2 a Substituting (1,4,7) and the coefficients. c The normal vector of the plane

Size: px
Start display at page:

Download "2 a Substituting (1,4,7) and the coefficients. c The normal vector of the plane"

Transcription

1 Exam-style practice: Paper 1 1 a First we find y and d x. y t t ( = + y = t t y t t t t = x= t+ t = 1+ t. We now find the limits in terms of t. x= t = x=.75= t+ t t t +.75= 1± t = We neglect the negative solution, so the upper limit is t = ( ( V = π t t t + t t 5 ( = π t t t + t + t t t = π t + t + t + t unit. = Since we have that a unit is 1 cm, this means: ( V = cm 11cm b A criticism of the model is that it does not take into account the thickness of the clay. 1.5 a Substituting (1,,7 and the coefficients of x+ yz 1= into dist = gives dist = ax + by + cz + d = 1 = 1 1 Thus a=. 1 a + b + c ( ( ( ( + + b Since v = 5i+ jk is perpendicular to ( ( a r= λ i j+ k + µ i+ j k, we know that r.v =. rv. ( λ ( i j k µ ( ai j k.( 5i j k (( λ µ a i ( λ µ j ( λ µ k.( 5i j k = = = 5λ + 5µ a λ + µ λ + µ = 5µ a+ 5µ = a= c The normal vector of the plane 1 is v1 = i+ jk, the plane has a perpendicular vectorv = 5i+ jk. θ v. v 1 = arccos v 1 v = arccos 1 = arccos = arccos 7 =.9 ( 5 + ( 1 + ( ( ( Pearson Education Ltd 18. Copying permitted for purchasing institution only. This material is not copyright free. 1

2 a The base case n= 1, = 1 1 is true. 1 1 Assume the result is true for n= k. b i 1 1 k k For n= k, 1 = 1 k 1 1 For n = k + 1, k k k k 1 = 1 1 k = 1 k k+ k + k+ 1 ( k+ 1 ( k+ 1 = 1 ( k+ 1 1 Thus the result is true for n= k+ 1. The result is true for n= 1 and if it is true for n= k, then it is true for n= k+ 1. By mathematical induction the result is true for all positive integers n. 1 M only exists if the discriminant is non-zero. So for the discriminant to be zero, we find discrim = 1 1 (( ( (( ( 1 ( ( + k ( + = k + 16 = k+ 1= k = 7. b ii Using A a b c = d e f g h i e f c b b c h i i h e f 1 f d a c c a = A i g g i f d d e b a a b g h h g d e we may compute k k k = 1 k k 1 1 k ( k = 1 8 1k k + 1 ( k + 1 a Using z= cosθ + isinθ (since the modulus is 1 we don t need a coefficient we may write n n z = ( cosθ + isinθ = cos( nθ + isin( nθ and n n z = ( cosθ + isinθ = cos( nθ isin( nθ by De Moivre s theorem. We find the difference of these terms and get n n z z = cos( nθ + isin( nθ cos( nθ isin( nθ = isin ( nθ. ( Pearson Education Ltd 18. Copying permitted for purchasing institution only. This material is not copyright free.

3 b We use ( z z = ( isinθ = 16sin θ (from part a with n= 1 in order to obtain 1 8sin θ = ( zz 1 = ( z z + 6 z + z 1 = ( z + z ( z + z + = cos θ cos θ +. ( ( Note that we have used the fact that n n z + z = cos nθ. ( 5 a The litres of liquid in the vat after t minutes is given by V = 5 15t + t = t Let x grams be the amount of sugar in the vat after t minutes. Concentration of sugar after t minutes is x Conc = grams per litre t The rate of the sugar into the vat is Rate = 5= 75 grams per SugIn minute. The rate of the sugar out of the vat is x x RateSugOut = 15 = t 1 + t grams per minute. Hence we have the rate of change of sugar in grams with respect to time in minutes as d x 75 x =. 1+ t 5 b We write down the equation above, in the form d x Px Q. + = x + = t Now use an integrating factor to solve the differential equation. P IF = e = e = e 1+ t ( + t ln 1 = 1+. t Multiplying our original equation through by the integrating factor gives ( 1+ t + x= 75( 1+ t d ( 1 x+ tx = t. Integrating both sides with respect to t gives 1x+ tx = 75 t+ 115 t + c. Using the initial conditions t =, x= we find that + = + + c c=. Thus the equation is 1x+ tx = 75 t+ 115t. So after 1 minutes 1x+ x = x= 665g 1 c The model could be refined to reflect pressure caused by the volume of oil which would effect rate of leaking. Could take into account that sugar does not disperse uniformly throughout the vat on entry. Pearson Education Ltd 18. Copying permitted for purchasing institution only. This material is not copyright free.

4 6 a We convert z+ 1+ 5i = 1 into Cartesian form and then to polar. Since we know that this locus of points is a circle with radius 1, centred at (, 5, we know that the appropriate Cartesian equation is ( x ( y = 169. We convert this equation to polar form via x= rcosθ and y = rsin θ, giving ( r θ ( r θ r r r cos sin + 5 = cosθ + 1 sinθ = ( θ θ r = 1 cos + 5sin when r. b The set of points A= { z: z+ 1+ 5i1 } z: πargz π defines the segment of a disc (filled circle with radius 1, centred at (, 5 between the half lines π θ = π and θ =. 6 c To find the area of the region defined by A, we use the polar form r = 1cosθ + 5sinθ to calculate π π ( 1 A= ( (1cos θ+ 5sin d θ θ π (1cos 1cos sin = θ+ θ θ+ 5sin θ dθ π π 5 = (7(1 + cos θ + 6 sin θ+ (1cos θd θ π 5 (7( 1sin 1 = θ+ θ cos θ+ ( θ sin θ 57π 119 = + ( 69π = π+ 5 units π π Pearson Education Ltd 18. Copying permitted for purchasing institution only. This material is not copyright free.

5 7 a Differentiating the equation =.x+.y+ 1 with respect to t gives the expression d x dy =. +.. We remove y from the system of equations by dy.. =..x+.y+ 1..x+.y ( ( ( =. +. x+. and so we can write d y in terms of x as dy. =. ((. +. x+.. Combining the first expression we found d x for with the expression for d y, we get d x dy =. +. =. +. (. +. x+. =.6 (.1x+.. ( Multiplying through by 1 and rearranging to have all terms on the left-hand side gives us d x x+ = 7 b The auxiliary equation is 1m 6m+ 1=, with solutions 6± 65 m= i = ±. 1 5 Thus we have the complementary function.t x = e Acos.t + Bsin. t. c ( For the particular integral, we try x= C with differentials d x = and d x =. Substituting these expressions into our differential equation gives + 1C + = C =. 1 So the general solution for x is ( cos. sin. xg = e A t+ B t 1.t c By differentiating ( cos. sin. xg = e A t+ B t 1 with respect to t, we obtain G.t (.t =.e B cos.ta sin.t (.t +.e A cos.t+ B sin.t.t =.e ( B cos.t A sin.t +.xg + 1 and since we have d x.x.y 1, = + + we can rewrite G.t =.e ( B cos.t Asin.t +.xg + 1 =.x +.y + 1 G G After cancelling.x G from both sides, we solve for.t.e ( Bcos.t Asin.t = yg +.t.yg =.e ( Bcos.t Asin.t +. 1.t yg = e ( Bcos.t Asin.t t yg = e ( Bcos.t Asin.t 1 Pearson Education Ltd 18. Copying permitted for purchasing institution only. This material is not copyright free. 5

6 7 d Using the initial conditions t =, x= 1, y = 5 in the general solutions for x and y gives ( B 1= e Acos+ sin 1 16 A= 1 and. 5= e ( BcosAsin 1 85 B=. 1 Thus, we have particular solutions.t x= e cos.t+ sin.t t y = e cos.t sin.t e y( = e cos.6 sin The concentration on the right side of the model is predicted to be negative after hours. This is clearly nonsense, so the model is not suitable. Pearson Education Ltd 18. Copying permitted for purchasing institution only. This material is not copyright free. 6

Proof by induction ME 8

Proof by induction ME 8 Proof by induction ME 8 n Let f ( n) 9, where n. f () 9 8, which is divisible by 8. f ( n) is divisible by 8 when n =. Assume that for n =, f ( ) 9 is divisible by 8 for. f ( ) 9 9.9 9(9 ) f ( ) f ( )

More information

Review exercise 2. 1 The equation of the line is: = 5 a The gradient of l1 is 3. y y x x. So the gradient of l2 is. The equation of line l2 is: y =

Review exercise 2. 1 The equation of the line is: = 5 a The gradient of l1 is 3. y y x x. So the gradient of l2 is. The equation of line l2 is: y = Review exercise The equation of the line is: y y x x y y x x y 8 x+ 6 8 + y 8 x+ 6 y x x + y 0 y ( ) ( x 9) y+ ( x 9) y+ x 9 x y 0 a, b, c Using points A and B: y y x x y y x x y x 0 k 0 y x k ky k x a

More information

Mixed exercise 3. x y. cosh t sinh t 1 Substituting the values for cosh t and sinht in the equation for the hyperbola H. = θ =

Mixed exercise 3. x y. cosh t sinh t 1 Substituting the values for cosh t and sinht in the equation for the hyperbola H. = θ = Mixed exercise x x a Parametric equations: cosθ and sinθ 9 cos θ + sin θ Substituting the values for cos θ and sinθ in the equation for ellipse E gives the Cartesian equation: + 9 b Comparing with the

More information

AH Complex Numbers.notebook October 12, 2016

AH Complex Numbers.notebook October 12, 2016 Complex Numbers Complex Numbers Complex Numbers were first introduced in the 16th century by an Italian mathematician called Cardano. He referred to them as ficticious numbers. Given an equation that does

More information

9 Mixed Exercise. vector equation is. 4 a

9 Mixed Exercise. vector equation is. 4 a 9 Mixed Exercise a AB r i j k j k c OA AB 7 i j 7 k A7,, and B,,8 8 AB 6 A vector equation is 7 r x 7 y z (i j k) j k a x y z a a 7, Pearson Education Ltd 7. Copying permitted for purchasing institution

More information

Candidates sitting FP2 may also require those formulae listed under Further Pure Mathematics FP1 and Core Mathematics C1 C4. e π.

Candidates sitting FP2 may also require those formulae listed under Further Pure Mathematics FP1 and Core Mathematics C1 C4. e π. F Further IAL Pure PAPERS: Mathematics FP 04-6 AND SPECIMEN Candidates sitting FP may also require those formulae listed under Further Pure Mathematics FP and Core Mathematics C C4. Area of a sector A

More information

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1 1 w z k k States or implies that 4 i TBC Uses the definition of argument to write 4 k π tan 1 k 4 Makes an attempt to solve for k, for example 4 + k = k is seen. M1.a Finds k = 6 (4 marks) Pearson Education

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS Chapter 5 COMPLEX NUMBERS AND QUADRATIC EQUATIONS 5. Overview We know that the square of a real number is always non-negative e.g. (4) 6 and ( 4) 6. Therefore, square root of 6 is ± 4. What about the square

More information

Further Mathematics AS/F1/D17 AS PAPER 1

Further Mathematics AS/F1/D17 AS PAPER 1 Surname Other Names Candidate Signature Centre Number Candidate Number Examiner Comments Total Marks Further Mathematics AS PAPER 1 CM December Mock Exam (AQA Version) Time allowed: 1 hour and 30 minutes

More information

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 2: Coordinate geometry in the (x, y) plane

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 2: Coordinate geometry in the (x, y) plane Mark scheme Pure Mathematics Year 1 (AS) Unit Test : Coordinate in the (x, y) plane Q Scheme Marks AOs Pearson 1a Use of the gradient formula to begin attempt to find k. k 1 ( ) or 1 (k 4) ( k 1) (i.e.

More information

Circles, Mixed Exercise 6

Circles, Mixed Exercise 6 Circles, Mixed Exercise 6 a QR is the diameter of the circle so the centre, C, is the midpoint of QR ( 5) 0 Midpoint = +, + = (, 6) C(, 6) b Radius = of diameter = of QR = of ( x x ) + ( y y ) = of ( 5

More information

b UVW is a right-angled triangle, therefore VW is the diameter of the circle. Centre of circle = Midpoint of VW = (8 2) + ( 2 6) = 100

b UVW is a right-angled triangle, therefore VW is the diameter of the circle. Centre of circle = Midpoint of VW = (8 2) + ( 2 6) = 100 Circles 6F a U(, 8), V(7, 7) and W(, ) UV = ( x x ) ( y y ) = (7 ) (7 8) = 8 VW = ( 7) ( 7) = 64 UW = ( ) ( 8) = 8 Use Pythagoras' theorem to show UV UW = VW 8 8 = 64 = VW Therefore, UVW is a right-angled

More information

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

FP2 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002) FP Mark Schemes from old P, P5, P6 and FP, FP, FP papers (back to June 00) Please note that the following pages contain mark schemes for questions from past papers. The standard of the mark schemes is

More information

The branch of mechanics which deals with the motion of object is called dynamics. It is divided into two branches:

The branch of mechanics which deals with the motion of object is called dynamics. It is divided into two branches: M th KINEMATICS 4 CHAPTER INTRODUCTION The branch of mechanics which deals with the motion of object is called dynamics. It is divided into two branches: Kinematics: (i) Kinematics (ii) Kinetics The branch

More information

The gradient of the radius from the centre of the circle ( 1, 6) to (2, 3) is: ( 6)

The gradient of the radius from the centre of the circle ( 1, 6) to (2, 3) is: ( 6) Circles 6E a (x + ) + (y + 6) = r, (, ) Substitute x = and y = into the equation (x + ) + (y + 6) = r + + + 6 = r ( ) ( ) 9 + 8 = r r = 90 = 0 b The line has equation x + y = 0 y = x + y = x + The gradient

More information

2011 Mathematics Extension 1 HSC Examination Sample Answers

2011 Mathematics Extension 1 HSC Examination Sample Answers 0 Mathematics Extension HSC Examination Sample Answers When examination committees develop questions for the examination, they may write sample answers or, in the case of some questions, answers could

More information

MATHEMATICS: SPECIALIST UNITS 3C AND 3D FORMULA SHEET 2015

MATHEMATICS: SPECIALIST UNITS 3C AND 3D FORMULA SHEET 2015 MATHEMATICS: SPECIALIST UNITS 3C AND 3D FORMULA SHEET 05 Copyright School Curriculum and Standards Authority, 05 This document apart from any third party copyright material contained in it may be freely

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( )

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( ) Syllabus Objectives: 5.1 The student will explore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so:

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so: Taylor Series 6B a We can evaluate the it directly since there are no singularities: 7+ 7+ 7 5 5 5 b Again, there are no singularities, so: + + c Here we should divide through by in the numerator and denominator

More information

Parametric Equations and Polar Coordinates

Parametric Equations and Polar Coordinates Parametric Equations and Polar Coordinates Parametrizations of Plane Curves In previous chapters, we have studied curves as the graphs of functions or equations involving the two variables x and y. Another

More information

MATHEMATICS AS/M/P1 AS PAPER 1

MATHEMATICS AS/M/P1 AS PAPER 1 Surname Other Names Candidate Signature Centre Number Candidate Number Examiner Comments Total Marks MATHEMATICS AS PAPER 1 Bronze Set B (Edexcel Version) CM Time allowed: 2 hours Instructions to candidates:

More information

cos + i sin = cos + i sin = cos 2π iθ

cos + i sin = cos + i sin = cos 2π iθ Complx numbrs 1C cosθ + sinθ = cosθ + i sin θ 1 a cosθ + sin θ = cos12θ + i sin12θ b 4 c d f 2 a b c d π π π π cos + isin = cos + isin 8 i = + π π 8π 8π 2π 2π cos + isin = cos + isin = cos + isin 1 i =

More information

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8).

a Write down the coordinates of the point on the curve where t = 2. b Find the value of t at the point on the curve with coordinates ( 5 4, 8). Worksheet A 1 A curve is given by the parametric equations x = t + 1, y = 4 t. a Write down the coordinates of the point on the curve where t =. b Find the value of t at the point on the curve with coordinates

More information

Chapter 8. Complex Numbers, Polar Equations, and Parametric Equations. Section 8.1: Complex Numbers. 26. { ± 6i}

Chapter 8. Complex Numbers, Polar Equations, and Parametric Equations. Section 8.1: Complex Numbers. 26. { ± 6i} Chapter 8 Complex Numbers, Polar Equations, and Parametric Equations 6. { ± 6i} Section 8.1: Complex Numbers 1. true. true. true 4. true 5. false (Every real number is a complex number. 6. true 7. 4 is

More information

Q Scheme Marks AOs Pearson ( ) 2. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a

Q Scheme Marks AOs Pearson ( ) 2. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a Further Maths Core Pure (AS/Year 1) Unit Test : Matrices Q Scheme Marks AOs Pearson Finds det M = 3 p p+ 4 = p + 4 p+ 6 1 ( )( ) ( )( ) ( ) Completes the square to show p + 4p+ 6= p+ + M1.a Concludes that

More information

Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) N E W S O U T H W A L E S HIGHER SCHOOL CERTIFICATE EXAMINATION 996 MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) DIRECTIONS TO CANDIDATES Attempt ALL questions.

More information

COMPLEX NUMBERS

COMPLEX NUMBERS COMPLEX NUMBERS 1. Any number of the form x+iy where x, y R and i -1 is called a Complex Number.. In the complex number x+iy, x is called the real part and y is called the imaginary part of the complex

More information

Mathematics Extension 2

Mathematics Extension 2 00 HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics Extension General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Board-approved calculators may be used A table

More information

CHAPTER 4 Stress Transformation

CHAPTER 4 Stress Transformation CHAPTER 4 Stress Transformation ANALYSIS OF STRESS For this topic, the stresses to be considered are not on the perpendicular and parallel planes only but also on other inclined planes. A P a a b b P z

More information

abc Mathematics Further Pure General Certificate of Education SPECIMEN UNITS AND MARK SCHEMES

abc Mathematics Further Pure General Certificate of Education SPECIMEN UNITS AND MARK SCHEMES abc General Certificate of Education Mathematics Further Pure SPECIMEN UNITS AND MARK SCHEMES ADVANCED SUBSIDIARY MATHEMATICS (56) ADVANCED SUBSIDIARY PURE MATHEMATICS (566) ADVANCED SUBSIDIARY FURTHER

More information

Pure Mathematics Year 1 (AS) Unit Test 1: Algebra and Functions

Pure Mathematics Year 1 (AS) Unit Test 1: Algebra and Functions Pure Mathematics Year (AS) Unit Test : Algebra and Functions Simplify 6 4, giving your answer in the form p 8 q, where p and q are positive rational numbers. f( x) x ( k 8) x (8k ) a Find the discriminant

More information

ALGEBRAIC LONG DIVISION

ALGEBRAIC LONG DIVISION QUESTIONS: 2014; 2c 2013; 1c ALGEBRAIC LONG DIVISION x + n ax 3 + bx 2 + cx +d Used to find factors and remainders of functions for instance 2x 3 + 9x 2 + 8x + p This process is useful for finding factors

More information

Some commonly encountered sets and their notations

Some commonly encountered sets and their notations NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS (This notes are based on the book Introductory Mathematics by Ng Wee Seng ) LECTURE SETS & FUNCTIONS Some commonly encountered sets and their

More information

MATHEMATICS EXTENSION 2

MATHEMATICS EXTENSION 2 PETRUS KY COLLEGE NEW SOUTH WALES in partnership with VIETNAMESE COMMUNITY IN AUSTRALIA NSW CHAPTER JULY 006 MATHEMATICS EXTENSION PRE-TRIAL TEST HIGHER SCHOOL CERTIFICATE (HSC) Student Number: Student

More information

= + then for all n N. n= is true, now assume the statement is. ) clearly the base case 1 ( ) ( ) ( )( ) θ θ θ θ ( θ θ θ θ)

= + then for all n N. n= is true, now assume the statement is. ) clearly the base case 1 ( ) ( ) ( )( ) θ θ θ θ ( θ θ θ θ) Complex numbers mixed exercise i a We have e cos + isin hence i i ( e + e ) ( cos + isin + cos + isin ) ( cos + isin + cos sin) cos Where we have used the fact that cos cos sin sin b We have ia ia ib ib

More information

Study guide for Exam 1. by William H. Meeks III October 26, 2012

Study guide for Exam 1. by William H. Meeks III October 26, 2012 Study guide for Exam 1. by William H. Meeks III October 2, 2012 1 Basics. First we cover the basic definitions and then we go over related problems. Note that the material for the actual midterm may include

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Q Scheme Marks AOs Pearson. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a

Q Scheme Marks AOs Pearson. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a Further Maths Core Pure (AS/Year 1) Unit Test : Matrices Q Scheme Marks AOs Pearson Finds det M 3 p p 4 p 4 p 6 1 Completes the square to show p 4 p 6 p M1.a Concludes that (p + ) + > 0 for all values

More information

University of Alberta. Math 214 Sample Exam Math 214 Solutions

University of Alberta. Math 214 Sample Exam Math 214 Solutions University of Alberta Math 14 Sample Exam Math 14 Solutions 1. Test the following series for convergence or divergence (a) ( n +n+1 3n +n+1 )n, (b) 3 n (n +1) (c) SOL: n!, arccos( n n +1 ), (a) ( n +n+1

More information

( ) Applications of forces 7D. 1 Suppose that the rod has length 2a. Taking moments about A: acos30 3

( ) Applications of forces 7D. 1 Suppose that the rod has length 2a. Taking moments about A: acos30 3 Applications of forces 7D Suppose that the rod has length a. Taking moments about A: at 80 acos0 T 80 T 0. 6 N R( ), F T sin0 0 7. N R, T cos0 + R 80 R 80 0 50N In order for the rod to remain in equilibrium,

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

Advanced Higher Grade

Advanced Higher Grade Prelim Eamination / 5 (Assessing Units & ) MATHEMATICS Advanced Higher Grade Time allowed - hours Read Carefully. Full credit will be given only where the solution contains appropriate woring.. Calculators

More information

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Created by T. Madas LINE INTEGRALS. Created by T. Madas LINE INTEGRALS LINE INTEGRALS IN 2 DIMENSIONAL CARTESIAN COORDINATES Question 1 Evaluate the integral ( x + 2y) dx, C where C is the path along the curve with equation y 2 = x + 1, from ( ) 0,1 to ( )

More information

Core Mathematics C4. You must have: Mathematical Formulae and Statistical Tables (Pink)

Core Mathematics C4. You must have: Mathematical Formulae and Statistical Tables (Pink) Write your name here Surname Other names Pearson Edexcel GCE Centre Number Core Mathematics C4 Advanced Candidate Number Friday 23 June 2017 Morning Time: 1 hour 30 minutes Paper Reference 6666/01 You

More information

MATH 135: COMPLEX NUMBERS

MATH 135: COMPLEX NUMBERS MATH 135: COMPLEX NUMBERS (WINTER, 010) The complex numbers C are important in just about every branch of mathematics. These notes 1 present some basic facts about them. 1. The Complex Plane A complex

More information

Core Mathematics C34

Core Mathematics C34 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Monday 16 June 2014 Morning Time: 2 hours 30 minutes You

More information

THE NCUK INTERNATIONAL FOUNDATION YEAR (IFY) Further Mathematics

THE NCUK INTERNATIONAL FOUNDATION YEAR (IFY) Further Mathematics IFYFM00 Further Maths THE NCUK INTERNATIONAL FOUNDATION YEAR (IFY) Further Mathematics Examination Session Summer 009 Time Allowed hours 0 minutes (Including 0 minutes reading time) INSTRUCTIONS TO STUDENTS

More information

Paper Reference. Core Mathematics C4 Advanced. Tuesday 18 June 2013 Morning Time: 1 hour 30 minutes

Paper Reference. Core Mathematics C4 Advanced. Tuesday 18 June 2013 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6666/01 Edexcel GCE Core Mathematics C4 Advanced Tuesday 18 June 2013 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2 Test Review (chap 0) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Find the point on the curve x = sin t, y = cos t, -

More information

International Advanced Level Further Pure Mathematics F2 Advanced/Advanced Subsidiary

International Advanced Level Further Pure Mathematics F2 Advanced/Advanced Subsidiary Write your name here Surname Other names Centre Number Pearson Edexcel International Advanced Level Further Pure Mathematics F2 Advanced/Advanced Subsidiary Sample Assessment Material Time: 1 hour 30 minutes

More information

G H. Extended Unit Tests B L L. Higher Still Advanced Higher Mathematics. (more demanding tests covering all levels) Contents. 3 Extended Unit Tests

G H. Extended Unit Tests B L L. Higher Still Advanced Higher Mathematics. (more demanding tests covering all levels) Contents. 3 Extended Unit Tests M A T H E M A T I C S H I G H E R Higher Still Advanced Higher Mathematics S T I L L Etended Unit Tests B (more demanding tests covering all levels) Contents 3 Etended Unit Tests Detailed marking schemes

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

i j k i j k i j k

i j k i j k i j k Vectors D a The equation of the line is (r a) b0 r ba b. This gives: r (i+j k)(i+j+k) (i+j k) r (i+j k) i+0j k b The equation of the line is (r a) b0 r ba b. This gives: r ( i+ j+ k) (i k) ( i+ j+ k) 0

More information

Elastic strings and springs Mixed exercise 3

Elastic strings and springs Mixed exercise 3 Elastic strings and springs Mixed exercise ( )T cosθ mg By Hooke s law 5mgx T 6a a sinθ a + x () () () a 4 5mg Ifcos θ, T from () 5 8 5mg 5mgx so, from () 8 6a a x 4 If cos θ, then sinθ 5 5 a sinθ from

More information

Math 113 Final Exam Practice

Math 113 Final Exam Practice Math Final Exam Practice The Final Exam is comprehensive. You should refer to prior reviews when studying material in chapters 6, 7, 8, and.-9. This review will cover.0- and chapter 0. This sheet has three

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Background knowledge: (a) The arithmetic of integers (including HCFs and LCMs), of fractions, and of real numbers.

More information

Further Pure Mathematics F2

Further Pure Mathematics F2 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Further Pure Mathematics F2 Advanced/Advanced Subsidiary Wednesday 8 June 2016 Morning Time: 1 hour 30

More information

Paper Reference. Further Pure Mathematics FP3 Advanced/Advanced Subsidiary. Tuesday 26 June 2007 Afternoon Time: 1 hour 30 minutes

Paper Reference. Further Pure Mathematics FP3 Advanced/Advanced Subsidiary. Tuesday 26 June 2007 Afternoon Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference 6 6 7 6 0 1 Surname Signature Paper Reference(s) 6676/01 Edexcel GCE Further Pure Mathematics FP3 Advanced/Advanced Subsidiary Tuesday 26 June 2007 Afternoon Time:

More information

Review Exercise 2. 1 a Chemical A 5x+ Chemical B 2x+ 2y12 [ x+ Chemical C [ 4 12]

Review Exercise 2. 1 a Chemical A 5x+ Chemical B 2x+ 2y12 [ x+ Chemical C [ 4 12] Review Exercise a Chemical A 5x+ y 0 Chemical B x+ y [ x+ y 6] b Chemical C 6 [ ] x+ y x+ y x, y 0 c T = x+ y d ( x, y) = (, ) T = Pearson Education Ltd 08. Copying permitted for purchasing institution

More information

Introduction. The first chapter of FP1 introduces you to imaginary and complex numbers

Introduction. The first chapter of FP1 introduces you to imaginary and complex numbers Introduction The first chapter of FP1 introduces you to imaginary and complex numbers You will have seen at GCSE level that some quadratic equations cannot be solved Imaginary and complex numbers will

More information

( ) ( ) 2 1 ( ) Conic Sections 1 2E. 1 a. 1 dy. At (16, 8), d y 2 1 Tangent is: dx. Tangent at,8. is 1

( ) ( ) 2 1 ( ) Conic Sections 1 2E. 1 a. 1 dy. At (16, 8), d y 2 1 Tangent is: dx. Tangent at,8. is 1 Conic Sections E a y y so At (6, ), d y y ( 6) y 6 y+ 6 y 6+ y+ 6 d y y At, 6 When, y, angent at, is y 6 y 6+ 6+ y 6+ y 6 y y so,, d y At y ( ) y ( ) y y+ y + y+ e 6+ y 6 y 7 7 y 7 so d d y 7 At ( 7, 7),

More information

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C)

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C) SAT II - Math Level 2 Test #01 Solution 1. x + = 2, then x² + = Since x + = 2, by squaring both side of the equation, (A) - (B) 0 (C) 2 (D) 4 (E) -2 we get x² + 2x 1 + 1 = 4, or simplifying it, x² + 2

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

Condensed. Mathematics. General Certificate of Education Advanced Level Examination June Unit Further Pure 2. Time allowed * 1 hour 30 minutes

Condensed. Mathematics. General Certificate of Education Advanced Level Examination June Unit Further Pure 2. Time allowed * 1 hour 30 minutes General Certificate of Education Advanced Level Examination June 011 Mathematics MFP Unit Further Pure Monday 13 June 011 9.00 am to 10.30 am For this paper you must have: the blue AQA booklet of formulae

More information

G H. Extended Unit Tests A L L. Higher Still Advanced Higher Mathematics. (more demanding tests covering all levels) Contents. 3 Extended Unit Tests

G H. Extended Unit Tests A L L. Higher Still Advanced Higher Mathematics. (more demanding tests covering all levels) Contents. 3 Extended Unit Tests M A T H E M A T I C S H I G H E R Higher Still Advanced Higher Mathematics S T I L L Extended Unit Tests A (more demanding tests covering all levels) Contents Extended Unit Tests Detailed marking schemes

More information

Mathematics Extension 2

Mathematics Extension 2 0 HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics Etension General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Black pen is preferred Board-approved calculators

More information

Mathematics Extension 1

Mathematics Extension 1 009 HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics Extension General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Board-approved calculators may be used A table

More information

National Quali cations

National Quali cations National Quali cations AH08 X747/77/ Mathematics THURSDAY, MAY 9:00 AM :00 NOON Total marks 00 Attempt ALL questions. You may use a calculator. Full credit will be given only to solutions which contain

More information

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = =

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = = Review Eercise a Use m m a a, so a a a Use c c 6 5 ( a ) 5 a First find Use a 5 m n m n m a m ( a ) or ( a) 5 5 65 m n m a n m a m a a n m or m n (Use a a a ) cancelling y 6 ecause n n ( 5) ( 5)( 5) (

More information

Mark Scheme Summer 2009

Mark Scheme Summer 2009 Mark Summer 009 GCE GCE Mathematics (6668/0) Edecel is one of the leading eamining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic,

More information

physicsandmathstutor.com 4727 Mark Scheme June 2010

physicsandmathstutor.com 4727 Mark Scheme June 2010 477 Mark Scheme June 00 Direction of l = k[7, 0, 0] Direction of l = k[,, ] EITHER n = [7, 0, 0] [,, ] For both directions [ x, y, z]. [7,0, 0] = 0 7x 0z = 0 OR [ x, y, z]. [,, ] = 0 x y z = 0 n = k[0,,

More information

Edexcel Core Mathematics 4 Parametric equations.

Edexcel Core Mathematics 4 Parametric equations. Edexcel Core Mathematics 4 Parametric equations. Edited by: K V Kumaran kumarmaths.weebly.com 1 Co-ordinate Geometry A parametric equation of a curve is one which does not give the relationship between

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 000 MATHEMATICS UNIT (ADDITIONAL) AND /4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) DIRECTIONS TO CANDIDATES Attempt ALL questions. ALL questions

More information

) z r θ ( ) ( ) ( ) = then. Complete Solutions to Examination Questions Complete Solutions to Examination Questions 10.

) z r θ ( ) ( ) ( ) = then. Complete Solutions to Examination Questions Complete Solutions to Examination Questions 10. Complete Solutions to Examination Questions 0 Complete Solutions to Examination Questions 0. (i We need to determine + given + j, j: + + j + j (ii The product ( ( + j6 + 6 j 8 + j is given by ( + j( j

More information

Mark Scheme (Results) June GCE Further Pure FP2 (6668) Paper 1

Mark Scheme (Results) June GCE Further Pure FP2 (6668) Paper 1 Mark (Results) June 0 GCE Further Pure FP (6668) Paper Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including

More information

Edexcel past paper questions. Core Mathematics 4. Parametric Equations

Edexcel past paper questions. Core Mathematics 4. Parametric Equations Edexcel past paper questions Core Mathematics 4 Parametric Equations Edited by: K V Kumaran Email: kvkumaran@gmail.com C4 Maths Parametric equations Page 1 Co-ordinate Geometry A parametric equation of

More information

PRACTICE PAPER 6 SOLUTIONS

PRACTICE PAPER 6 SOLUTIONS PRACTICE PAPER 6 SOLUTIONS SECTION A I.. Find the value of k if the points (, ) and (k, 3) are conjugate points with respect to the circle + y 5 + 8y + 6. Sol. Equation of the circle is + y 5 + 8y + 6

More information

SPECIALIST MATHEMATICS

SPECIALIST MATHEMATICS Victorian Certificate of Education 06 SUPERVISOR TO ATTACH PROCESSING LABEL HERE Letter STUDENT NUMBER SPECIALIST MATHEMATICS Section Written examination Monday 7 November 06 Reading time:.5 am to.00 noon

More information

or i 2 = -1 i 4 = 1 Example : ( i ),, 7 i and 0 are complex numbers. and Imaginary part of z = b or img z = b

or i 2 = -1 i 4 = 1 Example : ( i ),, 7 i and 0 are complex numbers. and Imaginary part of z = b or img z = b 1 A- LEVEL MATHEMATICS P 3 Complex Numbers (NOTES) 1. Given a quadratic equation : x 2 + 1 = 0 or ( x 2 = -1 ) has no solution in the set of real numbers, as there does not exist any real number whose

More information

2013 HSC Mathematics Extension 2 Marking Guidelines

2013 HSC Mathematics Extension 2 Marking Guidelines 3 HSC Mathematics Extension Marking Guidelines Section I Multiple-choice Answer Key Question Answer B A 3 D 4 A 5 B 6 D 7 C 8 C 9 B A 3 HSC Mathematics Extension Marking Guidelines Section II Question

More information

12 th Class Mathematics Paper

12 th Class Mathematics Paper th Class Mathematics Paper Maimum Time: hours Maimum Marks: 00 General Instructions: (i) All questions are compulsory. (ii) The question paper consists of 9 questions divided into four sections A, B, C

More information

Methods in differential equations mixed exercise 7

Methods in differential equations mixed exercise 7 Methos in ifferential equations mie eercise 7 tan lnsec The integrating factor is e = e = sec Multiplying the equation by this factor gives: sec + ysectan= sec ( sec sec y = y sec= sec = tan+ c y= sin+

More information

Calculus III. Exam 2

Calculus III. Exam 2 Calculus III Math 143 Spring 011 Professor Ben Richert Exam Solutions Problem 1. (0pts) Computational mishmash. For this problem (and only this problem), you are not required to supply any English explanation.

More information

A-LEVEL Mathematics. Further Pure 2 MFP2 Mark scheme June Version/Stage: Final

A-LEVEL Mathematics. Further Pure 2 MFP2 Mark scheme June Version/Stage: Final A-LEVEL Mathematics Further Pure MFP Mark scheme 660 June 04 Version/Stage: Final Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel

More information

z = a + ib (4.1) i 2 = 1. (4.2) <(z) = a, (4.3) =(z) = b. (4.4)

z = a + ib (4.1) i 2 = 1. (4.2) <(z) = a, (4.3) =(z) = b. (4.4) Chapter 4 Complex Numbers 4.1 Definition of Complex Numbers A complex number is a number of the form where a and b are real numbers and i has the property that z a + ib (4.1) i 2 1. (4.2) a is called the

More information

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 > Math 63 Final Problem 1: [ points, 5 points to each part] Given the points P : (1, 1, 1), Q : (1,, ), R : (,, c 1), where c is a parameter, find (a) the vector equation of the line through P and Q. (b)

More information

FURTHER MATHEMATICS A2/FM/CP1 A LEVEL CORE PURE 1

FURTHER MATHEMATICS A2/FM/CP1 A LEVEL CORE PURE 1 Surname Other Names Candidate Signature Centre Number Candidate Number Examiner Comments Total Marks FURTHER MATHEMATICS A LEVEL CORE PURE 1 CM Bronze Set A (Edexcel Version) Time allowed: 1 hour and 30

More information

A Level Maths. Bronze Set B, Paper 1 (Edexcel version) 2018 crashmaths Limited

A Level Maths. Bronze Set B, Paper 1 (Edexcel version) 2018 crashmaths Limited A Level Maths Bronze Set B, Paper (Edexcel version) 08 crashmaths Limited A Level Maths CM Practice Paper (for Edexcel) / Bronze Set B Question Solution Partial Marks Guidance dy dx = x x e x oe Method

More information

2017 HSC Mathematics Extension 2 Marking Guidelines

2017 HSC Mathematics Extension 2 Marking Guidelines 07 HSC Mathematics Etension Marking Guidelines Section I Multiple-choice Answer Key Question Answer C B 3 D 4 C 5 B 6 A 7 A 8 B 9 C 0 B NESA 07 HSC Mathematics Etension Sample Answers Section II Question

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY National Quali cations AHEXEMPLAR PAPER ONLY EP/AH/0 Mathematics Date Not applicable Duration hours Total marks 00 Attempt ALL questions. You may use a calculator. Full credit will be given only to solutions

More information

Rotation of Axes. By: OpenStaxCollege

Rotation of Axes. By: OpenStaxCollege Rotation of Axes By: OpenStaxCollege As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to tip and extending infinitely far in opposite directions,

More information

Mathematics Extension 2

Mathematics Extension 2 00 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION Mathematics Extension General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Approved scientific calculators and templates

More information

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n.

Power Series. x n. Using the ratio test. n n + 1. x n+1 n 3. = lim x. lim n + 1. = 1 < x < 1. Then r = 1 and I = ( 1, 1) ( 1) n 1 x n. .8 Power Series. n x n x n n Using the ratio test. lim x n+ n n + lim x n n + so r and I (, ). By the ratio test. n Then r and I (, ). n x < ( ) n x n < x < n lim x n+ n (n + ) x n lim xn n (n + ) x

More information

MTH 234 Exam 1 February 20th, Without fully opening the exam, check that you have pages 1 through 11.

MTH 234 Exam 1 February 20th, Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

Extra FP3 past paper - A

Extra FP3 past paper - A Mark schemes for these "Extra FP3" papers at https://mathsmartinthomas.files.wordpress.com/04//extra_fp3_markscheme.pdf Extra FP3 past paper - A More FP3 practice papers, with mark schemes, compiled from

More information

Review Exercise 2. , æ. ç ø. ç ø. ç ø. ç ø. = -0.27, 0 x 2p. 1 Crosses y-axis when x = 0 at sin 3p 4 = 1 2. ö ø. æ Crosses x-axis when sin x + 3p è

Review Exercise 2. , æ. ç ø. ç ø. ç ø. ç ø. = -0.27, 0 x 2p. 1 Crosses y-axis when x = 0 at sin 3p 4 = 1 2. ö ø. æ Crosses x-axis when sin x + 3p è Review Exercise 1 Crosses y-axis when x 0 at sin p 4 1 Crosses x-axis when sin x + p 4 ö 0 x + p 4 -p, 0, p, p x - 7p 4, - p 4, p 4, 5p 4 So coordinates are 0, 1 ö, - 7p 4,0 ö, - p 4,0 ö, p 4,0 ö, 5p 4,0

More information

Trigonometry and modelling 7E

Trigonometry and modelling 7E Trigonometry and modelling 7E sinq +cosq º sinq cosa + cosq sina Comparing sin : cos Comparing cos : sin Divide the equations: sin tan cos Square and add the equations: cos sin (cos sin ) since cos sin

More information

MTH 362: Advanced Engineering Mathematics

MTH 362: Advanced Engineering Mathematics MTH 362: Advanced Engineering Mathematics Lecture 1 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 7, 2017 Course Name and number: MTH 362: Advanced Engineering

More information