CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions

Size: px
Start display at page:

Download "CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions"

Transcription

1 CHAPTER 5 Logarithmic, Eponential, and Other Transcendental Functions Section 5. The Natural Logarithmic Function: Dierentiation.... Section 5. The Natural Logarithmic Function: Integration Section 5. Inverse Functions Section 5. Eponential Functions: Dierentiation and Integration.. Section 5.5 Bases Other than e and Applications Section 5.6 Inverse Trigonometric Functions: Dierentiation Section 5.7 Inverse Trigonometric Functions: Integration Section 5.8 Hperbolic Functions Review Eercises Problem Solving

2 CHAPTER 5 Logarithmic, Eponential, and Other Transcendental Functions Section 5. The Natural Logarithmic Function: Dierentiation. Simpson s Rule: n t dt Note:.5 t dt t dt. (a) ln dt.867 t 5. (a) ln dt. t ln Vertical shit units upward Matches 9. ln Horizontal shit unit to the right Matches (a). ln. ln 5. ln Domain: > Domain: > Domain: > 5 7. (a) ln 6 ln ln.797 ln ln ln.55 (c) ln 8 ln ln.9 (d) ln ln ln ln ln ln. ln z ln ln ln z. ln a lna lna 5. ln ln ln ln ln ln

3 Section 5. The Natural Logarithmic Function: Dierentiation 5 7. ln zz ln z lnz 9. ln ln ln ln z lnz. ln ln ln ln ln. ln 9 ln ln 9 ln ln 5. (a) = g 9 ln ln ln ln ln g since >. 7. lim ln 9. lim ln ln.86. ln ln. ln ln 5. g ln ln g Slope at, is. Slope at, is. Tangent line Tangent line 7. ln 9. d d ln ln ln ln ln d d 5. ln ln ln 5. gt ln t t gt t t t ln t t ln t t 55. lnln 57. d d d ln d ln ln ln ln ln ln ln d d 59. ln ln ln

4 ( 6 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions d d ln ln sin d cos cot d sin cos 67. lncos ln cos ln cos d sin d cos sin cos tan sin cos sin ln sin d d ln sin ln sin cos sin cos sin cos sin sin 69. ln t dt ln ln Second solution: ln t dt t t ln ln ln ln ln 7. (a) ln,, d d 6 When, d 5. d Tangent line: 5 (, ) (a) ln sin ln sin,, ln π (, ln Tangent line: sin cos sin cos sin sin ln ln

5 Section 5. The Natural Logarithmic Function: Dierentiation (a) ln,, 77. ln Tangent line: ln d d d d d d d d (, ) 79. At, : ln,, 8. Tangent line: ln 8. ln 85. ln Domain: > Domain: > (, ) when. > > Relative minimum: ln ln when e. e, e Relative minimum:, ( e, e ) 87. ln Domain: < <, > ln ln ln ln ln when e. ln ln ln ln when e. Relative minimum: ln e, e Point o inlection: e, e (, e e) ( e, e/) 9

6 8 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 89. ln, 9. Find such that ln.,, P, P ln n n n n n ln n n P, P P, P P, P P, P The values o, P, P, and their irst derivatives agree at. The values o the second derivatives o and P agree at. n n n Approimate root:.567 P P ln ln ln d d d d ln ln ln ln d d d d ln ln ln ln d d d d 99. Answers will var. See Theorems 5. and 5..

7 Section 5. The Natural Logarithmic Function: Dierentiation 9. g ln, > g (a) Yes. I the graph o g is increasing, then g >. Since >, ou know that g and thus, >. Thereore, the graph o is increasing. No. Let (positive and concave up). g ln is not concave up.. False ln ln 5 ln5 ln t ln, (a) 5 (c) t67. ears T 67. $8,78. t68.5 ears < T 68.5 $8,6. (d) dt d ln ln When 67., dtd.65. When 68.5, dtd.585. (e) There are two obvious beneits to paing a higher monthl pament:. The term is lower. The total amount paid is lower. 7. (a) 5 T p.96 p.955 p (c) T.75 deglbin T7.97 deglbin lim Tp p 9. ln ln ln (a) (c) d lim d d d When 5, dd. When 9, dd 99.

8 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions. ln > or >. Since ln is increasing on its entire domain,, it is a strictl monotonic unction and thereore, is one-to-one. Section 5. The Natural Logarithmic Function: Integration. 5 d 5 d 5 ln C. u, du d d ln C 5. u, du d 7. d d u, du d d d ln C ln C ln C 9.. d d. ln C 6 d d 5. u 9, du d 9 d 9 d 5 ln 9 C d 5 d 7. d 6 ln C d ln C 9. u ln, du d ln d ln C 5 ln C. u, du d. d d C C d d d d d d ln C

9 Section 5. The Natural Logarithmic Function: Integration 5. u, d where C C. du d u du d u u u lnu C du u du ln C ln C 7. u, du d u du d d u du u u where C C 7. 6u 9 u u 6u 9 ln u C u u 8 ln u C du u 6 9 u du 8 ln C 6 8 ln C 9. cos sin d lnsin C. u sin, du cos d csc d csc d ln csc cot C sin t dt ln sin t C 5. sec tan sec d ln sec C. cos t 7. d 9. s tan d (, ) d tan d ln C, : ln C C ln ln cos C, : ln cos C C (, ) s ln cos

10 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions., > C C C ln C C C ln. d d, (a) (, ), 5. (a) 5 (, ) 8 d ln C ln C C ln Hence, ln ln ln. d d,, ln C C C ln d 5 ln 5 ln u ln, e ln du d d ln e 7 5. d d 5. ln ln cos sin d ln sin sin ln sin d ln C ln C where C C.

11 Section 5. The Natural Logarithmic Function: Integration 57. d ln C 59. csc sin d ln csc cot cos ln.7 Note: In Eercises 6 6, ou can use the Second Fundamental Theorem o Calculus or integrate the unction. 6. F t dt F 6. F t dt F (b Second Fundamental Theorem o Calculus) Alternate Solution: F F t dt ln t ln A d ln ln 69. A tan d ln cos ln ln ln A.5; Matches (d) A d d 7. ln 8 ln 5 8 ln.5 square units sec d 6 ln sec tan ln 5. sec 6 6 ln d sec tan 6 6 ln 6

12 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 75., b a 5, n Trapezoid: Simpson: Calculator: Eact: ln d ln, b a 6, n Trapezoid: Simpson: Calculator: ln d Power Rule 8. Substitution: u and 8. Log Rule ln cos C ln cos C ln sec C ln sec tan sec tan sec tan C ln sec tan ln C Average value d Pt.5t dt.5 sec tan C ln sec tan C 8, ln.5t C P, ln.5 C C Pt, ln.5t ln.5t P ln d 89. ln sec tan sec tan C Average value e e ln e e e.9 e.5t dt , 5 d ln 5 $68.7 ln d

13 Section 5. The Natural Logarithmic Function: Integration (a) 8 e d e ln C e ln e C k 8 8 Let k and graph., 8 (c) In part (a): 8 In part : Using a graphing utilit the graphs intersect at.,.. The slopes are.95 and..95, respectivel. 97. False ln ln ln 99. True d ln C ln ln C ln C, C. (a) (c) intersects :.5 5 A d ln ln Hence, or < m <, the graphs o and m enclose a inite region..5 () = + m m m m m m m = m m, intersection point m A mm ln m mm ln m m ln m m m d, < m < m m m [m lnm

14 6 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Section 5. Inverse Functions. (a) 5 g 5 g g g g (a) g g g g g 5. (a) g, g g g 8 6 g (a) g = g g g 9. Matches (c). Matches (a). 6 One-to-one; has an inverse 8 5. sin Not one-to-one; does not have an inverse 7. hs s One-to-one; has an inverse π π θ 7

15 Section 5. Inverse Functions 7 9. ln. One-to-one; has an inverse 5 g 5. One-to-one; has an inverse ln, > > or > is increasing on,. Thereore, is strictl monotonic and has an inverse when,, is not strictl monotonic on,. Thereore, does not have an inverse. < or all is decreasing on,. Thereore, is strictl monotonic and has an inverse ,,, 7. 9.,, 6 The graphs o and across the line. are relections o each other The graphs o and across the line. are relections o each other

16 8 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions , < < (, ) (, ) (, ) (, ) The graphs o and across the line. are relections o each other 5. (a) Let be the number o pounds o the commodit costing.5 per pound. Since there are 5 pounds total, the amount o the second commodit is 5. The total cost is , 5. (c) Domain o inverse is We ind the inverse o the original unction: Inverse: represents cost and represents pounds. (d) I 7 in the inverse unction, pounds. 7. on, 9. > on, is increasing on,. Thereore, is strictl monotonic and has an inverse. on, 8 < on, is decreasing on,. Thereore, is strictl monotonic and has an inverse. 5. cos on, sin < on, is decreasing on,. Thereore, is strictl monotonic and has an inverse. 5. a, b, c ± 6,, Domain o : all Range o : < < on, ± 6 i i The graphs o and the line. are relections o each other across

17 Section 5. Inverse Functions (a), 6 5 (c) Yes, is one-to-one and has an inverse. The inverse relation is an inverse unction. 57. (a), 6 g g (c) g is not one-to-one and does not have an inverse. The inverse relation is not an inverse unction , Domain: is one-to-one; has an inverse > or >, 6., 6. is one-to-one or. is one-to-one; has an inverse,, (Answer is not unique.) 65. is one-to-one or., (Answer is not unique.) 67. Yes, the volume is an increasing unction, and hence one-to-one. The inverse unction gives the time t corresponding to the volume V. 69. No, Ct is not one-to-one because long distance costs are 7. step unctions. A call lasting. minutes costs the same as one lasting. minutes., a 5 7. sin, 6 a 75. cos 6 cos6, 6 a 6 6

18 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 77. (a) Domain Domain, Range Range, (c) (d),, 8, 8, 79. (a) Domain,, Domain, Range,, Range, (c) (d) , 5, 5,, d d d d d d At,, d d. Alternate Solution: Let 7. Then and. Hence, d d. In Eercises 8 85, use the ollowing. and g 8 8 and g 8. g g In Eercises 87 89, use the ollowing. and g 5 and g g g 89. g 5 g g 5 5 Hence, g. Note: g g

19 Section 5. Inverse Functions 9. Answers will var. See page and Eample. 9. is not one-to-one because man dierent -values ield the same -value. Eample: Not continuous at n, where n is an integer. 95. k is one-to-one. Since, k k k. 97. Let and g be one-to-one unctions. (a) Let g g g g g g (Because is one-to-one.) (Because g is one-to-one.) Thus, g is one-to-one. Let g, then g. Also: g g g g g Thus, g g and g g. 99. Suppose g and h are both inverses o. Then the graph o contains the point a, b i and onl i the graphs o g and h contain the point b, a. Since the graphs o g and h are the same, g h. Thereore, the inverse o is unique.. False. Let.. True 5. Not true. Let,, <. is one-to-one, but not strictl monotonic. 7. dt, t (a) Hence, i then., The graph o is smmetric about the line.

20 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Section 5. Eponential Functions: Dierentiation and Integration. e ln. e 5. 9 e e ln.85 e e e 5 ln 5 ln ln. ln. ln e 7.89 e e e e.89 e e e 7. e Smmetric with respect to the -ais Horizontal asmptote: 9. (a) 7 g (c) 7 q 5 7 Horizontal shit units to the right h A relection in the -ais and a vertical shrink 8 Vertical shit units upward and a relection in the -ais. Ce a. C e a Horizontal asmptote: Matches (c) Vertical shit C units Relection in both the - and -aes Matches (a) 5. e 7. g ln ln 6 g 6 e 9. g ln 6 g 6 g As, the graph o approaches the graph o g..5 lim e.5

21 Section 5. Eponential Functions: Dierentiation and Integration.,,,, e e >,,,,. (a) e e e e Tangent line Tangent line 5. e 7. e e 9. d e d gt e t e t gt e t e t e t e t. ln e. d d e e e e e e d d e e e e e e e e 5. e sin cos 7. d d e cos sin sin cos e e cos e cos F ln cos e t dt F cose ln cos 9. e,, 5. e, Tangent line lne,,, Tangent line 5. e e e,, e 55. e e e e e e e e e e Tangent line e ln,, e e ln e ln e e e e Tangent line 57. e 59. e d d e d d d d e e d e d e e e,, e e e e At, : e e Tangent line: e e

22 ( Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 6. e e e 7 6e 7 6e 6e 6 5e 6. e cos sin e sin cos e cos sin e cos sin e sin cos e cos sin e sin cos e cos sin e cos sin e cos sin Thereore,. 65. e e e e e e > Relative minimum:, when. 6 (, ) 67. g e g g e Relative maimum: Points o inlection:, e,,.99 e,,.8 (, e,.,,. (, ( π e.5, π ( ( e.5 π 69. e e e e when,. e e e when ±. Relative minimum:, Relative maimum:, e ± ± e ± Points o inlection:.,.8,.586,.9 (, ) (, e ) 5 ( ±, (6 ± )e ( ± ) )

23 Section 5. Eponential Functions: Dierentiation and Integration 5 7. gt te t gt te t (, + e) 5 (, ) g t te t 6 6 Relative maimum:, e,.78 Point o inlection:, 7. A baseheight e da d e e e when. A e (, e ) 75. Laeb ae b ae b b L, a >, b >, L > aeb L a b eb ae b al e b b al b eb aeb a b eb ae b ae b al e b b al b a eb b eb ae b i b ln a ae b al b eb ae b ae b b ln b ln a a L ae L b ln ab aa L Thereore, the -coordinate o the inlection point is L. 77. e e Let,, e be the point on the graph where the tangent line passes through the origin. Equating slopes, e e 8 () = e, e, e. (, e ( () = (e) Point:, e Tangent line: e e e

24 6 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 79. V 5,e.686t, t (a), dv dt 99e.686t (c), When t, dv dt When t 5, dv dt 8. h 5 5 P, ln P (a) ln P ah b P e ahb e b e ah P Ce ah, C e b (c).99h 9.8 is the regression line or data h, ln P., (d) For our data, a.99 and C e9.8, P,957.7e.99h dp, e.99h dh For 6.56e.99h dp h 5, dh For h 8, dp.6. dh 8. e, 7 e, P P e, 6 6 P, P P, P P 8 P 8 P, P P, P The values o, P, P and their irst derivatives agree at. The values o the second derivatives o and agree at. P 85. Let u 5, du 5 d. e 5 5 d e 5 C 87. e d e d e C

25 Section 5. Eponential Functions: Dierentiation and Integration Let u e, du e d. e e d e e d ln e C ln e e C lne C 9. Let u e, du e d. e e d e e d 9. Let u e e, du e e d. e e e e d ln e e C e C e d 5e e d e d 97. e tane d tane e d 5 e e C ln cose C 99. Let u, du d.. e d e d e e e e e d e e e d. Let u, du d. 5. d e d e e e e e e sin cos d e e esin e sin e sin cos d 7. Let u a, du a d. Assume a. 9. e e d e e C e a d ae a a d a ea C C e e d e e C C C e e. (a) 5 d d e,, 6 (, ) 5 e d e d 8 e C, : e C C C 5 e 5

26 8 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions. 5 e d e 5 e e d e 6 e e d, n e.9t8 dt 8 Midpoint Rule: Graphing utilit: % Trapezoidal Rule: 9.87 Simpson s Rule: Graphing utilit: 9.77 e t dt dt. e. Domain is, and range is,. et t e e or is continuous, increasing, one-to-one, and concave upwards on its entire domain. lim e and lim e. 5. Yes. Ce, C a constant. 7. e e e n n n n n n e n e n We approimate the root o to be ln ea e b ln ea ln e b a b ln e ab a b Thereore, ln ea and since is one-to-one, we have ea e b ln eab ln b eab. e

27 Section 5.5 Bases Other than e and Applications 9 Section 5.5 Bases Other than e and Applications. log 8 log. log 7 5. (a) 8 7. (a) log. log.5 8 log 8 log h (a) log log. 7. (a) log log (a) log log 6 log log 6 6 OR. 75. ln ln 75 ln ln z 65 z ln ln 65 z ln 65 ln z ln 65 ln t 7. t ln.9 ln t ln ln.9.5 log 5 5

28 5 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 9. log.5. g 6 5. hs log s 5.5 Zero:.59 Zero: s. ±.5 ±.85 (.59, ) (., ) 8 5. g log 6 6 g g ln gt t t gt t ln t t t t t t ln t t t ln. h cos h sin ln cos ln cos sin. log log log ln ln ln 5. log 5 log 5 7. d d ln 5 ln 5 gt log t t ln ln t t gt tt ln t ln t ln t t ln 5 ln t t ln 9.,, 5. ln At,, ln. Tangent line: ln ln ln log, 7, At ln 7,, 7 ln. Tangent line: 7 7 ln 7 ln ln

29 Section 5.5 Bases Other than e and Applications ln ln d d ln ln d d ln ln ln ln d d ln d d ln ln 57. ln sin ln At sin,, sin, : cos ln Tangent line: 59. ln cos lnln ln cos, e, cos sin lnln ln At e,, cose. e Tangent line: cose e e cose cose e 6. d C 6. ln 5 d 5 d 5 ln 5 C ln 5 5 C 65. u, du ln d d, 67. ln d ln ln ln C d ln ln 7 ln 7 ln d 5 ln 5 ln 5 ln 5 ln ln 5 ln 7. Area d ln ln 5 ln 6 7 ln ln

30 5 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions d 7. d., (a) (, (,. d. d ln.. C ln.5. C 6 6 ln.5 C C ln.5 ln.5. ln.5. ln (, ) (, ) (8, ) 6 8 (a) is an eponential unction o : False is a logarithmic unction o : True; log (c) is an eponential unction o : True, (d) is a linear unction o : False log ln g g ln Note: Let g. Then: ln ln ln ln ln ln g h h k k ln From greatest to smallest rate o growth: g, k, h, 79. Ct P.5 t (a) C.95.5 $.6 dc dt When When Pln.5.5t (c) t, t 8, dc dt dc dt.5p..7p. dc dt ln.5p.5t ln.5ct The constant o proportionalit is ln P $, r %.5, t n 65 Continuous A.5 n n A e A P $, r 5%.5, t A.5 n n A e n 65 Continuous A

31 Section 5.5 Bases Other than e and Applications 5 85., Pe.5t P,e.5t t 5 P 95,.9 6,65.7 6,787.9,., , P.5 t P,.5 t t 5 P 95,.8 6,76. 6,86.5,8.66, (a) A, $,. A $, (c) (d) A , $,98.9 5,.8 $8,5.57 A $,985. Take option (c). 9. (a) lim t 6.7e8.t 6.7e 6.7 million t V.7 t e 8.t V.7 million t r V6. million t r 9. 7e.65 (d) (a) 7e.65 I ( egg masses), %. (c) I 66.67%, then 8.8 or 8,8 egg masses. 8.75e.65 7e e.65 7e.65 7e.65 7e or 7,8 egg masses. 95. (a) (c) B d.759e.9d 97. (a) t dt 5.67 Bd 9.95e.9d B.8. tonsinch B tonsinch gt dt 5.67 ht dt 5.67 (c) The unctions appear to be equal: Analticall, t 8 t 8 t 9 t gt ht e.65886t e t.5 t gt 9 t.5 t t gt ht. No. The deinite integrals over a given interval ma be equal when the unctions are not equal. 6 5

32 5 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 99. t False. e is an irrational number. Ck t When t, C. k t ,.6,.6, Let k.6..6 t. True g e ln g ln e ln e 5. True d d e e and e e when. e e d d e e 7. ln ln 5 5 t C d dt 8 5 5, d dt 5 5 d 8 5 dt ln 5 5 t C 5 e5tc C e 5t C e 5t 5 e 5t 5 5e5t e 5t e 5t 5e5t e 5t 5 e.5.t.5e.t 9. (a) ln (i) At ln ln ln ln ln ln ln ln ln (c) (ii) At (iii) At At c, c:, :, : is undeined or c c ln c ln ln ln e. e, e, is undeined., c, e c c ln c 6 8 ln 8 ln ln.77 ln 8 ln ln ln ln

33 Section 5.6 Inverse Trigonometric Functions: Dierentiation 55. Let ln ln For n 8, e < n < n, 8.88 and so letting n, n, we have n n > n n. Note: ln, >. ln or > e is decreasing or e. Hence, or e < : < > > ln > ln ln > ln > and Note: This same argument shows e > e. Section 5.6 Inverse Trigonometric Functions: Dierentiation. arcsin (a) (c) (d) Smmetric about origin: π π arcsin arcsin Intercept:,. arccos,,, because 6 because cos cos because cos 6 5. arcsin 6 7. arccos 9. arctan 6. arccsc. arccos arcsec.69 arccos.69.66

34 56 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 7. (a) sin arctan 5 9. (a) cot arcsin cot 6 5 θ θ sec arcsin 5 5 csc arctan θ θ 5. cosarcsin. arcsin cos θ sinarcsec arcsec, sin, The absolute value bars on are necessar because o the restriction and sin or this domain must alwas be nonnegative.,, θ 5. tan arcsec 7. 9 csc arctan + arcsec θ arctan θ tan 9 csc 9. (a) Let = g arctan (c) Asmptotes: ± tan sin sinarctan. +. arcsin. arcsin arccos sin sinarccos sin.7, θ

35 Section 5.6 Inverse Trigonometric Functions: Dierentiation (a) arccsc arcsin, arctan arctan, > Let arccsc. Then or Let arctan arctan. Then, and < <, tan tanarctan tanarctan tanarctan tanarctan csc sin. Thus, arcsin. Thereore, arccsc arcsin. (which is undeined). Thus,. Thereore, arctan arctan. 7. arcsin 9. sin Domain: Range: sin,, is the graph o arcsin shited unit to the right. π π (, π ) π (, π ) π arcsec Domain: Range: sec sec,,,,,, (, π ( π (, (. arcsin. g arccos 5. arctan a g a a a a 7. g arcsin 9. ht sinarccos t t g 9 arcsin 9 arcsin 9 ht t t t t 5. arccos 5. arccos arccos ln arctan ln ln arctan d d 55. arcsin d d arcsin arcsin

36 58 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions arcsin arctan arcsin,, 6. At,,. Tangent line: arctan,, At,,. Tangent line: 65. arccos,, At,,. arccos Tangent line: 67. arctan, a,.5 P = P ,..5 P P 69. arcsin, a P P 6 6 P P

37 Section 5.6 Inverse Trigonometric Functions: Dierentiation arcsec 7. when 5 when or 5 ± ±.7 Relative maimum:.7,.66 Relative minimum:.7,.77 arctan arctan 8 6 B the First Derivative Test,,. is a relative maimum. 75. arctan At,, Tangent line: arctan, arctan 8 arctan , 77. At arcsin arcsin,,,, Tangent line: 79. The trigonometric unctions are not one-to-one on,, so their domains must be restricted to intervals on which the are one-to-one. 8. arccot, < < cot 8. False arccos 85. True d arctan d > or all. tan since the range is,. So, graph the unction arctan or > and arctan or <. 87. True d arctantan sec d tan sec sec

38 6 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 89. (a) cot 5 9. (a) ht 6t 56 d dt I arccot 5 d 5 dt 5 d 5 dt d dt 5 and, d 6 radhr. dt d I and, d 58.8 radhr. dt dt 6t 56 when t sec tan h 5 6t 56 5 arctan 6 d dt 5 t 6 8t5 5t 6 t 5,65 66 t h 5 θ When t, ddt.5 radsec. When t, ddt.6 radsec. 9. (a) tanarctan arctan Thereore, tanarctan tanarctan tanarctan tanarctan, arctan arctan arctan,. Let and. arctan arctan arctan 56 arctan 6 arctan 56 arctan k sin k cos or k k cos or k Thereore, k sin is strictl monotonic and has an inverse or k or k. 97. (a) arccos arcsin (c) Let u arccos and v arcsin cos u and sin v. The graph o is the constant unction. u v sinu v sin u cos v sin v cos u Hence, u v. Thus, arccos arcsin.

39 Section 5.7 Inverse Trigonometric Functions: Integration sec, <, < (, ) (, ) θ θ θ (c, ) (, ) π π tan c, tan c, < c < To maimize, we minimize c c arctan c arctan c. (a) arcsec, or < or < c c c c c c c 8c 6 π π 8c c B the First Derivative Test, c is a minimum. Hence, c, c, is a relative maimum or the angle. Checking the endpoints: c : tan.7 arcsec sec sec tan sec tan c : tan.7 c :.578 tan sec tan ±sec Thus,, is the absolute maimum. On < and <, tan. Section 5.7 Inverse Trigonometric Functions: Integration. 5 9 d 5 arcsin C. 7 6 d 7 arctan C 5. d d arcsec C 7. d d d d ln C (Use long division.) 9. d arcsin C. Let u t, du t dt. t t dt t t dt arcsint C

40 6 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions. Let u e, du e d e d e e d e arctan e C d d d ln arctan C d, u, u, d u du u u u du du arcsin u C u arcsin C d 9 d 8 9 d 9 8 arcsin C 6 8 arcsin C. Let u, du d. 6 9 d 5. Let u arcsin, du 6 d arcsin 6 d. arcsin d arcsin 8.8. Let u, du d. d 7. Let d arctan. 6 u, du d. d d 9. Let u cos, du sin d.. sin cos d sin cos d. arctancos ln 6 arctan C d d arctan 6 d 6 6 d 6 6 d 6 6 d 6 d 5. d d arcsin C 7. Let u, du d. d d C

41 Section 5.7 Inverse Trigonometric Functions: Integration 6 9. d d d d d arcsin Let u, du d. d d arctan C. Let u e t. Then u e t, u du e t dt, and et dt u u du du 6 u du u du dt. u u u arctan C et arctan e t C 5. Let u, u, u du d, u. u du u u u du 9. (a) d arctanu d C, u 6 7. (a) d arcsin C, u d C, u (c) d cannot be evaluated using the basic integration rules. Let u. Then u and d u du. d u uu du u u du u 5 5 u u 5 C 5 5 C 5 C (c) Let u. Then u and d u du. d u u du u u du u u C uu C C Note: In and (c), substitution was necessar beore the basic integration rules could be used. 5 u C 5. Area 5. Matches (c),, ) C d arcsin C arcsin

42 6 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 55. (a) 57. (a) d d,, d arctan C, : arctan C C arctan (, ),, d arcsec C arcsec C C arcsec, d d, 6. d d 6, A arctan arctan arctan 8 5 d d 65. Area d arcsin arcsin arcsin Area cos sin d cos d sin arctansin arctan arctan

43 Section 5.7 Inverse Trigonometric Functions: Integration (a) d d ln ln arctan C Thus, A arctan d ln ln arctan ln arctan ln ln arctan ln ln 9.85 arctan arctan arctan arctan d ln ln arctan C. 7. (a) π Shaded area is given b arcsin d. arcsin d.578 (c) Divide the rectangle into two regions. Area rectangle baseheight Area rectangle arcsin d sin d arcsin d cos Hence, arcsin d arcsin d, F t dt (a) F represents the average value o over the interval,. Maimum at, since the graph is greatest on,. F arctan t F arctan arctan when. d 75. False,9 6 arcsec C 77. True d d arccos C 79. d d arcsin u a C u u du Thus, a a u arcsin u C. a a u a u

44 66 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 8. Assume u >. d d a arcsec u a C a ua uaua a The case u < is handled in a similar manner. Thus, du uu a u uu a d a arcsec u C. a u uu a a u uu a. 8. (a) vt t 5 st vt dt t 5 dt (c) (e) 55 kv dv dt k arctan k v t C arctan k v kt C k v tanc k t v k tanc k t When t, v 5, C arctan5k, and we have vt k tan arctan 5 k k t. h 6.86 Simpson s Rule:, tanarctan5.5. t dt n ; h 88 eet () Air resistance lowers the maimum height. s 6 5 C C st 6t 5t When the object reaches its maimum height, vt. s (d) When k.: v(t, tanarctan5.5. t 5 6t 5t C vt t 5 t 5 t t Maimum height vt when t 6.86 sec. 7 Section 5.8 Hperbolic Functions. (a) sinh e e.8 tanh sinh cosh e e e.96 e. (a) cschln e ln e ln cothln 5 coshln 5 5 sinhln 5 eln e ln 5 e ln 5 e ln

45 Section 5.8 Hperbolic Functions (a) cosh ln.7 sech ln e e tanh sech e e e e e e e e e e e e 9. sinh cosh cosh sinh e e e e e e e e e e e e e e e e e e e e sinh. sinh sinh sinh sinh e e e e e e e e e e e e e e e e e e e e sinh. sinh cosh cosh tanh csch sech coth cosh 5. sech 7. lnsinh 9. ln tanh sech tanh cosh coth sinh tanh sech sinh cosh csch sinh. h sinh. t arctansinh t h cosh cosh sinh t cosh t cosh t sech t sinh t cosh t

46 68 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 5. sinh,, 7. cosh Tangent line: cosh sinh,, cosh sinh sinh cosh At,,. Tangent line: 9. sin sinh cos cosh, ( π, cosh π) ( π, cosh π) sin cosh cos sinh cos sinh sin cosh sin cosh when, ±. Relative maima: ±, cosh Relative minimum:, (, ). g sech. a sinh g sech sech tanh sech tanh tanh a cosh a sinh a cosh Using a graphing utilit, ±.997. Thereore,. B the First Derivative Test,.997,.667 is a relative maimum and.997,.667 is a relative minimum. (.,.66) (.,.66) 5. tanh, 7. (a) sech, sech tanh, P P P 5 cosh, At ±5, 5 cosh.6. P At, 5 cosh 5. sinh (c) At 5, sinh Let u, du d. sinh d sinh d. Let u cosh, du sinh d. cosh sinh d cosh C cosh C

47 Section 5.8 Hperbolic Functions 69. Let u sinh, du cosh d. cosh sinh d ln sinh C 5. Let u, du d. csch d csch d coth C 7. Let u, du d. csch coth d csch coth d 9. Let u, du d. d d arctan C csch C 5. ln sinh tanh d ln d, u cosh 5. cosh lncosh ln lncoshln lncosh ln 5 ln 5 Note: coshln eln e ln 5 5 d 5 ln 5 5 d 5 d ln 9 5 ln 55. Let u, du d. 57. d d arcsin cosh sinh tan 6. tan sec sec tanh sin cos sec sin 6. sinh sinh sinh 65. Answers will var. 67. lim sinh 69. lim sech sinh e 7. lim lim e 7. e d e e e d csch e C ln e e C

48 7 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 75. Let u, du d. d d sinh C ln C 77. d d ln ln C 79. d d d 6 ln ln C C 8. Let u, du d d 8 d arcsin 9 C d d 6 ln C ln 5 C 5 d 5 d ln 5 C 85. A sech d 87. e e e d e d 8 arctane 8 arctane d 5 d A 5 ln 5 ln (a) ln.7 d sinh sinh.7 d ln

49 Section 5.8 Hperbolic Functions 7 9. k 6 dt d kt 6 d 6 ln 6 When : t C ln When : k 5 ln C ln 8 t k 6 ln 7 ln ln 7 6 C When t : 6 5 ln ln 8 ln 7 6 ln kg 9. a sech a a, a > d d 95. Let a a tanh u. sinh u cosh u eu e u e u eu e u e u e u e u e u e u e u e u u ln u ln, < < a a a u tanh, < < 97. a a a a b e t dt et b b b eb eb eb e b sinhb 99. sech tanh sech. sech sech tanh sech sech sinh sinh cosh cosh sinh

50 7 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions. c cosh c Let P, be a point on the catenar. P(, ) sinh c The slope at P is sinh c. The equation o line L is (, c) L c. sinh c When c The length o L is sinh c c sinh, c. c sinh c c c cosh c, the ordinate o the point P. Review Eercises or Chapter 5. ln Vertical shit units upward Vertical asmptote: 5 = 5. ln 5 ln 5 5 ln ln ln 5. ln ln ln ln ln ln 7. ln ln e e e g ln ln. g ln ln ln ln ln ln ln. ba b a lna b 5. d d bb ab a b a b ln,, Tangent line:

51 7. u 7, du 7 d d 7 7 d 7 ln 7 C. d d ln ln Review Eercises or Chapter 5 7 sin cos d sin cos d. ln cos C sec d ln sec tan ln 5. (a) 7 7. (a) , (c) 6 (c) 6 6 or. 9. (a) (c). 5 or tan 5. (a) ln 6 sec 6 6 (c) ln e e e e ln e ln e ln e ln e ln e

52 7 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 7. e 9. 6 gt t e t gt t e t te t te t t e e. e e e e e e e e lne,, 7. Tangent line: e d 6 e 6 d 5. 6 e 6 e 6 e e d e d 55. e C g e g e e e e ln ln d d d d ln d d d d ln e e d e e e e d e e e C e e e Let u e, du e d. e e d e e d ln e lne lne ln e e lne e C 57. e a cos b sin e a sin b cos e a cos b sin e a b sin a b cos e a b cos a b sin e a b sin a b cos e 6a 8b sin 8a 6b cos e 6a 8b a b b sin 8a 6b a b a cos

53 Review Eercises or Chapter Area e d e e log 65. ln ln ln 69. ln ln ln g log log g ln ln 7. 5 d ln 5 5 C 7. t 5 log 8, 8, h (a) Domain: t 8 h < 8, (c) t 5 log 8, 8, h t5 8, 8, h 6 h,, Vertical asmptote: h 8, 8, h 8, t5 h 8, t5 dh dt 6 ln t5 is greatest when t. 75. arctan 6

54 76 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 77. (a) Let arcsin Let arcsin sin sin arcsin sin. θ sin cos arcsin cos. 79. tanarcsin 8. arcsec arcsec 8. arcsin arcsin arcsin arcsin arcsin arcsin 85. Let u e, du e d. e e d e e d e e d arctane C 87. Let u, du d. d d arcsin C u arctan, du d. 89. Let arctan d arctan arctan C d 9. A d 9. d d arcsin arcsin.86 d A k m dt arcsin A k m t C Since when t, ou have C. Thus, sin k m t A A sin k m t. 95. tanh tanh tanh 97. Let u, du d. sech d sech d tanh C

55 Problem Solving or Chapter 5 77 Problem Solving or Chapter 5. tan tan 6 Minimize a a.5 Endpoints: : a : a : or Maimum is.76 at a arctan arctan ± 8 ± 8 θ θ θ a 6. (a) ln, (c) Let g ln, g, and g. From the deinition o derivative g g ln g lim lim. Thus, lim. lim 5..5 and. intersect. does not intersect. Suppose is tangent to a at,. a a. a ln a ln ln e, a e e For < a e e.5, the curve a intersects. =.5 6 = = =. 6 6

56 78 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 7. (a) arcsin sin Area A 6 Area B sin d cos 6.68 arcsin d AreaC 8 6 A B (c) (d) Area A ln e d e ln Area B ln d ln A ln ln tan Area A tan d ln cos ln ln ln ln π A Area C arctan d ln.688 ln π B = ln ln A e = B = arctan C 9. e e b e a a e a ae a b I : e a ae a b b ab b a c a Tangent line b e a Thus, a c a a.. Let u tan, du sec d. Area sin cos d du u sec tan d arctan u arctan. (a) u , t v 985.9, t u v 5 The larger part goes or interest. The curves intersect when t 7.7 ears. (c) The slopes are negatives o each other. Analticall, (d) u v du dt dv dt u5 v5.6. t.7 ears Again, the larger part goes or interest.

CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions

CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions CHAPTER 5 Logarithmic, Eponential, and Other Transcendental Functions Section 5. The Natural Logarithmic Function: Differentiation.... 9 Section 5. The Natural Logarithmic Function: Integration...... 98

More information

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y. 90 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions Test Form A Chapter 5 Name Class Date Section. Find the derivative: f ln. 6. Differentiate: y. ln y y y y. Find dy d if ey y. y

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. Section. Rolle s Theorem and the Mean Value Theorem. 7 Section. Increasing and Decreasing Functions and the First Derivative

More information

SECTION CHAPTER 7 SECTION f 1 (x) = 1 (x 5) 1. Suppose f(x 1 )=f(x 2 ) x 1 x 2. Then 5x 1 +3=5x 2 +3 x 1 = x 2 ; f is one-to-one

SECTION CHAPTER 7 SECTION f 1 (x) = 1 (x 5) 1. Suppose f(x 1 )=f(x 2 ) x 1 x 2. Then 5x 1 +3=5x 2 +3 x 1 = x 2 ; f is one-to-one P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD7-7 JWDD7-Salas-v November 5, 6 5:4 CHAPTER 7 SECTION 7. 34 SECTION 7.. Suppose f( )=f( ). Then 5 +3=5 +3 = f is one-to-one f(y) = 5y +3= 5y = 3 y = 5 ( 3)

More information

Trigonometric substitutions (8.3).

Trigonometric substitutions (8.3). Review for Eam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Eam covers: 7.4, 7.6, 7.7, 8-IT, 8., 8.2. Solving differential equations

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 0 Section. Rolle s Theorem and the Mean Value Theorem. 07 Section. Increasing and Decreasing Functions and the First

More information

CHAPTER 6 Differential Equations

CHAPTER 6 Differential Equations CHAPTER 6 Differential Equations Section 6. Slope Fields and Euler s Method.............. 55 Section 6. Differential Equations: Growth and Deca........ 557 Section 6. Separation of Variables and the Logistic

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval................... 0 Section. Rolle s Theorem and the Mean Value Theorem...... 0 Section. Increasing and Decreasing Functions and

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 78 Section. Rolle s Theorem and the Mean Value Theorem. 8 Section. Increasing and Decreasing Functions and the First

More information

Hyperbolic Functions

Hyperbolic Functions 88 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 58 JOHANN HEINRICH LAMBERT (78 777) The first person to publish a comprehensive stu on hperbolic functions was Johann Heinrich

More information

Review Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4.

Review Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4. Review Eercises for Chapter 6. r v 0 sin. Let f, 00, d 0.6. v 0 00 ftsec changes from 0 to dr 00 cos d 6 0 d 0 r dr 80 00 6 96 feet 80 cos 0 96 feet 8080 f f fd d f 99. 00 0.6 9.97 00 Using a calculator:

More information

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions Chapter 5 Logarithmic, Exponential, an Other Transcenental Functions 5.1 The Natural Logarithmic Function: Differentiation 5.2 The Natural Logarithmic Function: Integration 5.3 Inverse Functions 5.4 Exponential

More information

1993 AP Calculus AB: Section I

1993 AP Calculus AB: Section I 99 AP Calculus AB: Section I 90 Minutes Scientific Calculator Notes: () The eact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among

More information

Test one Review Cal 2

Test one Review Cal 2 Name: Class: Date: ID: A Test one Review Cal 2 Short Answer. Write the following expression as a logarithm of a single quantity. lnx 2ln x 2 ˆ 6 2. Write the following expression as a logarithm of a single

More information

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg. CALCULUS: Graphical,Numerical,Algebraic b Finne,Demana,Watts and Kenned Chapter : Derivatives.: Derivative of a function pg. 116-16 What ou'll Learn About How to find the derivative of: Functions with

More information

Answers to Some Sample Problems

Answers to Some Sample Problems Answers to Some Sample Problems. Use rules of differentiation to evaluate the derivatives of the following functions of : cos( 3 ) ln(5 7 sin(3)) 3 5 +9 8 3 e 3 h 3 e i sin( 3 )3 +[ ln ] cos( 3 ) [ln(5)

More information

Sec 3.1. lim and lim e 0. Exponential Functions. f x 9, write the equation of the graph that results from: A. Limit Rules

Sec 3.1. lim and lim e 0. Exponential Functions. f x 9, write the equation of the graph that results from: A. Limit Rules Sec 3. Eponential Functions A. Limit Rules. r lim a a r. I a, then lim a and lim a 0 3. I 0 a, then lim a 0 and lim a 4. lim e 0 5. e lim and lim e 0 Eamples:. Starting with the graph o a.) Shiting 9 units

More information

CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS

CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS SSCE1693 ENGINEERING MATHEMATICS CHAPTER 1: FURTHER TRANSCENDENTAL FUNCTIONS WAN RUKAIDA BT WAN ABDULLAH YUDARIAH BT MOHAMMAD YUSOF SHAZIRAWATI BT MOHD PUZI NUR ARINA BAZILAH BT AZIZ ZUHAILA BT ISMAIL

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

Chapter 2 Section 3. Partial Derivatives

Chapter 2 Section 3. Partial Derivatives Chapter Section 3 Partial Derivatives Deinition. Let be a unction o two variables and. The partial derivative o with respect to is the unction, denoted b D1 1 such that its value at an point (,) in the

More information

CALCULUS II MATH Dr. Hyunju Ban

CALCULUS II MATH Dr. Hyunju Ban CALCULUS II MATH 2414 Dr. Hyunju Ban Introduction Syllabus Chapter 5.1 5.4 Chapters To Be Covered: Chap 5: Logarithmic, Exponential, and Other Transcendental Functions (2 week) Chap 7: Applications of

More information

1969 AP Calculus BC: Section I

1969 AP Calculus BC: Section I 969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

More information

Review Exercises for Chapter 2

Review Exercises for Chapter 2 Review Eercises for Chapter 367 Review Eercises for Chapter. f 1 1 f f f lim lim 1 1 1 1 lim 1 1 1 1 lim 1 1 lim lim 1 1 1 1 1 1 1 1 1 4. 8. f f f f lim lim lim lim lim f 4, 1 4, if < if (a) Nonremovable

More information

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question.

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question. Mth Calculus Practice Eam Questions NOTE: These questions should not be taken as a complete list o possible problems. The are merel intended to be eamples o the diicult level o the regular eam questions.

More information

Mat 267 Engineering Calculus III Updated on 9/19/2010

Mat 267 Engineering Calculus III Updated on 9/19/2010 Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number

More information

CHAPTER 3 Exponential and Logarithmic Functions

CHAPTER 3 Exponential and Logarithmic Functions CHAPTER Eponential and Logarithmic Functions Section. Eponential Functions and Their Graphs......... Section. Logarithmic Functions and Their Graphs......... Section. Properties of Logarithms..................

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

1985 AP Calculus AB: Section I

1985 AP Calculus AB: Section I 985 AP Calculus AB: Section I 9 Minutes No Calculator Notes: () In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e). () Unless otherwise specified, the domain of

More information

CHAPTER 3 Exponential and Logarithmic Functions

CHAPTER 3 Exponential and Logarithmic Functions CHAPTER Eponential and Logarithmic Functions Section. Eponential Functions and Their Graphs You should know that a function of the form f a, where a >, a, is called an eponential function with base a.

More information

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4 Inverse Functions Inverse Relations The inverse of a relation is the set of ordered pairs obtained by switching the input with the output of each ordered pair in the original relation. (The domain of the

More information

CHAPTER P Preparation for Calculus

CHAPTER P Preparation for Calculus PART II CHAPTER P Preparation for Calculus Section P. Graphs and Models..................... 8 Section P. Linear Models and Rates of Change............ 87 Section P. Functions and Their Graphs................

More information

Try It Exploration A Exploration B Open Exploration. Fitting Integrands to Basic Rules. A Comparison of Three Similar Integrals

Try It Exploration A Exploration B Open Exploration. Fitting Integrands to Basic Rules. A Comparison of Three Similar Integrals 58 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8 Basic Integration Rules Review procedures for fitting an integrand to one of the basic integration rules Fitting

More information

Increasing and Decreasing Functions and the First Derivative Test

Increasing and Decreasing Functions and the First Derivative Test Section 3.3 Increasing and Decreasing Functions and the First Derivative Test 3 Section 3.3 Increasing and Decreasing Functions and the First Derivative Test. f 8 3. 3, Decreasing on:, 3 3 3,,, Decreasing

More information

CHAPTER P Preparation for Calculus

CHAPTER P Preparation for Calculus CHAPTER P Preparation for Calculus Section P. Graphs and Models...................... Section P. Linear Models and Rates of Change............ Section P. Functions and Their Graphs................. Section

More information

AP Calculus AB/BC ilearnmath.net

AP Calculus AB/BC ilearnmath.net CALCULUS AB AP CHAPTER 1 TEST Don t write on the test materials. Put all answers on a separate sheet of paper. Numbers 1-8: Calculator, 5 minutes. Choose the letter that best completes the statement or

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

C H A P T E R 3 Exponential and Logarithmic Functions

C H A P T E R 3 Exponential and Logarithmic Functions C H A P T E R Eponential and Logarithmic Functions Section. Eponential Functions and Their Graphs......... Section. Logarithmic Functions and Their Graphs........ 7 Section. Properties of Logarithms.................

More information

Review Exercises. lim 5 x. lim. x x 9 x. lim. 4 x. sin 2. ln cos. x sin x

Review Exercises. lim 5 x. lim. x x 9 x. lim. 4 x. sin 2. ln cos. x sin x MATHEMATICS 0-0-RE Dierential Calculus Martin Huard Winter 08 Review Eercises. Find the ollowing its. (Do not use l Hôpital s Rul. a) b) 0 6 6 g) j) m) sin 0 9 9 h) k) n) cos 0 sin. Find the ollowing its.

More information

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x) APPM 5 Final Eam (5 pts) Fall. The following problems are not related: (a) (5 pts, 5 pts ea.) Find the following limits or show that they do not eist: (i) lim e (ii) lim arcsin() (b) (5 pts) Find and classify

More information

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx Final Eam Review Math. Determine the derivative or each o the ollowing: a. y 6 b. y sec c. y ln d. y e. y e. y sin sin g. y cos h. i. y e y log j. k. l. 6 y y cosh y sin m. y ln n. y tan o. y arctan e

More information

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video

Increasing and Decreasing Functions and the First Derivative Test. Increasing and Decreasing Functions. Video SECTION and Decreasing Functions and the First Derivative Test 79 Section and Decreasing Functions and the First Derivative Test Determine intervals on which a unction is increasing or decreasing Appl

More information

CHAPTER 3 Exponential and Logarithmic Functions

CHAPTER 3 Exponential and Logarithmic Functions CHAPTER Eponential and Logarithmic Functions Section. Eponential Functions and Their Graphs......... Section. Logarithmic Functions and Their Graphs......... Section. Properties of Logarithms..................

More information

Trigonometry Outline

Trigonometry Outline Trigonometr Outline Introduction Knowledge of the content of this outline is essential to perform well in calculus. The reader is urged to stud each of the three parts of the outline. Part I contains the

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

CHAPTER 11 Vector-Valued Functions

CHAPTER 11 Vector-Valued Functions CHAPTER Vector-Valued Functions Section. Vector-Valued Functions...................... 9 Section. Differentiation and Integration of Vector-Valued Functions.... Section. Velocit and Acceleration.....................

More information

Fitting Integrands to Basic Rules. x x 2 9 dx. Solution a. Use the Arctangent Rule and let u x and a dx arctan x 3 C. 2 du u.

Fitting Integrands to Basic Rules. x x 2 9 dx. Solution a. Use the Arctangent Rule and let u x and a dx arctan x 3 C. 2 du u. 58 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8 Basic Integration Rules Review proceres for fitting an integrand to one of the basic integration rules Fitting Integrands

More information

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim Math Final Eam Review Solutions { + 3 if < Consider f() Find the following limits: (a) lim f() + + (b) lim f() + 3 3 (c) lim f() does not eist Find each of the following limits: + 6 (a) lim 3 + 3 (b) lim

More information

1993 AP Calculus AB: Section I

1993 AP Calculus AB: Section I 99 AP Calculus AB: Section I 9 Minutes Scientific Calculator Notes: () The eact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among

More information

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2 6 FAMAT Convention Mu Integration. A. 3 3 7 6 6 3 ] 3 6 6 3. B. For quadratic functions, Simpson s Rule is eact. Thus, 3. D.. B. lim 5 3 + ) 3 + ] 5 8 8 cot θ) dθ csc θ ) dθ cot θ θ + C n k n + k n lim

More information

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) =

CLEP Calculus. Time 60 Minutes 45 Questions. For each question below, choose the best answer from the choices given. 2. If f(x) = 3x, then f (x) = CLEP Calculus Time 60 Minutes 5 Questions For each question below, choose the best answer from the choices given. 7. lim 5 + 5 is (A) 7 0 (C) 7 0 (D) 7 (E) Noneistent. If f(), then f () (A) (C) (D) (E)

More information

C H A P T E R 9 Topics in Analytic Geometry

C H A P T E R 9 Topics in Analytic Geometry C H A P T E R Topics in Analtic Geometr Section. Circles and Parabolas.................... 77 Section. Ellipses........................... 7 Section. Hperbolas......................... 7 Section. Rotation

More information

Andrew s handout. 1 Trig identities. 1.1 Fundamental identities. 1.2 Other identities coming from the Pythagorean identity

Andrew s handout. 1 Trig identities. 1.1 Fundamental identities. 1.2 Other identities coming from the Pythagorean identity Andrew s handout Trig identities. Fundamental identities These are the most fundamental identities, in the sense that ou should probabl memorize these and use them to derive the rest (or, if ou prefer,

More information

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)? 5 Integration 5. Antiderivatives and Indefinite Integration Suppose that f() = 5 4. Can we find a function F () whose derivative is f()? Definition. A function F is an antiderivative of f on an interval

More information

MA 114 Worksheet #01: Integration by parts

MA 114 Worksheet #01: Integration by parts Fall 8 MA 4 Worksheet Thursday, 3 August 8 MA 4 Worksheet #: Integration by parts. For each of the following integrals, determine if it is best evaluated by integration by parts or by substitution. If

More information

CHAPTER 6 Applications of Integration

CHAPTER 6 Applications of Integration PART II CHAPTER Applications of Integration Section. Area of a Region Between Two Curves.......... Section. Volume: The Disk Method................. 7 Section. Volume: The Shell Method................

More information

Chapter 1 Prerequisites for Calculus

Chapter 1 Prerequisites for Calculus Section. Chapter Prerequisites for Calculus Section. Lines (pp. ) Quick Review.. + ( ) + () +. ( +). m. m ( ) ( ). (a) ( )? 6 (b) () ( )? 6. (a) 7? ( ) + 7 + Yes (b) ( ) + 9 No Yes No Section. Eercises.

More information

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2.

Calculus 1 - Lab ) f(x) = 1 x. 3.8) f(x) = arcsin( x+1., prove the equality cosh 2 x sinh 2 x = 1. Calculus 1 - Lab ) lim. 2. ) Solve the following inequalities.) ++.) 4 >.) Calculus - Lab { + > + 5 + < +. ) Graph the functions f() =, g() = + +, h() = cos( ), r() = +. ) Find the domain of the following functions.) f() = +.) f()

More information

Fitting Integrands to Basic Rules

Fitting Integrands to Basic Rules 6_8.qd // : PM Page 8 8 CHAPTER 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals Section 8. Basic Integration Rules Review proceres for fitting an integrand to one of the basic integration

More information

4.3 Worksheet - Derivatives of Inverse Functions

4.3 Worksheet - Derivatives of Inverse Functions AP Calculus 3.8 Worksheet 4.3 Worksheet - Derivatives of Inverse Functions All work must be shown in this course for full credit. Unsupported answers ma receive NO credit.. What are the following derivatives

More information

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function.

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function. Unit 3: Applications o Dierentiation Section 3.4: Concavity and the second Derivative Test Determine intervals on which a unction is concave upward or concave downward. Find any points o inlection o the

More information

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on Mat 7 Calculus III Updated on 10/4/07 Dr. Firoz Chapter 14 Partial Derivatives Section 14.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair

More information

Calculus 2 - Examination

Calculus 2 - Examination Calculus - Eamination Concepts that you need to know: Two methods for showing that a function is : a) Showing the function is monotonic. b) Assuming that f( ) = f( ) and showing =. Horizontal Line Test:

More information

CHAPTER 2 Differentiation

CHAPTER 2 Differentiation CHAPTER Differentiation Section. The Derivative and the Slope of a Graph............. 9 Section. Some Rules for Differentiation.................. 56 Section. Rates of Change: Velocit and Marginals.............

More information

Mathematical Preliminaries. Developed for the Members of Azera Global By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.

Mathematical Preliminaries. Developed for the Members of Azera Global By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E. Mathematical Preliminaries Developed or the Members o Azera Global B: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E. Outline Chapter One, Sets: Slides: 3-27 Chapter Two, Introduction to unctions: Slides: 28-36

More information

Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f (x) is a real number.

Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f (x) is a real number. 997 AP Calculus BC: Section I, Part A 5 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number..

More information

Integration Techniques, L Hôpital s Rule, and Improper Integrals

Integration Techniques, L Hôpital s Rule, and Improper Integrals 8 Integration Techniques, L Hôpital s Rule, and Improper Integrals In previous chapters, ou studied several basic techniques for evaluating simple integrals. In this chapter, ou will stud other integration

More information

Methods of Integration

Methods of Integration U96-b)! Use the substitution u = - to evaluate U95-b)! 4 Methods of Integration d. Evaluate 9 d using the substitution u = + 9. UNIT MATHEMATICS (HSC) METHODS OF INTEGRATION CSSA «8» U94-b)! Use the substitution

More information

Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem

Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem 0_00qd //0 0:50 AM Page 7 7 CHAPTER Applications o Dierentiation Section ROLLE S THEOREM French mathematician Michel Rolle irst published the theorem that bears his name in 9 Beore this time, however,

More information

APPM 1350 Final Exam Fall 2017

APPM 1350 Final Exam Fall 2017 APPM 350 Final Exam Fall 207. (26 pts) Evaluate the following. (a) Let g(x) cos 3 (π 2x). Find g (π/3). (b) Let y ( x) x. Find y (4). (c) lim r 0 e /r ln(r) + (a) (9 pt) g (x) 3 cos 2 (π 2x)( sin(π 2x))(

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

dx. Ans: y = tan x + x2 + 5x + C

dx. Ans: y = tan x + x2 + 5x + C Chapter 7 Differential Equations and Mathematical Modeling If you know one value of a function, and the rate of change (derivative) of the function, then yu can figure out many things about the function.

More information

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS SOLUTIONS TO THE FINAL - PART MATH 5 FALL 6 KUNIYUKI PART : 5 POINTS, PART : 5 POINTS, TOTAL: 5 POINTS No notes, books, or calculators allowed. 5 points: 45 problems, pts. each. You do not have to algebraically

More information

Solutions to the Exercises of Chapter 8

Solutions to the Exercises of Chapter 8 8A Domains of Functions Solutions to the Eercises of Chapter 8 1 For 7 to make sense, we need 7 0or7 So the domain of f() is{ 7} For + 5 to make sense, +5 0 So the domain of g() is{ 5} For h() to make

More information

Unit 3. Integration. 3A. Differentials, indefinite integration. y x. c) Method 1 (slow way) Substitute: u = 8 + 9x, du = 9dx.

Unit 3. Integration. 3A. Differentials, indefinite integration. y x. c) Method 1 (slow way) Substitute: u = 8 + 9x, du = 9dx. Unit 3. Integration 3A. Differentials, indefinite integration 3A- a) 7 6 d. (d(sin ) = because sin is a constant.) b) (/) / d c) ( 9 8)d d) (3e 3 sin + e 3 cos)d e) (/ )d + (/ y)dy = implies dy = / d /

More information

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION 8 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each of the following problems. After eamining the form

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Review Exercises for Chapter 4

Review Exercises for Chapter 4 0 Chapter Trigonometr Review Eercises for Chapter. 0. radian.. radians... The angle lies in Quadrant II. (c) Coterminal angles: Quadrant I (c) 0 The angle lies in Quadrant II. (c) Coterminal angles: 0.

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

Basic Math Formulas. Unit circle. and. Arithmetic operations (ab means a b) Powers and roots. a(b + c)= ab + ac

Basic Math Formulas. Unit circle. and. Arithmetic operations (ab means a b) Powers and roots. a(b + c)= ab + ac Basic Math Formulas Arithmetic operations (ab means ab) Powers and roots a(b + c)= ab + ac a+b c = a b c + c a b + c d = ad+bc bd a b = a c d b d c a c = ac b d bd a b = a+b ( a ) b = ab (y) a = a y a

More information

First Midterm Examination

First Midterm Examination Çankaya University Department of Mathematics 016-017 Fall Semester MATH 155 - Calculus for Engineering I First Midterm Eamination 1) Find the domain and range of the following functions. Eplain your solution.

More information

REVISION SHEET FP2 (MEI) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = +

REVISION SHEET FP2 (MEI) CALCULUS. x x 0.5. x x 1.5. π π. Standard Calculus of Inverse Trig and Hyperbolic Trig Functions = + = + arcsin x = + the Further Mathematics network www.fmnetwork.org.uk V 07 REVISION SHEET FP (MEI) CALCULUS The main ideas are: Calculus using inverse trig functions & hperbolic trig functions and their inverses. Maclaurin

More information

18.01 Final Answers. 1. (1a) By the product rule, (x 3 e x ) = 3x 2 e x + x 3 e x = e x (3x 2 + x 3 ). (1b) If f(x) = sin(2x), then

18.01 Final Answers. 1. (1a) By the product rule, (x 3 e x ) = 3x 2 e x + x 3 e x = e x (3x 2 + x 3 ). (1b) If f(x) = sin(2x), then 8. Final Answers. (a) By the product rule, ( e ) = e + e = e ( + ). (b) If f() = sin(), then f (7) () = 8 cos() since: f () () = cos() f () () = 4 sin() f () () = 8 cos() f (4) () = 6 sin() f (5) () =

More information

Algebra/Pre-calc Review

Algebra/Pre-calc Review Algebra/Pre-calc Review The following pages contain various algebra and pre-calculus topics that are used in the stud of calculus. These pages were designed so that students can refresh their knowledge

More information

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS Page of 6 FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS 6. HYPERBOLIC FUNCTIONS These functions which are defined in terms of e will be seen later to be related to the trigonometic functions via comple

More information

CHAPTER 1 Limits and Their Properties

CHAPTER 1 Limits and Their Properties CHAPTER Limits and Their Properties Section. A Preview of Calculus................... 305 Section. Finding Limits Graphically and Numerically....... 305 Section.3 Evaluating Limits Analytically...............

More information

Find the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the x-axis

Find the volume of the solid generated by revolving the shaded region about the given axis. Use the disc/washer method 1) About the x-axis Final eam practice for Math 6 Disclaimer: The actual eam is different Find the volume of the solid generated b revolving the shaded region about the given ais. Use the disc/washer method ) About the -ais

More information

7.3 Inverse Trigonometric Functions

7.3 Inverse Trigonometric Functions 58 transcendental functions 73 Inverse Trigonometric Functions We now turn our attention to the inverse trigonometric functions, their properties and their graphs, focusing on properties and techniques

More information

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx Chapter 6 AP Eam Problems Antiderivatives. ( ) + d = ( + ) + 5 + + 5 ( + ) 6 ( + ). If the second derivative of f is given by f ( ) = cos, which of the following could be f( )? + cos + cos + + cos + sin

More information

y »x 2» x 1. Find x if a = be 2x, lna = 7, and ln b = 3 HAL ln 7 HBL 2 HCL 7 HDL 4 HEL e 3

y »x 2» x 1. Find x if a = be 2x, lna = 7, and ln b = 3 HAL ln 7 HBL 2 HCL 7 HDL 4 HEL e 3 . Find if a = be, lna =, and ln b = HAL ln HBL HCL HDL HEL e a = be and taing the natural log of both sides, we have ln a = ln b + ln e ln a = ln b + = + = B. lim b b b = HAL b HBL b HCL b HDL b HEL b

More information

AP Calculus BC Summer Review

AP Calculus BC Summer Review AP Calculus BC 07-08 Summer Review Due September, 07 Name: All students entering AP Calculus BC are epected to be proficient in Pre-Calculus skills. To enhance your chances for success in this class, it

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) D: (-, 0) (0, )

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) D: (-, 0) (0, ) Midterm Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the domain and graph the function. ) G(t) = t - 3 ) 3 - -3 - - 3 - - -3

More information

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics).

Practice Questions From Calculus II. 0. State the following calculus rules (these are many of the key rules from Test 1 topics). Math 132. Practice Questions From Calculus II I. Topics Covered in Test I 0. State the following calculus rules (these are many of the key rules from Test 1 topics). (Trapezoidal Rule) b a f(x) dx (Fundamental

More information

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals

Math 123 Summary of Important Algebra & Trigonometry Concepts Chapter 1 & Appendix D, Stewart, Calculus Early Transcendentals Math Summar of Important Algebra & Trigonometr Concepts Chapter & Appendi D, Stewart, Calculus Earl Transcendentals Function a rule that assigns to each element in a set D eactl one element, called f (

More information

11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS. Parametric Equations Preliminar Questions. Describe the shape of the curve = cos t, = sin t. For all t, + = cos t + sin t = 9cos t + sin t =

More information

Name Please print your name as it appears on the class roster.

Name Please print your name as it appears on the class roster. Berkele Cit College Practice Problems Math 1 Precalculus - Final Eam Preparation Name Please print our name as it appears on the class roster. SHORT ANSWER. Write the word or phrase that best completes

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus 6. Worksheet Da All work must be shown in this course for full credit. Unsupported answers ma receive NO credit. Indefinite Integrals: Remember the first step to evaluating an integral is to

More information

Answer Explanations. The SAT Subject Tests. Mathematics Level 1 & 2 TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE

Answer Explanations. The SAT Subject Tests. Mathematics Level 1 & 2 TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE The SAT Subject Tests Answer Eplanations TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE Mathematics Level & Visit sat.org/stpractice to get more practice and stud tips for the Subject Test

More information

Math 115 (W1) Solutions to Assignment #4

Math 115 (W1) Solutions to Assignment #4 Math 5 (W Solutions to Assignment #. ( marks Fin the erivative of the following. Provie reasonable simplification. a f( 3 + e sec ( ; ( ( b f( log + tan ; ( c f( tanh ; + f( ln(sinh. a f( ( 3 + 3 ln( 3

More information

Solutions to Math 41 Final Exam December 9, 2013

Solutions to Math 41 Final Exam December 9, 2013 Solutions to Math 4 Final Eam December 9,. points In each part below, use the method of your choice, but show the steps in your computations. a Find f if: f = arctane csc 5 + log 5 points Using the Chain

More information