material. (5) I = tan xdx. Solution: Let u = tan x I = x tan x dx +x and dv = dx v = x. Then, xdx + x. The second integral is our usual u-sub integral where u = + x du = xdx. Then, I = du u = ln u Plugging this back into I gives, I = x tan x = ln. ln u = π 4 ln (6) This next example is a test of our abilities to think abstractly. You wont see this sort of thing on the exam, but you ll see things on the exam that use many of the tricks we will use on this example. Find a reduction formula for I = sin n xdx. Solution: Let u = sin n x du = (n ) sin n x cos xdx and dv = sin xdx v = cos x. Then, sin n xdx = cos x sin n x + (n ) sin n x cos xdx = cos x sin n x + (n ) sin n x( sin x)dx = cos x sin n x + (n ) sin n x (n ) sin n xdx n sin n xdx = cos x sin n x + (n ) sin n xdx sin n xdx = n cos x sinn x + n n sin n xdx.

6 8.3 Trigonometric Integration Lets look at a few examples first and then we ll develop a general strategy. Sines and Cosines. () Consider cos 3 xdx. Solution: We recall the identity: cos = sin x. Lets see if we can use this to simplify the problem. cos 3 xdx = cos x[ sin x]dx = cos xdx sin x cos xdx. Now, the first integral is easy and the second integral we solve via u-sub where u = sin x du = cos xdx. cos 3 xdx = sin x u du = sin x 3 u3 + C = sin x 3 sin3 x + C () sin 5 x cos xdx. Solution: Lets use the same strategy as above, except this time on sin x. sin 5 x cos xdx = (sin x) sin x cos xdx = ( cos x) cos x sin xdx. We can go straight to u-sub with u = cos x du = sin x, sin 5 x cos xdx = ( u ) u du = 3 u3 + 5 u5 7 u7 +C = 3 cos3 x+ 5 cos5 x 7 cos7 x+c (3) π sin xdx Solution: For this problem if we used the identity we used for the past two problems we would be going in circles, so we use another identity - the double angle formula: cos x = sin x, π sin xdx = π ( cos x)dx = (4) sin 4 xdx Solution: This is similar to the above problem, [ ( x )] π sin x = π [ sin 4 xdx = = 4 ] ( cos x) dx = 4 [ cos x + ( + cos 4x) ] dx = 4 ( cos x + cos x)dx ( 3 x sin x + sin 4x 8 ) + C

7 Strategies for sin m x cos n xdx. () () If the power of the cosine term is odd (i.e. n = k + ), save one cosine factor and use cos x = sin x, sin m x cos k+ dx = = sin m x(cos x) k cos xdx sin m x( sin x) k cos xdx. Then substitute u = sin x du = cos x. () If the power of the sine term is odd (i.e. m = k + ), save one sine factor and use sin x = cos x, (3) sin k+ cos n xdx = (sin x) k cos n xdx = ( cos x) k cos n x sin xdx. Then substitute u = cos x du = sin x. (3) If the powers of both sine and cosine are even, use the double-angle formulas: sin x = ( cos x) cos x = ( + cos x) sin x cos x = sin x. Tangents and Secants. () tan 6 x sec 4 xdx. Solution: We recall the identity sec x = + tan x, and see where this takes us tan 6 x sec 4 xdx = tan 6 x( + tan x) sec xdx. Then we substitute u = tan x du = sec xdx, then tan 6 x sec 4 xdx = u 6 (+u )du = 7 u7 + 9 u9 +C = 7 tan7 x+ 9 tan9 x+c

8 () tan 5 θ sec 7 θdθ. Solution: Here lets try using the other identity: tan x = sec x, tan 5 θ sec 7 θdθ = tan 4 θ sec 6 θ sec θ tan θdθ = (sec θ ) sec 6 θ sec θ tan θdθ. We employ the u-sub u = sec θ du = sec θ tan θdθ, tan 5 θ sec 7 θdθ = (u ) u 6 du = u 9 u9 + 7 u7 +C = sec x 9 sec9 x+ 7 sec7 x+c Strategies for tan m x sec n xdx. () If the power of the secant term is even (i.e. n = k, k ), save a factor of sec x and use sec x = + tan x, (4) (5) tan m x sec k xdx = = tan m x(sec x) k sec xdx tan m x( + tan x) k sec xdx. Then substitute u = tan x du = sec xdx. () If the power of the tangent term is odd (i.e. m = k + ), save a factor of sec x tan x and use tan x = sec x, tan k+ x sec n xdx = (tan x) k sec n x sec x tan xdx = (sec x ) k sec n x sec x tan xdx. Then substitute u = sec x du = sec x tan xdx Useful Integrals. These integrals are also pretty easy to derive if you forget them, (6) tan xdx = ln cos x + C = ln sec x + C. (7) sec xdx = ln sec x + tan x + C. () tan 3 xdx. Solution: We use the identity tan x = sec x, tan 3 xdx = tan x(sec x )dx = tan x ln sec x + C.

9 () sec 3 xdx. Solution: We integrate by parts with u = sec x du = sec x tan xdx and dv = sec x v = tan x, then sec 3 xdx = sec x tan x = sec x tan x sec x tan xdx = sec x tan x sec x(sec x )dx sec 3 xdx + sec xdx = sec x tan x sec 3 xdx + ln sec x + tan x sec 3 xdx = [sec x tan x + ln sec x + tan x ] + C.

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following

7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following Math 2-08 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = 2 (ex e x ) cosh x = 2 (ex + e x ) tanh x = sinh

More information

6.2 Trigonometric Integrals and Substitutions

6.2 Trigonometric Integrals and Substitutions Arkansas Tech University MATH 9: Calculus II Dr. Marcel B. Finan 6. Trigonometric Integrals and Substitutions In this section, we discuss integrals with trigonometric integrands and integrals that can

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu MAT 126, Week 2, Thursday class Xuntao Hu Recall that the substitution rule is a combination of the FTC and the chain rule. We can also combine the FTC and the product rule: d dx [f (x)g(x)] = f (x)g (x)

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

6.7 Hyperbolic Functions

6.7 Hyperbolic Functions 6.7 6.7 Hyperbolic Functions Even and Odd Parts of an Exponential Function We recall that a function f is called even if f( x) = f(x). f is called odd if f( x) = f(x). The sine function is odd while the

More information

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x + MATH 06 0 Practice Exam #. (0 points) Evaluate the following integrals: (a) (0 points). t +t+7 This is an irreducible quadratic; its denominator can thus be rephrased via completion of the square as a

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

1 Introduction; Integration by Parts

1 Introduction; Integration by Parts 1 Introduction; Integration by Parts September 11-1 Traditionally Calculus I covers Differential Calculus and Calculus II covers Integral Calculus. You have already seen the Riemann integral and certain

More information

Calculus II. George Voutsadakis 1. LSSU Math 152. Lake Superior State University. 1 Mathematics and Computer Science

Calculus II. George Voutsadakis 1. LSSU Math 152. Lake Superior State University. 1 Mathematics and Computer Science Calculus II George Voutsadakis Mathematics and Computer Science Lake Superior State University LSSU Math 52 George Voutsadakis (LSSU) Calculus II February 205 / 88 Outline Techniques of Integration Integration

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 104 DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) by AJHobson 1041 Products 1042 Quotients 1043 Logarithmic differentiation 1044 Exercises 1045 Answers

More information

Differential and Integral Calculus

Differential and Integral Calculus School of science an engineering El Akhawayn University Monay, March 31 st, 2008 Outline 1 Definition of hyperbolic functions: The hyperbolic cosine an the hyperbolic sine of the real number x are enote

More information

Chapter 8 Integration Techniques and Improper Integrals

Chapter 8 Integration Techniques and Improper Integrals Chapter 8 Integration Techniques and Improper Integrals 8.1 Basic Integration Rules 8.2 Integration by Parts 8.4 Trigonometric Substitutions 8.5 Partial Fractions 8.6 Numerical Integration 8.7 Integration

More information

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu Math Spring 8: Solutions: HW #3 Instructor: Fei Xu. section 7., #8 Evaluate + 3 d. + We ll solve using partial fractions. If we assume 3 A + B + C, clearing denominators gives us A A + B B + C +. Then

More information

Math 8 Winter 2010 Midterm 2 Review Problems Solutions - 1. xcos 6xdx = 4. = x2 4

Math 8 Winter 2010 Midterm 2 Review Problems Solutions - 1. xcos 6xdx = 4. = x2 4 Math 8 Winter 21 Midterm 2 Review Problems Solutions - 1 1 Evaluate xcos 2 3x Solution: First rewrite cos 2 3x using the half-angle formula: ( ) 1 + cos 6x xcos 2 3x = x = 1 x + 1 xcos 6x. 2 2 2 Now use

More information

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes The Hyperbolic Functions 6. Introduction The hyperbolic functions cosh x, sinh x, tanh x etc are certain combinations of the exponential functions e x and e x. The notation implies a close relationship

More information

Spring 2011 solutions. We solve this via integration by parts with u = x 2 du = 2xdx. This is another integration by parts with u = x du = dx and

Spring 2011 solutions. We solve this via integration by parts with u = x 2 du = 2xdx. This is another integration by parts with u = x du = dx and Math - 8 Rahman Final Eam Practice Problems () We use disks to solve this, Spring solutions V π (e ) d π e d. We solve this via integration by parts with u du d and dv e d v e /, V π e π e d. This is another

More information

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209 PRELIM 2 REVIEW QUESTIONS Math 9 Section 25/29 () Calculate the following integrals. (a) (b) x 2 dx SOLUTION: This is just the area under a semicircle of radius, so π/2. sin 2 (x) cos (x) dx SOLUTION:

More information

Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11

Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11 Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11 Due date: Name: Note: Write your answers using positive exponents. Radicals are nice, but not required. ex: Write 1 x 2 not x 2. ex: x is nicer

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

Example. Evaluate. 3x 2 4 x dx.

Example. Evaluate. 3x 2 4 x dx. 3x 2 4 x 3 + 4 dx. Solution: We need a new technique to integrate this function. Notice that if we let u x 3 + 4, and we compute the differential du of u, we get: du 3x 2 dx Going back to our integral,

More information

Hyperbolics. Scott Morgan. Further Mathematics Support Programme - WJEC A-Level Further Mathematics 31st March scott3142.

Hyperbolics. Scott Morgan. Further Mathematics Support Programme - WJEC A-Level Further Mathematics 31st March scott3142. Hyperbolics Scott Morgan Further Mathematics Support Programme - WJEC A-Level Further Mathematics 3st March 208 scott342.com @Scott342 Topics Hyperbolic Identities Calculus with Hyperbolics - Differentiation

More information

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions Chapter 5 Logarithmic, Exponential, an Other Transcenental Functions 5.1 The Natural Logarithmic Function: Differentiation 5.2 The Natural Logarithmic Function: Integration 5.3 Inverse Functions 5.4 Exponential

More information

As we know, the three basic trigonometric functions are as follows: Figure 1

As we know, the three basic trigonometric functions are as follows: Figure 1 Trigonometry Basic Functions As we know, the three basic trigonometric functions are as follows: sin θ = cos θ = opposite hypotenuse adjacent hypotenuse tan θ = opposite adjacent Where θ represents an

More information

Hyperbolic functions

Hyperbolic functions Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Derivatives of Hyperbolic functions What you need to know already: Basic rules of differentiation, including

More information

Integration by Triangle Substitutions

Integration by Triangle Substitutions Integration by Triangle Substitutions The Area of a Circle So far we have used the technique of u-substitution (ie, reversing the chain rule) and integration by parts (reversing the product rule) to etend

More information

Lecture Notes for Math 1000

Lecture Notes for Math 1000 Lecture Notes for Math 1000 Dr. Xiang-Sheng Wang Memorial University of Newfoundland Office: HH-2016, Phone: 864-4321 Office hours: 13:00-15:00 Wednesday, 12:00-13:00 Friday Email: xswang@mun.ca Course

More information

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007 MATH 220 Midterm Thurs., Sept. 20, 2007 Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the eam and nothing else. Calculators

More information

The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following:

The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following: Trigonometric Integrals The goal of today is to determine what u-substitution to use for trigonometric integrals. The most common substitutions are the following: Substitution u sinx u cosx u tanx u secx

More information

Friday 09/15/2017 Midterm I 50 minutes

Friday 09/15/2017 Midterm I 50 minutes Fa 17: MATH 2924 040 Differential and Integral Calculus II Noel Brady Friday 09/15/2017 Midterm I 50 minutes Name: Student ID: Instructions. 1. Attempt all questions. 2. Do not write on back of exam sheets.

More information

MAT137 - Term 2, Week 5

MAT137 - Term 2, Week 5 MAT137 - Term 2, Week 5 Test 3 is tomorrow, February 3, at 4pm. See the course website for details. Today we will: Talk more about integration by parts. Talk about integrating certain combinations of trig

More information

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital.

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital. 7.5. Ineterminate Forms an L Hôpital s Rule L Hôpital s Rule was iscovere by Bernoulli but written for the first time in a text by L Hôpital. Ineterminate Forms 0/0 an / f(x) If f(x 0 ) = g(x 0 ) = 0,

More information

5.2 Proving Trigonometric Identities

5.2 Proving Trigonometric Identities SECTION 5. Proving Trigonometric Identities 43 What you ll learn about A Proof Strategy Proving Identities Disproving Non-Identities Identities in Calculus... and why Proving identities gives you excellent

More information

Lecture 3. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Exponential and logarithmic functions

Lecture 3. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Exponential and logarithmic functions Lecture 3 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Exponential and logarithmic functions Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 7 Lecture 3 1 Inverse functions

More information

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1.

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1. Algebra - Problem Drill 19: Basic Trigonometry - Right Triangle No. 1 of 10 1. Which of the following points lies on the unit circle? (A) 1, 1 (B) 1, (C) (D) (E), 3, 3, For a point to lie on the unit circle,

More information

INTEGRATING RADICALS

INTEGRATING RADICALS INTEGRATING RADICALS MATH 53, SECTION 55 (VIPUL NAIK) Corresponding material in the book: Section 8.4. What students should already know: The definitions of inverse trigonometric functions. The differentiation

More information

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued) Prove this Result How Can a Derivative Not Exist? Remember that the derivative at a point (or slope of a tangent line) is a LIMIT, so it doesn t exist whenever

More information

Math 222, Exam I, September 17, 2002 Answers

Math 222, Exam I, September 17, 2002 Answers Math, Exam I, September 7, 00 Answers I. (5 points.) (a) Evaluate (6x 5 x 4 7x + 3/x 5 + 4e x + 7 x ). Answer: (6x 5 x 4 7x + 3/x 5 + 4e x + 7 x ) = = x 6 + x 3 3 7x + 3 ln x 5x + 4ex + 7x ln 7 + C. Answer:

More information

MTH 133 Solutions to Exam 2 November 15, Without fully opening the exam, check that you have pages 1 through 13.

MTH 133 Solutions to Exam 2 November 15, Without fully opening the exam, check that you have pages 1 through 13. MTH 33 Solutions to Exam 2 November 5, 207 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through

More information

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this.

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this. Preface Here are my online notes for my Calculus II course that I teach here at Lamar University. Despite the fact that these are my class notes they should be accessible to anyone wanting to learn Calculus

More information

Monday, 6 th October 2008

Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns Monday, 6 th October 2008 MA211 Lecture 9: 2nd order differential eqns 1/19 Class test next week... MA211 Lecture 9: 2nd order differential eqns 2/19 This morning

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

A1. Let r > 0 be constant. In this problem you will evaluate the following integral in two different ways: r r 2 x 2 dx

A1. Let r > 0 be constant. In this problem you will evaluate the following integral in two different ways: r r 2 x 2 dx Math 6 Summer 05 Homework 5 Solutions Drew Armstrong Book Problems: Chap.5 Eercises, 8, Chap 5. Eercises 6, 0, 56 Chap 5. Eercises,, 6 Chap 5.6 Eercises 8, 6 Chap 6. Eercises,, 30 Additional Problems:

More information

1 Functions and Inverses

1 Functions and Inverses October, 08 MAT86 Week Justin Ko Functions and Inverses Definition. A function f : D R is a rule that assigns each element in a set D to eactly one element f() in R. The set D is called the domain of f.

More information

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ Math 90 Practice Midterm III Solutions Ch. 8-0 (Ebersole), 3.3-3.8 (Stewart) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam.

More information

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4.

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4. CHAPTER. DIFFERENTIATION 8 and similarly for x, As x +, fx), As x, fx). At last! We are now in a position to sketch the curve; see Figure.4. Figure.4: A sketch of the function y = fx) =/x ). Observe the

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

Welcome to Math 104. D. DeTurck. January 16, University of Pennsylvania. D. DeTurck Math A: Welcome 1 / 44

Welcome to Math 104. D. DeTurck. January 16, University of Pennsylvania. D. DeTurck Math A: Welcome 1 / 44 Welcome to Math 104 D. DeTurck University of Pennsylvania January 16, 2018 D. DeTurck Math 104 002 2018A: Welcome 1 / 44 Welcome to the course Math 104 Calculus I Topics: Quick review of Math 103 topics,

More information

Lecture 31 INTEGRATION

Lecture 31 INTEGRATION Lecture 3 INTEGRATION Substitution. Example. x (let u = x 3 +5 x3 +5 du =3x = 3x 3 x 3 +5 = du 3 u du =3x ) = 3 u du = 3 u = 3 u = 3 x3 +5+C. Example. du (let u =3x +5 3x+5 = 3 3 3x+5 =3 du =3.) = 3 du

More information

DIFFERENTIATION AND INTEGRATION PART 1. Mr C s IB Standard Notes

DIFFERENTIATION AND INTEGRATION PART 1. Mr C s IB Standard Notes DIFFERENTIATION AND INTEGRATION PART 1 Mr C s IB Standard Notes In this PDF you can find the following: 1. Notation 2. Keywords Make sure you read through everything and the try examples for yourself before

More information

Unit 2 - The Trigonometric Functions - Classwork

Unit 2 - The Trigonometric Functions - Classwork Unit 2 - The Trigonometric Functions - Classwork Given a right triangle with one of the angles named ", and the sides of the triangle relative to " named opposite, adjacent, and hypotenuse (picture on

More information

Methods of Integration

Methods of Integration Methods of Integration Essential Formulas k d = k +C sind = cos +C n d = n+ n + +C cosd = sin +C e d = e +C tand = ln sec +C d = ln +C cotd = ln sin +C + d = tan +C lnd = ln +C secd = ln sec + tan +C cscd

More information

2. Pythagorean Theorem:

2. Pythagorean Theorem: Chapter 4 Applications of Trigonometric Functions 4.1 Right triangle trigonometry; Applications 1. A triangle in which one angle is a right angle (90 0 ) is called a. The side opposite the right angle

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

MA 242 Review Exponential and Log Functions Notes for today s class can be found at MA 242 Review Exponential and Log Functions Notes for today s class can be found at www.xecu.net/jacobs/index242.htm Example: If y = x n If y = x 2 then then dy dx = nxn 1 dy dx = 2x1 = 2x Power Function

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

Derivatives of Trig and Inverse Trig Functions

Derivatives of Trig and Inverse Trig Functions Derivatives of Trig and Inverse Trig Functions Math 102 Section 102 Mingfeng Qiu Nov. 28, 2018 Office hours I m planning to have additional office hours next week. Next Monday (Dec 3), which time works

More information

5 Integrals reviewed Basic facts U-substitution... 4

5 Integrals reviewed Basic facts U-substitution... 4 Contents 5 Integrals reviewed 5. Basic facts............................... 5.5 U-substitution............................. 4 6 Integral Applications 0 6. Area between two curves.......................

More information

Math 226 Calculus Spring 2016 Exam 2V1

Math 226 Calculus Spring 2016 Exam 2V1 Math 6 Calculus Spring 6 Exam V () (35 Points) Evaluate the following integrals. (a) (7 Points) tan 5 (x) sec 3 (x) dx (b) (8 Points) cos 4 (x) dx Math 6 Calculus Spring 6 Exam V () (Continued) Evaluate

More information

Math 112 Section 10 Lecture notes, 1/7/04

Math 112 Section 10 Lecture notes, 1/7/04 Math 11 Section 10 Lecture notes, 1/7/04 Section 7. Integration by parts To integrate the product of two functions, integration by parts is used when simpler methods such as substitution or simplifying

More information

MTH 133 Solutions to Exam 2 April 19, Without fully opening the exam, check that you have pages 1 through 12.

MTH 133 Solutions to Exam 2 April 19, Without fully opening the exam, check that you have pages 1 through 12. MTH 33 Solutions to Exam 2 April 9, 207 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through

More information

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear. Precalculus Review Functions to KNOW! 1. Polynomial Functions Types: General form Generic Graph and unique properties Constants Linear Quadratic Cubic Generalizations for Polynomial Functions - The domain

More information

Methods of Integration

Methods of Integration Methods of Integration Professor D. Olles January 8, 04 Substitution The derivative of a composition of functions can be found using the chain rule form d dx [f (g(x))] f (g(x)) g (x) Rewriting the derivative

More information

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck!

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck! April 4, Prelim Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Trigonometric Formulas sin x sin x cos x cos (u + v) cos

More information

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) =

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) = Solutions to Exam, Math 56 The function f(x) e x + x 3 + x is one-to-one (there is no need to check this) What is (f ) ( + e )? Solution Because f(x) is one-to-one, we know the inverse function exists

More information

Integration by parts (product rule backwards)

Integration by parts (product rule backwards) Integration by parts (product rule backwards) The product rule states Integrating both sides gives f(x)g(x) = d dx f(x)g(x) = f(x)g (x) + f (x)g(x). f(x)g (x)dx + Letting f(x) = u, g(x) = v, and rearranging,

More information

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

MTH 133 Exam 2 November 16th, Without fully opening the exam, check that you have pages 1 through 12.

MTH 133 Exam 2 November 16th, Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show all your work on the standard response

More information

integration integration

integration integration 13 Contents integration integration 1. Basic concepts of integration 2. Definite integrals 3. The area bounded by a curve 4. Integration by parts 5. Integration by substitution and using partial fractions

More information

CALCULUS I. Integrals. Paul Dawkins

CALCULUS I. Integrals. Paul Dawkins CALCULUS I Integrals Paul Dawkins Table of Contents Preface... ii Integrals... Introduction... Indefinite Integrals... Computing Indefinite Integrals... Substitution Rule for Indefinite Integrals... More

More information

ENGI 3425 Review of Calculus Page then

ENGI 3425 Review of Calculus Page then ENGI 345 Review of Calculus Page 1.01 1. Review of Calculus We begin this course with a refresher on ifferentiation an integration from MATH 1000 an MATH 1001. 1.1 Reminer of some Derivatives (review from

More information

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review)

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review) Name Date Miterm Score Overall Grae Math A Miterm 2 Fall 205 Riversie City College (Use this as a Review) Instructions: All work is to be shown, legible, simplifie an answers are to be boxe in the space

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

Things you should have learned in Calculus II

Things you should have learned in Calculus II Things you should have learned in Calculus II 1 Vectors Given vectors v = v 1, v 2, v 3, u = u 1, u 2, u 3 1.1 Common Operations Operations Notation How is it calculated Other Notation Dot Product v u

More information

Techniques of Integration: I

Techniques of Integration: I October 1, 217 We had the tenth breakfast yesterday morning: If you d like to propose a future event (breakfast, lunch, dinner), please let me know. Techniques of Integration To evaluate number), we might

More information

Without fully opening the exam, check that you have pages 1 through 13.

Without fully opening the exam, check that you have pages 1 through 13. MTH 33 Solutions to Exam November th, 08 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show all your work on the standard response

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx Chapter 7 is concerned with all the integrals that can t be evaluated with simple antidifferentiation. Chart of Integrals on Page 463 7.1 Integration by Parts Like with the Chain Rule substitutions with

More information

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1 CHAIN RULE: DAY WITH TRIG FUNCTIONS Section.4A Calculus AP/Dual, Revised 018 viet.dang@humbleisd.net 7/30/018 1:44 AM.4A: Chain Rule Day 1 THE CHAIN RULE A. d dx f g x = f g x g x B. If f(x) is a differentiable

More information

Practice Problems: Integration by Parts

Practice Problems: Integration by Parts Practice Problems: Integration by Parts Answers. (a) Neither term will get simpler through differentiation, so let s try some choice for u and dv, and see how it works out (we can always go back and try

More information

Trigonometric substitutions (8.3).

Trigonometric substitutions (8.3). Review for Eam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Eam covers: 7.4, 7.6, 7.7, 8-IT, 8., 8.2. Solving differential equations

More information

cosh 2 x sinh 2 x = 1 sin 2 x = 1 2 cos 2 x = 1 2 dx = dt r 2 = x 2 + y 2 L =

cosh 2 x sinh 2 x = 1 sin 2 x = 1 2 cos 2 x = 1 2 dx = dt r 2 = x 2 + y 2 L = Integrals Volume: Suppose A(x) is the cross-sectional area of the solid S perpendicular to the x-axis, then the volume of S is given by V = b a A(x) dx Work: Suppose f(x) is a force function. The work

More information

Math 122 Test 3. April 17, 2018

Math 122 Test 3. April 17, 2018 SI: Math Test 3 April 7, 08 EF: 3 4 5 6 7 8 9 0 Total Name Directions:. No books, notes or April showers. You may use a calculator to do routine arithmetic computations. You may not use your calculator

More information

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS Page of 6 FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS 6. HYPERBOLIC FUNCTIONS These functions which are defined in terms of e will be seen later to be related to the trigonometic functions via comple

More information

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017 Math 2 Lesieutre; 9: Polar coordinates; November 22, 207 Plot the point 2, 2 in the plane If you were trying to describe this point to a friend, how could you do it? One option would be coordinates, but

More information

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule)

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule) Chapter 3 Differentiation Rules 3.1 Derivatives of Polynomials and Exponential Functions Aka The Short Cuts! Yay! f(x) = c f (x) = 0 g(x) = x g (x) = 1 h(x) = x n h (x) = n x n-1 (The Power Rule) k(x)

More information

Pythagoras Theorem. What it is: When to use: What to watch out for:

Pythagoras Theorem. What it is: When to use: What to watch out for: Pythagoras Theorem a + b = c Where c is the length of the hypotenuse and a and b are the lengths of the other two sides. Note: Only valid for right-angled triangles! When you know the lengths of any two

More information

REVIEW: MORE FUNCTIONS AP CALCULUS :: MR. VELAZQUEZ

REVIEW: MORE FUNCTIONS AP CALCULUS :: MR. VELAZQUEZ REVIEW: MORE FUNCTIONS AP CALCULUS :: MR. VELAZQUEZ INVERSE FUNCTIONS Two functions are inverses if they undo each other. In other words, composing one function in the other will result in simply x (the

More information

Some functions and their derivatives

Some functions and their derivatives Chapter Some functions an their erivatives. Derivative of x n for integer n Recall, from eqn (.6), for y = f (x), Also recall that, for integer n, Hence, if y = x n then y x = lim δx 0 (a + b) n = a n

More information

Math 106: Review for Exam II - SOLUTIONS

Math 106: Review for Exam II - SOLUTIONS Math 6: Review for Exam II - SOLUTIONS INTEGRATION TIPS Substitution: usually let u a function that s inside another function, especially if du (possibly off by a multiplying constant) is also present

More information

Trigonometry Learning Strategies. What should students be able to do within this interactive?

Trigonometry Learning Strategies. What should students be able to do within this interactive? Trigonometry Learning Strategies What should students be able to do within this interactive? Identify a right triangle. Identify the acute reference angles. Recognize and name the sides, and hypotenuse

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. MTH 33 Exam 2 April th, 208 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through 2. Show all

More information

Chapter 5: Double-Angle and Half-Angle Identities

Chapter 5: Double-Angle and Half-Angle Identities Haberman MTH Section II: Trigonometric Identities Chapter 5: Double-Angle and Half-Angle Identities In this chapter we will find identities that will allow us to calculate sin( ) and cos( ) if we know

More information

Math 31A Differential and Integral Calculus. Final

Math 31A Differential and Integral Calculus. Final Math 31A Differential and Integral Calculus Final Instructions: You have 3 hours to complete this exam. There are eight questions, worth a total of??? points. This test is closed book and closed notes.

More information

Handout 1. Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD!

Handout 1. Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD! Handout Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD! Review:. The Substitution Rule Indefinite f (g()) g ()d =

More information

More with Angles Reference Angles

More with Angles Reference Angles More with Angles Reference Angles A reference angle is the angle formed by the terminal side of an angle θ, and the (closest) x axis. A reference angle, θ', is always 0 o

More information