9 Mixed Exercise. vector equation is. 4 a

Size: px
Start display at page:

Download "9 Mixed Exercise. vector equation is. 4 a"

Transcription

1 9 Mixed Exercise a AB r i j k j k c OA AB 7 i j 7 k A7,, and B,,8 8 AB 6 A vector equation is 7 r x 7 y z (i j k) j k a x y z a a 7, Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free.

2 Use the equation r 7 When, r, so the point 7,, lies on l 9 so these two vectors are parallel So an alternative form of the equation is r 6 6 a r Set 7 a AB, AC r x y z x () y () z () () () : z y 7 yz Into (): yz 7 y z y z x 7 ( x ) y z y z x y z Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free.

3 8 Three points on the plane are A6,,, B8,, and C,, AB, AC 6 r 9 a ML 7 7 MN 6 ML. MN 7 9 ML MN a 9 6 a,, c p 6 q 6 9 a 6 Equation of l: 9 r t Since C lies on l, 9 p t q 9 t t 6 t So p t 6 and q t Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free.

4 c cos OC. AB OC AB OC. AB OC AB 6 66 ( ) cos ( d.p.) d If OD and AB are perpendicular, d. ( a) = 9 t Since d lies on AB, use d t t 9 t t t (9 t) ( t) ( t) 7 9t 8 6t t t t d i j k a AB r Set Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free.

5 c Let a, a 8 a cos 8 o. (.d.p.) Let G e a general point on l d CG When C is closest to l, CG is perpendicular to l. CG 6 6 CG Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free.

6 a Line l: r λ 9 Line l: r μ Using the direction vectors: Since the scalar product is zero, the directions are perpendicular. λ 9 μ At an intersection point: λ μ λ μ 9 ( ) Adding: Intersection point: Position vector of A is a = i k. c Position vector of B: jk For l, to give zero as the x component, =. r So B lies on l. For l, to give as the z component, = 9. 9 r 9 So B does not lie on l. So Only one of the sumarines passes through B. Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free. 6

7 d AB ( ) ( ) [ ( )] ( ) ( ) Since unit represents m, the distance AB is m. km. Let A and B e general points on l and l respectively. 6 t AB t s t AB is perpendicular to l 6 t t s t t s AB is perpendicular to l 6 t t s t 6t s Solving these simultaneous equations: s, t AB AB 8. ( s. f.) Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free. 7

8 Let A and B e general points on l and l respectively. 6ts AB t s s AB is perpendicular to l 6 ts t s s ts AB is perpendicular to l 6 ts t s s t s Solving these simultaneous equations: 9 s, t 7 7 AB AB ( s. f.) a r and When, When, r r a So the position vectors, and all lie on the plane Suppose the plane has equation ax y cz Sustituting each of the coordinates into this equation gives: Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free. 8

9 a c a c a c Solving these equations simultaneously gives: 9 a,, c Therefore the equation of the plane is 9 x y z or x 9y z So the required equation is r. 9 r and When, When, r r a So the position vectors, and all lie on the plane Suppose the plane has equation ax y cz Sustituting each of the coordinates into this equation gives: a c a c a c Solving these equations simultaneously gives: a,, c Therefore the equation of the plane is x y z Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free. 9

10 or x y z So the required equation is r. c r and When, When, r r 7 a So the position vectors, and 8 all lie on the plane 6 Suppose the plane has equation ax y cz Sustituting each of the coordinates into this equation gives: a c a c 7a 8 6c Solving these equations simultaneously gives: 8 a,, c Therefore the equation of the plane is 8 x y z or 8x y z 8 So the required equation is r. Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free.

11 6 The line is in the direction i j k. This lies in the plane. (,, ) is a point on the line. This also lies in the plane, as does the point (,, ). First otain the equation of the is a direction in the plane. plane in the form, rn an, then convert to Cartesian form. a Let n e perpendicular to the plane c a a So. and. c c Therefore a c and a Choosing a gives and c 8 Therefore a normal vector is given y 8 The equation of the plane is r (i j8 k) ( i j k) (i j8 k ) i.e: x+ y - 8z This is a Cartesian equation of the plane. 7 a AB and AC a Let n e perpendicular to the plane c Then n is perpendicular to oth and a a So. and. c c Therefore a c and a c Choosing a gives c and c Solving simultaneously gives and c Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free.

12 Therefore a normal vector is given y, or Therefore a unit vector normal to the plane is ( i j k ) (i j k ) The equation of the plane may e written as r (i j k) ( i j k) (i j k) ie.. x y z c The perpendicular distance from the origin to the plane is. 8 a The plane with vector equation r i sj t( i k ) is perpendicular to i k, as ( i k) j and ( i k) ( i k ) The plane also has equation r ( i k) i ( i k ), as i is the position vector of a point on the plane. i.e. r ( i k ) The perpendicular distance from the origin to this plane is The Cartesian form of the equation of the plane is xz. or.77 ( s.f.) 9 a AB OB OA (i jk) ( i j k ) ij AC OC OA (i j 6 k) ( i j k) i j k AB and AC Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free.

13 a Let n e perpendicular to the plane c a a So. and. c c Therefore a and a c Choosing a gives and c Therefore a normal vector is given y Or any multiple of i jk An equation of the plane containing A, B and C is r (i j k) ( i j k) (i j k ) i.e. x y z a (i j k) ( i j k ) 9 (,, ) lies on the plane ( i j k) ( i j k ) the normal to plane is perpendicular to the normal to plane. is perpendicular to. c r i j k ( i j k ) d This line meets the plane when ( ) i ( ) j ( ) k ( i j k ) i.e. i.e. 69 Sustitute into the equation of the line: then i.e. The line meets at the point,, e The distance required is r i j k ( ( )) 9.67 ( s.f.) Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free.

14 a l : r and l : r If l and l intersect, then () () Equation () gives Sustituting into () gives 7, so Check for consistency: 6 and 6, so these equations are consistent. Therefore l and l intersect. 7 Sustitute into line l, so r 6 7 Therefore the position vector of their point of intersection is 6 c The cosine of the acute angle etween the lines is the cosine of the acute angle etween their respective direction vectors.. 8 So cos Therefore and 8 8 cos, as required. Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free.

15 a c 6 8 a a Position vector of P is 8 9 P,9, 9 a 6 AB 6 6 r Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free.

16 c CP The position vector of P is 6 9 P, 9, or P 7.,., a 8 jand k components, 6 Check i component: () 7 6 So the equations are consistent Therefore the lines meet, and they meet at 7 A7,, Let a and a a 6 6 cos 6 o 8. ( d.p.) c Set Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free. 6

17 d The shortest distance of B to the line l is given y d BA sin 7 OA and OB 7 BA OA OB BA 6 So d 6 sin8.. a AP a n an a 8 n 7 sin o to the nearest degree () Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free. 7

18 6 a Let l denote the path of the first aeroplane, and l the second. 8 l : r 8 8 l : r i and k components, Check j component: 8 So the equations are consistent Therefore the paths intersect, and they intersect at ,, The planes pass through the same point, ut not necessarily at the same time. Challenge a ( x + y z) = ( ) ( ) gives x y + 6z = matrix A is singular if det A = (c + ) + ( c + a) + 6( a) = 6a 6a + + c c = c i a = n, = n, c = where n R, n ii a = 6, = and c = 9 Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free. 8

19 Challenge Coordinates A,,, B,, and C,, lie on the circumference of the circle. Let O e the centre of the circle. Then A, B, C and O lie on the same plane. Without loss of generality, suppose the plane has equation ax y cz Then sustituting point A gives: a c () sustituting point B gives: c () sustituting point C gives: c () From equation (), c Sustituting into () gives Sustituting and c in equation () gives a a a So the equation of the plane is x y z Or x y z () The centre of the circle lies on the intersection of any two perpendicular isectors chosen from AB, BC or AC. Each perpendicular isector must also lie on the plane x y z To find the equation of the perpendicular isector of AB: The mid-point of AB is M,, M,, Therefore the equation of the line MO may e written as r AB 8 and AB is perpendicular to the direction of MO, so AB i.e. 8, so 8 () The line r lies on the plane x y z for all values of. Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free. 9

20 Choosing, you have Challenge continued r Solving r and x y z simultaneously gives, or (6) Equation (6) is equivalent to Adding this to equation () gives, so and Therefore r Now to find the equation of the perpendicular isector of BC: The mid-point of BC is M,, M,, Therefore the equation of the line MO may e written as r BC and BC is perpendicular to the direction of MO, so BC i.e., so, or (7) The line r lies on the plane x y z for all values of. Choosing, you have r Solving r and x y z simultaneously gives, or (8) Solving equations (7) and (8) simultaneously gives Therefore r Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free.

21 Challenge continued Now consider the equations of the two perpendicular isectors: r and r These meet at the centre of the circle, O. Equating the j components gives, so Therefore the two isectors must meet at the position vector The centre of the circle is therefore O,, The radius is the distance etween O and any of the points A, B or C C,, Consider the point Then OC Therefore the circle has radius r Pearson Education Ltd 7. Copying permitted for purchasing institution only. This material is not copyright free.

Circles, Mixed Exercise 6

Circles, Mixed Exercise 6 Circles, Mixed Exercise 6 a QR is the diameter of the circle so the centre, C, is the midpoint of QR ( 5) 0 Midpoint = +, + = (, 6) C(, 6) b Radius = of diameter = of QR = of ( x x ) + ( y y ) = of ( 5

More information

b UVW is a right-angled triangle, therefore VW is the diameter of the circle. Centre of circle = Midpoint of VW = (8 2) + ( 2 6) = 100

b UVW is a right-angled triangle, therefore VW is the diameter of the circle. Centre of circle = Midpoint of VW = (8 2) + ( 2 6) = 100 Circles 6F a U(, 8), V(7, 7) and W(, ) UV = ( x x ) ( y y ) = (7 ) (7 8) = 8 VW = ( 7) ( 7) = 64 UW = ( ) ( 8) = 8 Use Pythagoras' theorem to show UV UW = VW 8 8 = 64 = VW Therefore, UVW is a right-angled

More information

Review exercise 2. 1 The equation of the line is: = 5 a The gradient of l1 is 3. y y x x. So the gradient of l2 is. The equation of line l2 is: y =

Review exercise 2. 1 The equation of the line is: = 5 a The gradient of l1 is 3. y y x x. So the gradient of l2 is. The equation of line l2 is: y = Review exercise The equation of the line is: y y x x y y x x y 8 x+ 6 8 + y 8 x+ 6 y x x + y 0 y ( ) ( x 9) y+ ( x 9) y+ x 9 x y 0 a, b, c Using points A and B: y y x x y y x x y x 0 k 0 y x k ky k x a

More information

Worksheet A VECTORS 1 G H I D E F A B C

Worksheet A VECTORS 1 G H I D E F A B C Worksheet A G H I D E F A B C The diagram shows three sets of equally-spaced parallel lines. Given that AC = p that AD = q, express the following vectors in terms of p q. a CA b AG c AB d DF e HE f AF

More information

Moments Mixed exercise 4

Moments Mixed exercise 4 Moments Mixed exercise 4 1 a The plank is in equilibrium. Let the reaction forces at the supports be R and R D. Considering moments about point D: R (6 1.5 1) = (100+ 145) (3 1.5) 3.5R = 245 1.5 3.5R =

More information

Mark scheme. 65 A1 1.1b. Pure Mathematics Year 1 (AS) Unit Test 5: Vectors. Pearson Progression Step and Progress descriptor. Q Scheme Marks AOs

Mark scheme. 65 A1 1.1b. Pure Mathematics Year 1 (AS) Unit Test 5: Vectors. Pearson Progression Step and Progress descriptor. Q Scheme Marks AOs Pure Mathematics Year (AS) Unit Test : Vectors Makes an attempt to use Pythagoras theorem to find a. For example, 4 7 seen. 6 A.b 4th Find the unit vector in the direction of a given vector Displays the

More information

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true? chapter vector geometry solutions V. Exercise A. For the shape shown, find a single vector which is equal to a)!!! " AB + BC AC b)! AD!!! " + DB AB c)! AC + CD AD d)! BC + CD!!! " + DA BA e) CD!!! " "

More information

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 2: Coordinate geometry in the (x, y) plane

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 2: Coordinate geometry in the (x, y) plane Mark scheme Pure Mathematics Year 1 (AS) Unit Test : Coordinate in the (x, y) plane Q Scheme Marks AOs Pearson 1a Use of the gradient formula to begin attempt to find k. k 1 ( ) or 1 (k 4) ( k 1) (i.e.

More information

Review exercise

Review exercise Review eercise y cos sin When : 8 y and 8 gradient of normal is 8 y When : 9 y and 8 Equation of normal is y 8 8 y8 8 8 8y 8 8 8 8y 8 8 8 8y 8 8 8 y e ln( ) e ln e When : y e ln and e Equation of tangent

More information

Proof by induction ME 8

Proof by induction ME 8 Proof by induction ME 8 n Let f ( n) 9, where n. f () 9 8, which is divisible by 8. f ( n) is divisible by 8 when n =. Assume that for n =, f ( ) 9 is divisible by 8 for. f ( ) 9 9.9 9(9 ) f ( ) f ( )

More information

Regent College. Maths Department. Core Mathematics 4. Vectors

Regent College. Maths Department. Core Mathematics 4. Vectors Regent College Maths Department Core Mathematics 4 Vectors Page 1 Vectors By the end of this unit you should be able to find: a unit vector in the direction of a. the distance between two points (x 1,

More information

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1 1 w z k k States or implies that 4 i TBC Uses the definition of argument to write 4 k π tan 1 k 4 Makes an attempt to solve for k, for example 4 + k = k is seen. M1.a Finds k = 6 (4 marks) Pearson Education

More information

Vectors 1C. 6 k) = =0 = =17

Vectors 1C. 6 k) = =0 = =17 Vectors C For each problem, calculate the vector product in the bracet first and then perform the scalar product on the answer. a b c= 3 0 4 =4i j 3 a.(b c=(5i+j.(4i j 3 =0 +3= b c a = 3 0 4 5 = 8i+3j+6

More information

the coordinates of C (3) Find the size of the angle ACB. Give your answer in degrees to 2 decimal places. (4)

the coordinates of C (3) Find the size of the angle ACB. Give your answer in degrees to 2 decimal places. (4) . The line l has equation, 2 4 3 2 + = λ r where λ is a scalar parameter. The line l 2 has equation, 2 0 5 3 9 0 + = µ r where μ is a scalar parameter. Given that l and l 2 meet at the point C, find the

More information

Created by T. Madas VECTOR PRACTICE Part B Created by T. Madas

Created by T. Madas VECTOR PRACTICE Part B Created by T. Madas VECTOR PRACTICE Part B THE CROSS PRODUCT Question 1 Find in each of the following cases a) a = 2i + 5j + k and b = 3i j b) a = i + 2j + k and b = 3i j k c) a = 3i j 2k and b = i + 3j + k d) a = 7i + j

More information

The gradient of the radius from the centre of the circle ( 1, 6) to (2, 3) is: ( 6)

The gradient of the radius from the centre of the circle ( 1, 6) to (2, 3) is: ( 6) Circles 6E a (x + ) + (y + 6) = r, (, ) Substitute x = and y = into the equation (x + ) + (y + 6) = r + + + 6 = r ( ) ( ) 9 + 8 = r r = 90 = 0 b The line has equation x + y = 0 y = x + y = x + The gradient

More information

Unit Circle: The unit circle has radius 1 unit and is centred at the origin on the Cartesian plane. POA

Unit Circle: The unit circle has radius 1 unit and is centred at the origin on the Cartesian plane. POA The Unit Circle Unit Circle: The unit circle has radius 1 unit and is centred at the origin on the Cartesian plane THE EQUATION OF THE UNIT CIRCLE Consider any point P on the unit circle with coordinates

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question Use the binomial theorem to expand, x

More information

Part (1) Second : Trigonometry. Tan

Part (1) Second : Trigonometry. Tan Part (1) Second : Trigonometry (1) Complete the following table : The angle Ratio 42 12 \ Sin 0.3214 Cas 0.5321 Tan 2.0625 (2) Complete the following : 1) 46 36 \ 24 \\ =. In degrees. 2) 44.125 = in degrees,

More information

Q Scheme Marks AOs Pearson. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a

Q Scheme Marks AOs Pearson. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a Further Maths Core Pure (AS/Year 1) Unit Test : Matrices Q Scheme Marks AOs Pearson Finds det M 3 p p 4 p 4 p 6 1 Completes the square to show p 4 p 6 p M1.a Concludes that (p + ) + > 0 for all values

More information

a b = a a a and that has been used here. ( )

a b = a a a and that has been used here. ( ) Review Eercise ( i j+ k) ( i+ j k) i j k = = i j+ k (( ) ( ) ) (( ) ( ) ) (( ) ( ) ) = i j+ k = ( ) i ( ( )) j+ ( ) k = j k Hence ( ) ( i j+ k) ( i+ j k) = ( ) + ( ) = 8 = Formulae for finding the vector

More information

Vectors. 1. Consider the points A (1, 5, 4), B (3, 1, 2) and D (3, k, 2), with (AD) perpendicular to (AB).

Vectors. 1. Consider the points A (1, 5, 4), B (3, 1, 2) and D (3, k, 2), with (AD) perpendicular to (AB). Vectors. Consider the points A ( ) B ( ) and D ( k ) with (AD) perpendicular to (AB). (a) Find (i) AB ; (ii) AD giving your answer in terms of k. (b) Show that k = The point C is such that BC = AD. (c)

More information

Solutionbank C1 Edexcel Modular Mathematics for AS and A-Level

Solutionbank C1 Edexcel Modular Mathematics for AS and A-Level Heinemann Solutionbank: Core Maths C Page of Solutionbank C Exercise A, Question Find the values of x for which f ( x ) = x x is a decreasing function. f ( x ) = x x f ( x ) = x x Find f ( x ) and put

More information

i j k i j k i j k

i j k i j k i j k Vectors D a The equation of the line is (r a) b0 r ba b. This gives: r (i+j k)(i+j+k) (i+j k) r (i+j k) i+0j k b The equation of the line is (r a) b0 r ba b. This gives: r ( i+ j+ k) (i k) ( i+ j+ k) 0

More information

Q Scheme Marks AOs Pearson ( ) 2. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a

Q Scheme Marks AOs Pearson ( ) 2. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a Further Maths Core Pure (AS/Year 1) Unit Test : Matrices Q Scheme Marks AOs Pearson Finds det M = 3 p p+ 4 = p + 4 p+ 6 1 ( )( ) ( )( ) ( ) Completes the square to show p + 4p+ 6= p+ + M1.a Concludes that

More information

Vectors. Section 3: Using the vector product

Vectors. Section 3: Using the vector product Vectors Section 3: Using the vector product Notes and Examples These notes contain subsections on Using the vector product in finding the equation of a plane The intersection of two planes The distance

More information

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so:

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so: Taylor Series 6B a We can evaluate the it directly since there are no singularities: 7+ 7+ 7 5 5 5 b Again, there are no singularities, so: + + c Here we should divide through by in the numerator and denominator

More information

SOLVED PROBLEMS. 1. The angle between two lines whose direction cosines are given by the equation l + m + n = 0, l 2 + m 2 + n 2 = 0 is

SOLVED PROBLEMS. 1. The angle between two lines whose direction cosines are given by the equation l + m + n = 0, l 2 + m 2 + n 2 = 0 is SOLVED PROBLEMS OBJECTIVE 1. The angle between two lines whose direction cosines are given by the equation l + m + n = 0, l 2 + m 2 + n 2 = 0 is (A) π/3 (B) 2π/3 (C) π/4 (D) None of these hb : Eliminating

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question The curve C, with equation y = x ln x, x > 0, has a stationary point P. Find, in terms of e, the coordinates of P. (7) y = x ln x, x > 0 Differentiate as a product: = x + x

More information

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios 9E. b Using the line of symmetry through A. 1 a. cos 48 = 14.6 So y = 29.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios 9E. b Using the line of symmetry through A. 1 a. cos 48 = 14.6 So y = 29. Trigonometric ratios 9E a b Using the line of symmetry through A y cos.6 So y 9. cos 9. s.f. Using sin x sin 6..7.sin 6 sin x.7.sin 6 x sin.7 7.6 x 7.7 s.f. So y 0 6+ 7.7 6. y 6. s.f. b a Using sin sin

More information

Constant acceleration, Mixed Exercise 9

Constant acceleration, Mixed Exercise 9 Constant acceleration, Mixed Exercise 9 a 45 000 45 km h = m s 3600 =.5 m s 3 min = 80 s b s= ( a+ bh ) = (60 + 80).5 = 5 a The distance from A to B is 5 m. b s= ( a+ bh ) 5 570 = (3 + 3 + T ) 5 ( T +

More information

2 and v! = 3 i! + 5 j! are given.

2 and v! = 3 i! + 5 j! are given. 1. ABCD is a rectangle and O is the midpoint of [AB]. D C 2. The vectors i!, j! are unit vectors along the x-axis and y-axis respectively. The vectors u! = i! + j! 2 and v! = 3 i! + 5 j! are given. (a)

More information

2 a Substituting (1,4,7) and the coefficients. c The normal vector of the plane

2 a Substituting (1,4,7) and the coefficients. c The normal vector of the plane Exam-style practice: Paper 1 1 a First we find y and d x. y t t ( = + y = t t + 1 1 y t t t t = + + 1. x= t+ t = 1+ t. We now find the limits in terms of t. x= t = x=.75= t+ t t t +.75= 1± 1+ 15 t = We

More information

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = =

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = = Review Eercise a Use m m a a, so a a a Use c c 6 5 ( a ) 5 a First find Use a 5 m n m n m a m ( a ) or ( a) 5 5 65 m n m a n m a m a a n m or m n (Use a a a ) cancelling y 6 ecause n n ( 5) ( 5)( 5) (

More information

1. The unit vector perpendicular to both the lines. Ans:, (2)

1. The unit vector perpendicular to both the lines. Ans:, (2) 1. The unit vector perpendicular to both the lines x 1 y 2 z 1 x 2 y 2 z 3 and 3 1 2 1 2 3 i 7j 7k i 7j 5k 99 5 3 1) 2) i 7j 5k 7i 7j k 3) 4) 5 3 99 i 7j 5k Ans:, (2) 5 3 is Solution: Consider i j k a

More information

Extra Problems for Math 2050 Linear Algebra I

Extra Problems for Math 2050 Linear Algebra I Extra Problems for Math 5 Linear Algebra I Find the vector AB and illustrate with a picture if A = (,) and B = (,4) Find B, given A = (,4) and [ AB = A = (,4) and [ AB = 8 If possible, express x = 7 as

More information

( y) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios, Mixed Exercise 9. 2 b. Using the sine rule. a Using area of ABC = sin x sin80. So 10 = 24sinθ.

( y) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios, Mixed Exercise 9. 2 b. Using the sine rule. a Using area of ABC = sin x sin80. So 10 = 24sinθ. Trigonometric ratios, Mixed Exercise 9 b a Using area of ABC acsin B 0cm 6 8 sinθ cm So 0 4sinθ So sinθ 0 4 θ 4.6 or 3 s.f. (.) As θ is obtuse, ABC 3 s.f b Using the cosine rule b a + c ac cos B AC 8 +

More information

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in Chapter - 10 (Circle) Key Concept * Circle - circle is locus of such points which are at equidistant from a fixed point in a plane. * Concentric circle - Circle having same centre called concentric circle.

More information

Edexcel New GCE A Level Maths workbook Circle.

Edexcel New GCE A Level Maths workbook Circle. Edexcel New GCE A Level Maths workbook Circle. Edited by: K V Kumaran kumarmaths.weebly.com 1 Finding the Midpoint of a Line To work out the midpoint of line we need to find the halfway point Midpoint

More information

Pure Mathematics Year 1 (AS) Unit Test 1: Algebra and Functions

Pure Mathematics Year 1 (AS) Unit Test 1: Algebra and Functions Pure Mathematics Year (AS) Unit Test : Algebra and Functions Simplify 6 4, giving your answer in the form p 8 q, where p and q are positive rational numbers. f( x) x ( k 8) x (8k ) a Find the discriminant

More information

( ) ( ) 2 1 ( ) Conic Sections 1 2E. 1 a. 1 dy. At (16, 8), d y 2 1 Tangent is: dx. Tangent at,8. is 1

( ) ( ) 2 1 ( ) Conic Sections 1 2E. 1 a. 1 dy. At (16, 8), d y 2 1 Tangent is: dx. Tangent at,8. is 1 Conic Sections E a y y so At (6, ), d y y ( 6) y 6 y+ 6 y 6+ y+ 6 d y y At, 6 When, y, angent at, is y 6 y 6+ 6+ y 6+ y 6 y y so,, d y At y ( ) y ( ) y y+ y + y+ e 6+ y 6 y 7 7 y 7 so d d y 7 At ( 7, 7),

More information

10.2,3,4. Vectors in 3D, Dot products and Cross Products

10.2,3,4. Vectors in 3D, Dot products and Cross Products Name: Section: 10.2,3,4. Vectors in 3D, Dot products and Cross Products 1. Sketch the plane parallel to the xy-plane through (2, 4, 2) 2. For the given vectors u and v, evaluate the following expressions.

More information

Additional Mathematics Lines and circles

Additional Mathematics Lines and circles Additional Mathematics Lines and circles Topic assessment 1 The points A and B have coordinates ( ) and (4 respectively. Calculate (i) The gradient of the line AB [1] The length of the line AB [] (iii)

More information

VECTORS IN A STRAIGHT LINE

VECTORS IN A STRAIGHT LINE A. The Equation of a Straight Line VECTORS P3 VECTORS IN A STRAIGHT LINE A particular line is uniquely located in space if : I. It has a known direction, d, and passed through a known fixed point, or II.

More information

MATRICES EXAM QUESTIONS

MATRICES EXAM QUESTIONS MATRICES EXAM QUESTIONS (Part One) Question 1 (**) The matrices A, B and C are given below in terms of the scalar constants a, b, c and d, by 2 3 A =, 1 a b 1 B =, 2 4 1 c C =. d 4 Given that A + B = C,

More information

9.5. Lines and Planes. Introduction. Prerequisites. Learning Outcomes

9.5. Lines and Planes. Introduction. Prerequisites. Learning Outcomes Lines and Planes 9.5 Introduction Vectors are very convenient tools for analysing lines and planes in three dimensions. In this Section you will learn about direction ratios and direction cosines and then

More information

11.1 Three-Dimensional Coordinate System

11.1 Three-Dimensional Coordinate System 11.1 Three-Dimensional Coordinate System In three dimensions, a point has three coordinates: (x,y,z). The normal orientation of the x, y, and z-axes is shown below. The three axes divide the region into

More information

( ) Trigonometric identities and equations, Mixed exercise 10

( ) Trigonometric identities and equations, Mixed exercise 10 Trigonometric identities and equations, Mixed exercise 0 a is in the third quadrant, so cos is ve. The angle made with the horizontal is. So cos cos a cos 0 0 b sin sin ( 80 + 4) sin 4 b is in the fourth

More information

CO-ORDINATE GEOMETRY. 1. Find the points on the y axis whose distances from the points (6, 7) and (4,-3) are in the. ratio 1:2.

CO-ORDINATE GEOMETRY. 1. Find the points on the y axis whose distances from the points (6, 7) and (4,-3) are in the. ratio 1:2. UNIT- CO-ORDINATE GEOMETRY Mathematics is the tool specially suited for dealing with abstract concepts of any ind and there is no limit to its power in this field.. Find the points on the y axis whose

More information

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level Heinemann Solutionbank: Core Maths C file://c:\users\buba\kaz\ouba\c_mex.html Page of /0/0 Solutionbank C Exercise, Question The sector AOB is removed from a circle of radius 5 cm. The AOB is. radians

More information

Core Mathematics 2 Coordinate Geometry

Core Mathematics 2 Coordinate Geometry Core Mathematics 2 Coordinate Geometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Mathematics 2 Coordinate Geometry 1 Coordinate geometry in the (x, y) plane Coordinate geometry of the circle

More information

Review Exercise 2. , æ. ç ø. ç ø. ç ø. ç ø. = -0.27, 0 x 2p. 1 Crosses y-axis when x = 0 at sin 3p 4 = 1 2. ö ø. æ Crosses x-axis when sin x + 3p è

Review Exercise 2. , æ. ç ø. ç ø. ç ø. ç ø. = -0.27, 0 x 2p. 1 Crosses y-axis when x = 0 at sin 3p 4 = 1 2. ö ø. æ Crosses x-axis when sin x + 3p è Review Exercise 1 Crosses y-axis when x 0 at sin p 4 1 Crosses x-axis when sin x + p 4 ö 0 x + p 4 -p, 0, p, p x - 7p 4, - p 4, p 4, 5p 4 So coordinates are 0, 1 ö, - 7p 4,0 ö, - p 4,0 ö, p 4,0 ö, 5p 4,0

More information

Core Mathematics C4 Advanced

Core Mathematics C4 Advanced Centre No. Candidate No. Paper Reference(s) 6666/01 Edexcel GCE Core Mathematics C4 Advanced Tuesday 16 June 2015 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

More information

Core Mathematics C4 Advanced

Core Mathematics C4 Advanced Centre No. Candidate No. Paper Reference(s) 6666/01 Edexcel GCE Core Mathematics C4 Advanced Tuesday 16 June 015 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

More information

2013/2014 SEMESTER 1 MID-TERM TEST. 1 October :30pm to 9:30pm PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY:

2013/2014 SEMESTER 1 MID-TERM TEST. 1 October :30pm to 9:30pm PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY: 2013/2014 SEMESTER 1 MID-TERM TEST MA1505 MATHEMATICS I 1 October 2013 8:30pm to 9:30pm PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY: 1. This test paper consists of TEN (10) multiple choice questions

More information

Unit 2 VCE Specialist Maths. AT 2.1 Vectors Test Date: Friday 29 June 2018 Start Time: Finish Time: Total Time Allowed for Task: 75 min

Unit 2 VCE Specialist Maths. AT 2.1 Vectors Test Date: Friday 29 June 2018 Start Time: Finish Time: Total Time Allowed for Task: 75 min Unit VCE Specialist Maths AT. Vectors Test Date: Friday 9 June 08 Start Time:.0 Finish Time:.35 Total Time Allowed for Task: 75 min Student Name: Teacher Name: Ms R Vaughan This assessment task will be

More information

Q Scheme Marks AOs Pearson Progression Step and Progress descriptor. and sin or x 6 16x 6 or x o.e

Q Scheme Marks AOs Pearson Progression Step and Progress descriptor. and sin or x 6 16x 6 or x o.e 1a A 45 seen or implied in later working. B1 1.1b 5th Makes an attempt to use the sine rule, for example, writing sin10 sin 45 8x3 4x1 States or implies that sin10 3 and sin 45 A1 1. Solve problems involving

More information

MATHEMATICS AS/M/P1 AS PAPER 1

MATHEMATICS AS/M/P1 AS PAPER 1 Surname Other Names Candidate Signature Centre Number Candidate Number Examiner Comments Total Marks MATHEMATICS AS PAPER 1 Bronze Set B (Edexcel Version) CM Time allowed: 2 hours Instructions to candidates:

More information

5. Introduction to Euclid s Geometry

5. Introduction to Euclid s Geometry 5. Introduction to Euclid s Geometry Multiple Choice Questions CBSE TREND SETTER PAPER _ 0 EXERCISE 5.. If the point P lies in between M and N and C is mid-point of MP, then : (A) MC + PN = MN (B) MP +

More information

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1 OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1 (37) If a bug walks on the sphere x 2 + y 2 + z 2 + 2x 2y 4z 3 = 0 how close and how far can it get from the origin? Solution: Complete

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level *5238158802* MATHEMATICS 9709/31 Paper 3 Pure Mathematics 3 (P3) October/November 2013 Additional Materials:

More information

Paper Reference. Core Mathematics C4 Advanced. Tuesday 18 June 2013 Morning Time: 1 hour 30 minutes

Paper Reference. Core Mathematics C4 Advanced. Tuesday 18 June 2013 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6666/01 Edexcel GCE Core Mathematics C4 Advanced Tuesday 18 June 2013 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

More information

43603H. (MAR H01) WMP/Mar13/43603H. General Certificate of Secondary Education Higher Tier March Unit H

43603H. (MAR H01) WMP/Mar13/43603H. General Certificate of Secondary Education Higher Tier March Unit H Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Higher Tier March 2013 Pages 3 4 5 Mark Mathematics

More information

Q Scheme Marks AOs. Attempt to multiply out the denominator (for example, 3 terms correct but must be rational or 64 3 seen or implied).

Q Scheme Marks AOs. Attempt to multiply out the denominator (for example, 3 terms correct but must be rational or 64 3 seen or implied). 1 Attempt to multiply the numerator and denominator by k(8 3). For example, 6 3 4 8 3 8 3 8 3 Attempt to multiply out the numerator (at least 3 terms correct). M1 1.1b 3rd M1 1.1a Rationalise the denominator

More information

Mathematics (JUN13MFP401) General Certificate of Education Advanced Level Examination June Unit Further Pure TOTAL

Mathematics (JUN13MFP401) General Certificate of Education Advanced Level Examination June Unit Further Pure TOTAL Centre Number Candidate Number For Examiner s Use Surname Other Names Candidate Signature Examiner s Initials Mathematics Unit Further Pure 4 Tuesday 18 June 2013 General Certificate of Education Advanced

More information

Study guide for Exam 1. by William H. Meeks III October 26, 2012

Study guide for Exam 1. by William H. Meeks III October 26, 2012 Study guide for Exam 1. by William H. Meeks III October 2, 2012 1 Basics. First we cover the basic definitions and then we go over related problems. Note that the material for the actual midterm may include

More information

PAST QUESTIONS ON VECTORS P1

PAST QUESTIONS ON VECTORS P1 PAST QUESTIONS ON VECTORS P1 1. Diagram shows a solid cylinder standing on a horizontal circular base, centre O and radius 4 units. The line BA is a diameter and the radius OC is at 90 o to OA. Points

More information

e x for x 0. Find the coordinates of the point of inflexion and justify that it is a point of inflexion. (Total 7 marks)

e x for x 0. Find the coordinates of the point of inflexion and justify that it is a point of inflexion. (Total 7 marks) Chapter 0 Application of differential calculus 014 GDC required 1. Consider the curve with equation f () = e for 0. Find the coordinates of the point of infleion and justify that it is a point of infleion.

More information

CBSE X Mathematics 2012 Solution (SET 1) Section D

CBSE X Mathematics 2012 Solution (SET 1) Section D Section D Q 9. A shopkeeper buys some books for Rs 80. If he had bought 4 more books for the same amount, each book would have cost Rs 1 less. Find the number of books he bought. Let the number of books

More information

St Andrew s Academy Mathematics Department Higher Mathematics

St Andrew s Academy Mathematics Department Higher Mathematics St Andrew s Academy Mathematics Department Higher Mathematics VECTORS hsn.uk.net Higher Mathematics Vectors Contents Vectors 1 1 Vectors and Scalars EF 1 Components EF 1 3 Magnitude EF 3 4 Equal Vectors

More information

Add Math (4047/02) Year t years $P

Add Math (4047/02) Year t years $P Add Math (4047/0) Requirement : Answer all questions Total marks : 100 Duration : hour 30 minutes 1. The price, $P, of a company share on 1 st January has been increasing each year from 1995 to 015. The

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 VECTORS II. Triple products 2. Differentiation and integration of vectors 3. Equation of a line 4. Equation of a plane.

More information

Q1. If (1, 2) lies on the circle. x 2 + y 2 + 2gx + 2fy + c = 0. which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c =

Q1. If (1, 2) lies on the circle. x 2 + y 2 + 2gx + 2fy + c = 0. which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c = Q1. If (1, 2) lies on the circle x 2 + y 2 + 2gx + 2fy + c = 0 which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c = a) 11 b) -13 c) 24 d) 100 Solution: Any circle concentric with x 2 +

More information

Solutionbank M1 Edexcel AS and A Level Modular Mathematics

Solutionbank M1 Edexcel AS and A Level Modular Mathematics file://c:\users\buba\kaz\ouba\m_6_a_.html Page of Exercise A, Question A bird flies 5 km due north and then 7 km due east. How far is the bird from its original position, and in what direction? d = \ 5

More information

The normal distribution Mixed exercise 3

The normal distribution Mixed exercise 3 The normal distribution Mixed exercise 3 ~ N(78, 4 ) a Using the normal CD function, P( 85).459....4 (4 d.p.) b Using the normal CD function, P( 8).6946... The probability that three men, selected at random,

More information

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations.

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. 1. Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. x + y = 5, z = 4 Choose the correct description. A. The circle with center (0,0, 4)

More information

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis.

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis. Learning Goals 1. To understand what standard position represents. 2. To understand what a principal and related acute angle are. 3. To understand that positive angles are measured by a counter-clockwise

More information

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS NAME: PERIOD: DATE: MATH ANALYSIS 2 MR. MELLINA CHAPTER 12: VECTORS & DETERMINANTS Sections: v 12.1 Geometric Representation of Vectors v 12.2 Algebraic Representation of Vectors v 12.3 Vector and Parametric

More information

+ 2gx + 2fy + c = 0 if S

+ 2gx + 2fy + c = 0 if S CIRCLE DEFINITIONS A circle is the locus of a point which moves in such a way that its distance from a fixed point, called the centre, is always a constant. The distance r from the centre is called the

More information

Important Instructions for the School Principal. (Not to be printed with the question paper)

Important Instructions for the School Principal. (Not to be printed with the question paper) Important Instructions for the School Principal (Not to be printed with the question paper) 1) This question paper is strictly meant for use in school based SA-II, March-2012 only. This question paper

More information

ADDITIONAL MATHEMATICS

ADDITIONAL MATHEMATICS 005-CE A MATH HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 005 ADDITIONAL MATHEMATICS :00 pm 5:0 pm (½ hours) This paper must be answered in English 1. Answer ALL questions in Section A and any FOUR

More information

TABLE OF CONTENTS 2 CHAPTER 1

TABLE OF CONTENTS 2 CHAPTER 1 TABLE OF CONTENTS CHAPTER 1 Quadratics CHAPTER Functions 3 CHAPTER 3 Coordinate Geometry 3 CHAPTER 4 Circular Measure 4 CHAPTER 5 Trigonometry 4 CHAPTER 6 Vectors 5 CHAPTER 7 Series 6 CHAPTER 8 Differentiation

More information

Exam-style practice: Paper 3, Section A: Statistics

Exam-style practice: Paper 3, Section A: Statistics Exam-style practice: Paper 3, Section A: Statistics a Use the cumulative binomial distribution tables, with n = 4 and p =.5. Then PX ( ) P( X ).5867 =.433 (4 s.f.). b In order for the normal approximation

More information

Review Exercise 2. 1 a Chemical A 5x+ Chemical B 2x+ 2y12 [ x+ Chemical C [ 4 12]

Review Exercise 2. 1 a Chemical A 5x+ Chemical B 2x+ 2y12 [ x+ Chemical C [ 4 12] Review Exercise a Chemical A 5x+ y 0 Chemical B x+ y [ x+ y 6] b Chemical C 6 [ ] x+ y x+ y x, y 0 c T = x+ y d ( x, y) = (, ) T = Pearson Education Ltd 08. Copying permitted for purchasing institution

More information

Class IX Chapter 1 Number Sustems Maths

Class IX Chapter 1 Number Sustems Maths Class IX Chapter 1 Number Sustems Maths Exercise 1.1 Question Is zero a rational number? Can you write it in the form 0? and q, where p and q are integers Yes. Zero is a rational number as it can be represented

More information

Trigonometry and modelling 7E

Trigonometry and modelling 7E Trigonometry and modelling 7E sinq +cosq º sinq cosa + cosq sina Comparing sin : cos Comparing cos : sin Divide the equations: sin tan cos Square and add the equations: cos sin (cos sin ) since cos sin

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. The diagram above shows the sector OA of a circle with centre O, radius 9 cm and angle 0.7 radians. Find the length of the arc A. Find the area of the sector OA. The line AC shown in the diagram above

More information

Mixed exercise 3. x y. cosh t sinh t 1 Substituting the values for cosh t and sinht in the equation for the hyperbola H. = θ =

Mixed exercise 3. x y. cosh t sinh t 1 Substituting the values for cosh t and sinht in the equation for the hyperbola H. = θ = Mixed exercise x x a Parametric equations: cosθ and sinθ 9 cos θ + sin θ Substituting the values for cos θ and sinθ in the equation for ellipse E gives the Cartesian equation: + 9 b Comparing with the

More information

Core Mathematics C12

Core Mathematics C12 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Monday 13 January 2014 Morning Time: 2 hours

More information

Quality of tests Mixed exercise 8

Quality of tests Mixed exercise 8 Quality of tests Mixed exercise 8 1 a H :p=.35 H 1 :p>.35 Assume H, so that X B(15,.35) Significance level 5%, so require c such that P( Xc)

More information

( ) Applications of forces 7D. 1 Suppose that the rod has length 2a. Taking moments about A: acos30 3

( ) Applications of forces 7D. 1 Suppose that the rod has length 2a. Taking moments about A: acos30 3 Applications of forces 7D Suppose that the rod has length a. Taking moments about A: at 80 acos0 T 80 T 0. 6 N R( ), F T sin0 0 7. N R, T cos0 + R 80 R 80 0 50N In order for the rod to remain in equilibrium,

More information

Chapter 8 Vector applications

Chapter 8 Vector applications MC Qld- 5 Vector applications Chapter Vector applications Exercise A Force diagrams and the triangle of forces a F ( F + F ) (4 + ) i ( + 4 ) F (4 + ) + ( + 4 ) 6 + 4 + 7 + 9 + 4 + 4 c d a 00 + 4.5 ( +

More information

Find a vector equation for the line through R parallel to the line (PQ) (Total 6 marks)

Find a vector equation for the line through R parallel to the line (PQ) (Total 6 marks) 1. The points P( 2, 4), Q (3, 1) and R (1, 6) are shown in the diagram below. (a) Find the vector PQ. (b) Find a vector equation for the line through R parallel to the line (PQ). 2. The position vector

More information

Created by T. Madas 2D VECTORS. Created by T. Madas

Created by T. Madas 2D VECTORS. Created by T. Madas 2D VECTORS Question 1 (**) Relative to a fixed origin O, the point A has coordinates ( 2, 3). The point B is such so that AB = 3i 7j, where i and j are mutually perpendicular unit vectors lying on the

More information

Trigonometric Functions 6C

Trigonometric Functions 6C Trigonometric Functions 6C a b c d e sin 3 q æ ö ø 4 tan 6 q 4 æ ö tanq ø cos q æ ö ø 3 cosec 3 q - sin q sin q cos q sin q (using sin q + cos q ) So - sin q sin q æ ö ø 6 4cot 6 q sec q cot q secq cos

More information

3301/1H. General Certificate of Secondary Education November MATHEMATICS (SPECIFICATION A) 3301/1H Higher Tier Paper 1 Non-Calculator

3301/1H. General Certificate of Secondary Education November MATHEMATICS (SPECIFICATION A) 3301/1H Higher Tier Paper 1 Non-Calculator Surname Other Names For Examiner s Use Centre Number Candidate Number Candidate Signature General Certificate of Secondary Education November 2007 MATHEMATICS (SPECIFICATION A) 3301/1H Higher Tier Paper

More information

2012 GCSE Maths Tutor All Rights Reserved

2012 GCSE Maths Tutor All Rights Reserved 2012 GCSE Maths Tutor All Rights Reserved www.gcsemathstutor.com This book is under copyright to GCSE Maths Tutor. However, it may be distributed freely provided it is not sold for profit. Contents angles

More information

Sixth Term Examination Papers 9470 MATHEMATICS 2

Sixth Term Examination Papers 9470 MATHEMATICS 2 91**4023334091* Sixth Term Examination Papers 9470 MATHEMATICS 2 Afternoon MONDAY 20 JUNE 2011 Time: 3 hours Additional Materials: Answer Booklet Formulae Booklet INSTRUCTIONS TO CANDIDATES Please read

More information

You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used. Write your name here Surname Other names Pearson Edexcel International GCSE Mathematics A Paper 3HR Friday 10 January 2014 Morning Time: 2 hours Centre Number Candidate Number Higher Tier Paper Reference

More information

P1 Vector Past Paper Questions

P1 Vector Past Paper Questions P1 Vector Past Paper Questions Doublestruck & CIE - Licensed to Brillantmont International School 1 1. Relative to an origin O, the position vectors of the points A and B are given by OA = 2i + 3j k and

More information