Today: 5.6 Hyperbolic functions

Size: px
Start display at page:

Download "Today: 5.6 Hyperbolic functions"

Transcription

1 Toay: 5.6 Hyerbolic functions Warm u: Let f() = (e ) an g() = (e + ) Verify the following ientities: () f 0 () =g() () g 0 () =f() (3) f() is an o function (i.e. f(-) = -f()) (4) g() is an even function (i.e. g(-) = g()) Ean an simlify the following eressions () g () f () () f()g(y)+f(y)g() (3) g()g(y)+f()f(y) (eress the last two as f(stu ) or g(stu ))

2 Define hyerbolic sine or sinch hyerbolic cosine or cosh sinh() = (e ) cosh() = (e + ) y=cosh() y=.5 - y=sinh() y=-.5 e - y=-.5 e - y=.5 - For >>0 (large), sinh() e cosh() e, an for <<0 (large but negative), sinh() cosh(). Define hyerbolic sine or sinch hyerbolic cosine or cosh sinh() = (e ) cosh() = (e + ) y=cosh() y=.5 - y=sinh() y=-.5 e - y=-.5 e - y=.5 - We showe: sinh( ) = sinh() cosh( ) = cosh() sinh() = cosh() cosh() =sinh() cosh() sinh () = sinh( + y) =sinh() cosh(y)+sinh(y) cosh() cosh( + y) = cosh() cosh(y) +sinh() sinh(y)

3 Comaring trig an hyerbolic functions sinh() = (e ) cosh() = (e + ) Trig Hyerbolic even/o: sin( ) = sin() sinh( ) = sin() cos( ) = cos() cosh( ) = cosh() aitive: sin( + y) =sin() cos(y) sinh( + y) =sinh() cosh(y) +sin(y) cos() +sinh(y) cosh() aitive: cos( + y) = cos() cos(y) cosh( + y) = cosh() cosh(y) sin()sin(y) + sinh()sinh(y) Pyth.: cos ()+ sin () = cosh () sinh () = ers: sin() = cos() sinh() = cos() cos() = sin() cosh() =+ sinh() Other hyerbolic functions For trig functions, we efine tan() = sin() cos(), sec() =/ cos(), csc() =/ sin(), cot() =/ tan(). For hyerbolic functions, similarly efine tanh() =sinh()/ cosh() = e + sech() =/ cosh(), csch() =/ sinh(), coth() =/ tanh(). ( tanch, sech, cosech, cotanch )

4 Grahs sinh() = (e ) cosh() = (e + ) y=cosh() y=.5 - y=sinh() y=-.5 e - y=-.5 e - y=.5 - tanh() = sinh() cosh() = e + Notice lim tanh() = lim!! + e = lim! e = +e Grahs Notice lim tanh() = lim!! lim tanh() = lim!! tanh() = sinh() cosh() = e e = lim! (u=-) ==== lim u! e u = lim u! e u + = e u e = +e e u e u + e u e u e u tanh() = sinh() cosh() qu. rule ==== cosh () sinh () cosh () = cosh () > 0

5 Grahs tanh() = sinh() cosh() = e + lim tanh() =, lim tanh() =,!! tanh() =sech () > 0, tanh(0) = ( )/( + ) = 0 y= y=tanh() y=- Inverse hyerbolic functions Define sinh () =y, sinh(y) = cosh () =y, cosh(y) = tanh () =y, tanh(y) = Solving for y =sinh (): =sinh(y) = (ey e y ), so that e y e y =0. Thus, multilying both sies by e y, 0=e y e y = u u, where u = e y. So e y = u =( ± 4 + 4)/ ey >0 === + +,sothat sinh () =y =ln( + + ). You try: Use cosh() = (e + ) an tanh() = e calculate a formulas for cosh () an tanh (). + to

6 Grahs y =sinh() = (e ) Grahs y =sinh () =ln( + + ) Domain: (, ) Range:(, )

7 Grahs y = cosh() = (e + ) y = cosh () =ln( ± ) Domain: al Grahs y = cosh () =ln( + ) Domain: al Range: 0 ale y

8 Grahs y = tanh() =( )/( + ) Grahs y = tanh () = ln(( + )/( )) Domain: (, ) Range:(, )

9 Derivatives an integrals Using sinh () =ln( + + ), cosh () =ln( + ) tanh () = ln(( + )/( )) = (ln( + ) ln( )) we have sinh () = +/ = +! =/ + cosh () = +/ + =! + + tanh () = =/ + + =/( ) = ++ ( + )( ) In summary: sinh() = (e ), cosh() = (e + ) tanh() = sinh() cosh(), sech() = cosh(), sinh() = cosh(), sinh () = tanh() =sech () +, etc. cosh() =sinh(), cosh () = tanh () =,

10 You try: See integration worksheet at htts://zaugherty.ccnysites.cuny.eu/teaching/m0s6/ (an 8 more... )

11 5.7: More on limits, ineterminate forms, an L Hosital s rule Consier the function F () = ln(). As!, both the numerator an the enominator aroach 0. Both aroach somewhat slowly, but oes one go faster than the other? Or oes it aroach some interesting ratio? Similar question for!, where both the numerator an enominator aroach. Ineterminate forms are ratios where the numerator an the enominator each either aroach 0, or each aroach ±. So far, we ve been able to calculate limits with ineterminate forms through algebraic tricks or substitution, or recognizing limits as erivatives. Past eamles of solving ineterminate forms. lim!. lim! e + 5e e = lim! e sin() 3. lim! Recall, f 0 f() f(a) (a) =lim.!a a Note, e sin() = = esin( ) = e 0 =. lim! So e sin() So similarly, sinceln() = 0, lim! 3+ 5 = = lim! 5 = 0+ 0 = = esin() = = cos()esin() = =( )e0 =. ln() = ln() = = =. =

12 L Hosital s rule L Hosital s rule relates the limit of the ratio of two functions to the limit of the ratio of their erivatives. Consier i erentiable functions f() an g() such that lim f() =0=lim g(),!a!a an g 0 () 6= 0for close to but not equal to a. Then f 0 f() (a) =lim!a f(a) a f() =lim!a a, an g 0 g() (a) =lim!a g(a) a =lim!a g() a. (If f or g are not efine at a, wecanworkarounthis:seeaenicinbook) So f 0 () lim!a g 0 () = f 0 (a) g 0 (a) =lim f()( a)!a ( a)g() =lim f()!a g(). L Hosital s rule Theorem Suose f an g are i erentiable functions an g 0 () 6= 0for close to but not equal to a. Suose that lim f() =0=limg() or lim f() =± =lim g().!a!a!a!a Then if the limit of f 0 ()/g 0 () as! a eists (or is ±), we have f() lim!a g() =lim f 0 ()!a g 0 (). The same hols for! ± an one-sie limits! a ±. ln() Eamle. Let s recheck lim!. ln() an i erentiable? X g 0 () =6= 0X, ln()! 0 an! 0 as! X lim! ln() =lim /! =X

13 You try For each of the following, verify that you can use L Hosital s rule to calculate the limit, an then o so. e sin() () lim! () lim! ln() (3) lim! Each of the following has some reason why you can t use L Hosital s rule. For each, what is the reason? () lim!0 () lim!0 + bc (3) lim! sin() cos() (Recall, bc is the floor function, an gives back the biggest integer less than or equal to, i.e.b.c =, b.c = 3, bc =,etc..)

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

Hyperbolic Functions 6D

Hyperbolic Functions 6D Hyperbolic Functions 6D a (sinh cosh b (cosh 5 5sinh 5 c (tanh sech (sinh cosh e f (coth cosech (sech sinh (cosh sinh cosh cosh tanh sech g (e sinh e sinh e + cosh e (cosh sinh h ( cosh cosh + sinh sinh

More information

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions Chapter 5 Logarithmic, Exponential, an Other Transcenental Functions 5.1 The Natural Logarithmic Function: Differentiation 5.2 The Natural Logarithmic Function: Integration 5.3 Inverse Functions 5.4 Exponential

More information

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital.

L Hôpital s Rule was discovered by Bernoulli but written for the first time in a text by L Hôpital. 7.5. Ineterminate Forms an L Hôpital s Rule L Hôpital s Rule was iscovere by Bernoulli but written for the first time in a text by L Hôpital. Ineterminate Forms 0/0 an / f(x) If f(x 0 ) = g(x 0 ) = 0,

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities:

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) = 2 2t 1 + t 2 cos x = 1 t2 We will revisit the double angle identities: 6.4 Integration using tanx/) We will revisit the ouble angle ientities: sin x = sinx/) cosx/) = tanx/) sec x/) = tanx/) + tan x/) cos x = cos x/) sin x/) tan x = = tan x/) sec x/) tanx/) tan x/). = tan

More information

Additional Exercises for Chapter 10

Additional Exercises for Chapter 10 Aitional Eercises for Chapter 0 About the Eponential an Logarithm Functions 6. Compute the area uner the graphs of i. f() =e over the interval [ 3, ]. ii. f() =e over the interval [, 4]. iii. f() = over

More information

Differential and Integral Calculus

Differential and Integral Calculus School of science an engineering El Akhawayn University Monay, March 31 st, 2008 Outline 1 Definition of hyperbolic functions: The hyperbolic cosine an the hyperbolic sine of the real number x are enote

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Hyperbolics. Scott Morgan. Further Mathematics Support Programme - WJEC A-Level Further Mathematics 31st March scott3142.

Hyperbolics. Scott Morgan. Further Mathematics Support Programme - WJEC A-Level Further Mathematics 31st March scott3142. Hyperbolics Scott Morgan Further Mathematics Support Programme - WJEC A-Level Further Mathematics 3st March 208 scott342.com @Scott342 Topics Hyperbolic Identities Calculus with Hyperbolics - Differentiation

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11

Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11 Math 180 Prof. Beydler Homework for Packet #5 Page 1 of 11 Due date: Name: Note: Write your answers using positive exponents. Radicals are nice, but not required. ex: Write 1 x 2 not x 2. ex: x is nicer

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

Some functions and their derivatives

Some functions and their derivatives Chapter Some functions an their erivatives. Derivative of x n for integer n Recall, from eqn (.6), for y = f (x), Also recall that, for integer n, Hence, if y = x n then y x = lim δx 0 (a + b) n = a n

More information

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I

( ) = 1 t + t. ( ) = 1 cos x + x ( sin x). Evaluate y. MTH 111 Test 1 Spring Name Calculus I MTH Test Spring 209 Name Calculus I Justify all answers by showing your work or by proviing a coherent eplanation. Please circle your answers.. 4 z z + 6 z 3 ez 2 = 4 z + 2 2 z2 2ez Rewrite as 4 z + 6

More information

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures

Hyperbolic Functions. Notice: this material must not be used as a substitute for attending. the lectures Hyperbolic Functions Notice: this material must not be use as a substitute for attening the lectures 0. Hyperbolic functions sinh an cosh The hyperbolic functions sinh (pronounce shine ) an cosh are efine

More information

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

10.7. DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS SLIDES NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

MTH 133 Solutions to Exam 1 October 10, Without fully opening the exam, check that you have pages 1 through 11.

MTH 133 Solutions to Exam 1 October 10, Without fully opening the exam, check that you have pages 1 through 11. MTH 33 Solutions to Eam October 0, 08 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the eam, check that you have pages through. Show

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS Page of 6 FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS 6. HYPERBOLIC FUNCTIONS These functions which are defined in terms of e will be seen later to be related to the trigonometic functions via comple

More information

3.5 Derivatives of Trig Functions

3.5 Derivatives of Trig Functions 3.5 Derivatives of Trig Functions Problem 1 (a) Suppose we re given the right triangle below. Epress sin( ) and cos( ) in terms of the sides of the triangle. sin( ) = B C = B and cos( ) = A C = A (b) Suppose

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

Integration Exercises - Part 3 (Sol'ns) (Hyperbolic Functions) (12 pages; 6/2/18) (The constant of integration has been omitted throughout.

Integration Exercises - Part 3 (Sol'ns) (Hyperbolic Functions) (12 pages; 6/2/18) (The constant of integration has been omitted throughout. Integration Eercises - Part (Sol'ns) (Hyperbolic Functions) ( pages; 6//8) (The constant of integration has been omitted throughout.) () cosech Given that d tanh = sech, we could investigate d coth = d

More information

1 Functions and Inverses

1 Functions and Inverses October, 08 MAT86 Week Justin Ko Functions and Inverses Definition. A function f : D R is a rule that assigns each element in a set D to eactly one element f() in R. The set D is called the domain of f.

More information

UNIT NUMBER DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson

UNIT NUMBER DIFFERENTIATION 7 (Inverse hyperbolic functions) A.J.Hobson JUST THE MATHS UNIT NUMBER 0.7 DIFFERENTIATION 7 (Inverse hyperbolic functions) by A.J.Hobson 0.7. Summary of results 0.7.2 The erivative of an inverse hyperbolic sine 0.7.3 The erivative of an inverse

More information

Hyperbolic functions

Hyperbolic functions Roberto s Notes on Differential Calculus Chapter 5: Derivatives of transcendental functions Section Derivatives of Hyperbolic functions What you need to know already: Basic rules of differentiation, including

More information

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

MA 242 Review Exponential and Log Functions Notes for today s class can be found at MA 242 Review Exponential and Log Functions Notes for today s class can be found at www.xecu.net/jacobs/index242.htm Example: If y = x n If y = x 2 then then dy dx = nxn 1 dy dx = 2x1 = 2x Power Function

More information

Lesson 5.3. Solving Trigonometric Equations

Lesson 5.3. Solving Trigonometric Equations Lesson 5.3 Solving To solve trigonometric equations: Use standard algebraic techniques learned in Algebra II. Look for factoring and collecting like terms. Isolate the trig function in the equation. Use

More information

ENGI 3425 Review of Calculus Page then

ENGI 3425 Review of Calculus Page then ENGI 345 Review of Calculus Page 1.01 1. Review of Calculus We begin this course with a refresher on ifferentiation an integration from MATH 1000 an MATH 1001. 1.1 Reminer of some Derivatives (review from

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

Hyperbolic Functions: Exercises - Sol'ns (9 pages; 13/5/17)

Hyperbolic Functions: Exercises - Sol'ns (9 pages; 13/5/17) Hyperbolic Functions: Exercises - Sol'ns (9 pages; 3/5/7) () (i) Prove, using exponential functions, that (a) cosh x sinh x = (b) sinhx = sinhxcoshx (ii) By differentiating the result from (i)(b), obtain

More information

Differential Equations DIRECT INTEGRATION. Graham S McDonald

Differential Equations DIRECT INTEGRATION. Graham S McDonald Differential Equations DIRECT INTEGRATION Graham S McDonald A Tutorial Module introducing ordinary differential equations and the method of direct integration Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk

More information

4.1 Exponential and Logarithmic Functions

4.1 Exponential and Logarithmic Functions . Exponential and Logarithmic Functions Joseph Heavner Honors Complex Analysis Continued) Chapter July, 05 3.) Find the derivative of f ) e i e i. d d e i e i) d d ei ) d d e i ) e i d d i) e i d d i)

More information

MTH 133 Solutions to Exam 1 February 21, Without fully opening the exam, check that you have pages 1 through 11.

MTH 133 Solutions to Exam 1 February 21, Without fully opening the exam, check that you have pages 1 through 11. MTH Solutions to Eam February, 8 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the eam, check that you have pages through. Show all

More information

Chapter 3 Elementary Functions

Chapter 3 Elementary Functions Chapter 3 Elementary Functions In this chapter, we will consier elementary functions of a complex variable. We will introuce complex exponential, trigonometric, hyperbolic, an logarithmic functions. 23.

More information

Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions Derivatives of Trigonometric Functions 9-8-28 In this section, I ll iscuss its an erivatives of trig functions. I ll look at an important it rule first, because I ll use it in computing the erivative of

More information

Formulas From Calculus

Formulas From Calculus Formulas You Shoul Memorize (an I o mean Memorize!) S 997 Pat Rossi Formulas From Calculus. [sin ()] = cos () 2. [cos ()] = sin () 3. [tan ()] = sec2 () 4. [cot ()] = csc2 () 5. [sec ()] = sec () tan ()

More information

Lecture 5: Inverse Trigonometric Functions

Lecture 5: Inverse Trigonometric Functions Lecture 5: Inverse Trigonometric Functions 5 The inverse sine function The function f(x = sin(x is not one-to-one on (,, but is on [ π, π Moreover, f still has range [, when restricte to this interval

More information

Trigonometric substitutions (8.3).

Trigonometric substitutions (8.3). Review for Eam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Eam covers: 7.4, 7.6, 7.7, 8-IT, 8., 8.2. Solving differential equations

More information

Strauss PDEs 2e: Section Exercise 6 Page 1 of 5

Strauss PDEs 2e: Section Exercise 6 Page 1 of 5 Strauss PDEs 2e: Section 4.3 - Exercise 6 Page 1 of 5 Exercise 6 If a 0 = a l = a in the Robin problem, show that: (a) There are no negative eigenvalues if a 0, there is one if 2/l < a < 0, an there are

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY CONTINUITY AND DIFFERENTIABILITY Revision Assignment Class 1 Chapter 5 QUESTION1: Check the continuity of the function f given by f () = 7 + 5at = 1. The function is efine at the given point = 1 an its

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

MATH 6102 Spring 2009 A Bestiary of Calculus Special Functions

MATH 6102 Spring 2009 A Bestiary of Calculus Special Functions MATH 6102 Spring 2009 A Bestiary of Calculus Special Functions Transcendental Functions Last time we discussed eponential, logarithmic, and trigonometric functions. Theorem 1: If f : R R is a continuous

More information

Inverse Trig Functions

Inverse Trig Functions 6.6i Inverse Trigonometric Functions Inverse Sine Function Does g(x) = sin(x) have an inverse? What restriction would we need to make so that at least a piece of this function has an inverse? Given f (x)

More information

Math 115 (W1) Solutions to Assignment #4

Math 115 (W1) Solutions to Assignment #4 Math 5 (W Solutions to Assignment #. ( marks Fin the erivative of the following. Provie reasonable simplification. a f( 3 + e sec ( ; ( ( b f( log + tan ; ( c f( tanh ; + f( ln(sinh. a f( ( 3 + 3 ln( 3

More information

Part D. Complex Analysis

Part D. Complex Analysis Part D. Comple Analsis Chapter 3. Comple Numbers and Functions. Man engineering problems ma be treated and solved b using comple numbers and comple functions. First, comple numbers and the comple plane

More information

Limits. Let y = f (t) be a function that gives the position at time t of an object moving along the y-axis. Then

Limits. Let y = f (t) be a function that gives the position at time t of an object moving along the y-axis. Then Limits From last time... Let y = f (t) be a function that gives the osition at time t of an object moving along the y-ais. Then Ave vel[t, t 2 ] = f (t 2) f (t ) t 2 t f (t + h) f (t) Velocity(t) =. h!0

More information

Derivatives and Its Application

Derivatives and Its Application Chapter 4 Derivatives an Its Application Contents 4.1 Definition an Properties of erivatives; basic rules; chain rules 3 4. Derivatives of Inverse Functions; Inverse Trigonometric Functions; Hyperbolic

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS

CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS SSCE1693 ENGINEERING MATHEMATICS CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS WAN RUKAIDA BT WAN ABDULLAH YUDARIAH BT MOHAMMAD YUSOF SHAZIRAWATI BT MOHD PUZI NUR ARINA BAZILAH BT AZIZ ZUHAILA BT ISMAIL

More information

Worksheet on Derivatives. Dave L. Renfro Drake University November 1, 1999

Worksheet on Derivatives. Dave L. Renfro Drake University November 1, 1999 Worksheet on Derivatives Dave L. Renfro Drake University November, 999 A. Fun With d d (n ) = n n : Find y In case you re interested, the rimary urose of these roblems (Section A) is to review roerties

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Lecture Notes Di erentiating Trigonometric Functions page 1

Lecture Notes Di erentiating Trigonometric Functions page 1 Lecture Notes Di erentiating Trigonometric Functions age (sin ) 7 sin () sin 8 cos 3 (tan ) sec tan + 9 tan + 4 (cot ) csc cot 0 cot + 5 sin (sec ) cos sec tan sec jj 6 (csc ) sin csc cot csc jj c Hiegkuti,

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 3 (Elementary techniques of differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.3 DIFFERENTIATION 3 (Elementary techniques of differentiation) by A.J.Hobson 10.3.1 Standard derivatives 10.3.2 Rules of differentiation 10.3.3 Exercises 10.3.4 Answers to

More information

MTH 133 Exam 1 February 21, Without fully opening the exam, check that you have pages 1 through 11.

MTH 133 Exam 1 February 21, Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the eam, check that you have pages through. Show all your work on the stanar response

More information

Good Things about the Gudermannian. A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

Good Things about the Gudermannian. A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk Good Things about the Gudermannian #88 of Gottschalk s Gestalts A Series Illustrating Innovative Forms of the Organization & Eosition of Mathematics by Walter Gottschalk Infinite Vistas Press PVD RI 003

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) A.J.Hobson JUST THE MATHS UNIT NUMBER 104 DIFFERENTIATION 4 (Products and quotients) & (Logarithmic differentiation) by AJHobson 1041 Products 1042 Quotients 1043 Logarithmic differentiation 1044 Exercises 1045 Answers

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

f(x) p(x) =p(b)... d. A function can have two different horizontal asymptotes...

f(x) p(x) =p(b)... d. A function can have two different horizontal asymptotes... Math Final Eam, Fall. ( ts.) Mark each statement as either true [T] or false [F]. f() a. If lim f() =and lim g() =, then lim does not eist......................!5!5!5 g() b. If is a olynomial, then lim!b

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes The Hyperbolic Functions 6. Introduction The hyperbolic functions cosh x, sinh x, tanh x etc are certain combinations of the exponential functions e x and e x. The notation implies a close relationship

More information

5.2 Proving Trigonometric Identities

5.2 Proving Trigonometric Identities SECTION 5. Proving Trigonometric Identities 43 What you ll learn about A Proof Strategy Proving Identities Disproving Non-Identities Identities in Calculus... and why Proving identities gives you excellent

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

INVERSE FUNCTIONS DERIVATIVES. terms on one side and everything else on the other. (3) Factor out dy. for the following functions: 1.

INVERSE FUNCTIONS DERIVATIVES. terms on one side and everything else on the other. (3) Factor out dy. for the following functions: 1. INVERSE FUNCTIONS DERIVATIVES Recall the steps for computing y implicitly: (1) Take of both sies, treating y like a function. (2) Expan, a, subtract to get the y terms on one sie an everything else on

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive) SESSION 6 Trig. Equations and Identities Math 30-1 R 3 (Revisit, Review and Revive) 1 P a g e 2 P a g e Mathematics 30-1 Learning Outcomes Specific Outcome 5: Solve, algebraically and graphically, first

More information

3 Elementary Functions

3 Elementary Functions 3 Elementary Functions 3.1 The Exponential Function For z = x + iy we have where Euler s formula gives The note: e z = e x e iy iy = cos y + i sin y When y = 0 we have e x the usual exponential. When z

More information

MATH2231-Differentiation (2)

MATH2231-Differentiation (2) -Differentiation () The Beginnings of Calculus The prime occasion from which arose my iscovery of the metho of the Characteristic Triangle, an other things of the same sort, happene at a time when I ha

More information

AMB121F Trigonometry Notes

AMB121F Trigonometry Notes AMB11F Trigonometry Notes Trigonometry is a study of measurements of sides of triangles linked to the angles, and the application of this theory. Let ABC be right-angled so that angles A and B are acute

More information

Lecture 4. Properties of Logarithmic Function (Contd ) y Log z tan constant x. It follows that

Lecture 4. Properties of Logarithmic Function (Contd ) y Log z tan constant x. It follows that Lecture 4 Properties of Logarithmic Function (Contd ) Since, Logln iarg u Re Log ln( ) v Im Log tan constant It follows that u v, u v This shows that Re Logand Im Log are (i) continuous in C { :Re 0,Im

More information

ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT

ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT ARAB ACADEMY FOR SCIENCE TECHNOLOGY AND MARITIME TRANSPORT Course: Math For Engineering Winter 8 Lecture Notes By Dr. Mostafa Elogail Page Lecture [ Functions / Graphs of Rational Functions] Functions

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

We define hyperbolic functions cosech, sech and coth in a similar way to the definitions of trigonometric functions cosec, sec and cot respectively:

We define hyperbolic functions cosech, sech and coth in a similar way to the definitions of trigonometric functions cosec, sec and cot respectively: 3 Chapter 5 SECTION F Hyperbolic properties By the end of this section you will be able to: evaluate other hyperbolic functions show hyperbolic identities understand inverse hyperbolic functions F Other

More information

Section 2.1 The Derivative and the Tangent Line Problem

Section 2.1 The Derivative and the Tangent Line Problem Chapter 2 Differentiation Course Number Section 2.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4.

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4. CHAPTER. DIFFERENTIATION 8 and similarly for x, As x +, fx), As x, fx). At last! We are now in a position to sketch the curve; see Figure.4. Figure.4: A sketch of the function y = fx) =/x ). Observe the

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

2.1 Limits, Rates of Change and Slopes of Tangent Lines

2.1 Limits, Rates of Change and Slopes of Tangent Lines 2.1 Limits, Rates of Change and Slopes of Tangent Lines (1) Average rate of change of y f x over an interval x 0,x 1 : f x 1 f x 0 x 1 x 0 Instantaneous rate of change of f x at x x 0 : f x lim 1 f x 0

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

Math 210 Midterm #1 Review

Math 210 Midterm #1 Review Math 20 Miterm # Review This ocument is intene to be a rough outline of what you are expecte to have learne an retaine from this course to be prepare for the first miterm. : Functions Definition: A function

More information

Section 7.2. The Calculus of Complex Functions

Section 7.2. The Calculus of Complex Functions Section 7.2 The Calculus of Complex Functions In this section we will iscuss limits, continuity, ifferentiation, Taylor series in the context of functions which take on complex values. Moreover, we will

More information

Lecture Notes for Math 1000

Lecture Notes for Math 1000 Lecture Notes for Math 1000 Dr. Xiang-Sheng Wang Memorial University of Newfoundland Office: HH-2016, Phone: 864-4321 Office hours: 13:00-15:00 Wednesday, 12:00-13:00 Friday Email: xswang@mun.ca Course

More information

Math F15 Rahman

Math F15 Rahman Math - 9 F5 Rahman Week3 7.3 Hyperbolic Functions Hyperbolic functions are similar to trigonometric functions, and have the following definitions: sinh x = (ex e x ) cosh x = (ex + e x ) tanh x = sinh

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

CHAPTER 4. Elementary Functions. Dr. Pulak Sahoo

CHAPTER 4. Elementary Functions. Dr. Pulak Sahoo CHAPTER 4 Elementary Functions BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-4: Multivalued Functions-II

More information

B 2k. E 2k x 2k-p : collateral. 2k ( 2k-n -1)!

B 2k. E 2k x 2k-p : collateral. 2k ( 2k-n -1)! 13 Termwise Super Derivative In this chapter, for the function whose super derivatives are difficult to be expressed with easy formulas, we differentiate the series expansion of these functions non integer

More information

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS SOLUTIONS TO THE FINAL - PART MATH 5 FALL 6 KUNIYUKI PART : 5 POINTS, PART : 5 POINTS, TOTAL: 5 POINTS No notes, books, or calculators allowed. 5 points: 45 problems, pts. each. You do not have to algebraically

More information

JUST THE MATHS UNIT NUMBER INTEGRATION 1 (Elementary indefinite integrals) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION 1 (Elementary indefinite integrals) A.J.Hobson JUST THE MATHS UNIT NUMBER 2. INTEGRATION (Elementary indefinite integrals) by A.J.Hobson 2.. The definition of an integral 2..2 Elementary techniques of integration 2..3 Exercises 2..4 Answers to exercises

More information

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule)

m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) n(x) = f(x) g(x) n (x) = f (x) g (x) (The Difference Rule) Chapter 3 Differentiation Rules 3.1 Derivatives of Polynomials and Exponential Functions Aka The Short Cuts! Yay! f(x) = c f (x) = 0 g(x) = x g (x) = 1 h(x) = x n h (x) = n x n-1 (The Power Rule) k(x)

More information

Transcendental Functions

Transcendental Functions 78 Chapter 9 Transcenental Functions º½ 9 Transcenental Functions ÁÒÚ Ö ÙÒØ ÓÒ Informally, two functions f an g are inverses if each reverses, or unoes, the other More precisely: DEFINITION 9 Two functions

More information

MATH 13200/58: Trigonometry

MATH 13200/58: Trigonometry MATH 00/58: Trigonometry Minh-Tam Trinh For the trigonometry unit, we will cover the equivalent of 0.7,.4,.4 in Purcell Rigon Varberg.. Right Triangles Trigonometry is the stuy of triangles in the plane

More information

4. Functions of one variable

4. Functions of one variable 4. Functions of one variable These lecture notes present my interpretation of Ruth Lawrence s lecture notes (in Hebrew) 1 In this chapter we are going to meet one of the most important concepts in mathematics:

More information

Lesson 28 Working with Special Triangles

Lesson 28 Working with Special Triangles Lesson 28 Working with Special Triangles Pre-Calculus 3/3/14 Pre-Calculus 1 Review Where We ve Been We have a new understanding of angles as we have now placed angles in a circle on a coordinate plane

More information

Chapter 06: Analytic Trigonometry

Chapter 06: Analytic Trigonometry Chapter 06: Analytic Trigonometry 6.1: Inverse Trigonometric Functions The Problem As you recall from our earlier work, a function can only have an inverse function if it is oneto-one. Are any of our trigonometric

More information

Math 122 Test 3. April 17, 2018

Math 122 Test 3. April 17, 2018 SI: Math Test 3 April 7, 08 EF: 3 4 5 6 7 8 9 0 Total Name Directions:. No books, notes or April showers. You may use a calculator to do routine arithmetic computations. You may not use your calculator

More information

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. CALCULUS: Graphical,Numerical,Algebraic b Finne,Demana,Watts and Kenned Chapter : Derivatives.: Derivative of a function pg. 116-16 What ou'll Learn About How to find the derivative of: Functions with

More information

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions f( 8 6 4 8 6-3 - - 3 4 5 6 f(.9.8.7.6.5.4.3.. -4-3 - - 3 f( 7 6 5 4 3-3 - - Calculus Problem Sheet Prof Paul Sutcliffe. By applying the vertical line test, or otherwise, determine whether each of the following

More information